Publications

See also my publication list on INSPIRE.

  1. M. Hohmann and V. Karanasou,
    Symmetric Teleparallel Connection and Spherical Solutions in Newer GR,
    arXiv:2412.11730 [gr-qc].
  2. M. Hohmann, C. Pfeifer and F. Wagner,
    Weak equivalence principle and nonrelativistic limit of general dispersion relations,
    Phys. Rev. D 110 (2024) 104030 [arXiv:2404.18811 [gr-qc]].
  3. M. Hohmann,
    Preface to the Special Issue on Metric-affine Gravity 2022,
    Int. J. Geom. Meth. Mod. Phys. 20, Supp. 1 (2023) 2302001.
  4. M. Hohmann,
    Field transformations and invariant quantities in scalar-teleparallel theories of gravity,
    Phys. Rev. D 109 (2024) 064003 [arXiv:2312.17609 [gr-qc]].
  5. M. Hohmann and U. Ualikhanova,
    Post-Newtonian limit of generalized scalar-teleparallel theories of gravity,
    Phys. Rev. D 109 (2024) 044070 [arXiv:2312.13352 [gr-qc]].
  6. H. Asuküla, S. Bahamonde, M. Hohmann, V. Karanasou, C. Pfeifer and J. L. Rosa,
    Spherically symmetric vacuum solutions in 1-Parameter New General Relativity and their phenomenology,
    Phys. Rev. D 109 (2024) 064027 [arXiv:2311.17999 [gr-qc]].
  7. L. Heisenberg and M. Hohmann,
    Gauge-invariant cosmological perturbations in general teleparallel gravity,
    arXiv:2311.05597 [gr-qc].
  8. L. Heisenberg, M. Hohmann and S. Kuhn,
    Cosmological teleparallel perturbations,
    JCAP 2024-03 (2024) 063 [arXiv:2311.05495 [gr-qc]].
  9. M. Hohmann,
    Kinetic gases in static spherically symmetric modified dispersion relations,
    Class. Quant. Grav. 41 (2023) 015025 [arXiv:2310.01487 [gr-qc]].
  10. M. Hohmann,
    Spatially homogeneous teleparallel spacetimes with four-dimensional groups of motions,
    Int. J. Geom. Meth. Mod. Phys. 20, Supp. 1 (2023) 2450046 [arXiv:2305.06997 [gr-qc]].
  11. D. Blixt, M. Hohmann, T. Koivisto and L. Marzola,
    Teleparallel bigravity,
    Eur. Phys. J. C 83 (2023) 1120 [arXiv:2305.03504 [gr-qc]].
  12. L. Heisenberg, M. Hohmann and S. Kuhn,
    Homogeneous and isotropic cosmology in general teleparallel gravity,
    Eur. Phys. J. C 83 (2023) 315 [arXiv:2212.14324 [gr-qc]].
  13. A. Delhom, G. García-Moreno, M. Hohmann, A. Jiménez-Cano and T. S. Koivisto,
    Bootstrapping gravity and its extension to metric-affine theories,
    JCAP 2023-12 (2023) 006 [arXiv:2211.13056 [gr-qc]].
  14. M. Hohmann,
    Preface to the Special Issue on Geometric Foundations of Gravity 2021,
    Int. J. Geom. Meth. Mod. Phys. 19, Supp. 1 (2022) 2202001.
  15. M. Hohmann,
    The role of symmetry in the geometric description of gravity,
    habilitation thesis.
  16. M. Hohmann,
    Teleparallel gravity,
    in: C. Pfeifer and C. Lämmerzahl (eds), Modified and Quantum Gravity, Springer, Cham, 2023, pp 145-198 [arXiv:2207.06438 [gr-qc]].
  17. M. Hohmann and C. Pfeifer,
    Gravitational wave birefringence in spatially curved teleparallel cosmology,
    Phys. Lett. B 834 (2022) 137437 [arXiv:2203.01856 [gr-qc]].
  18. S. Bahamonde, K. F. Dialektopoulos, M. Hohmann, J. Levi Said, C. Pfeifer and E. N. Saridakis,
    Perturbations in non-flat cosmology for f(T) gravity,
    Eur. Phys. J. C 83 (2023) 193 [arXiv:2203.00619 [gr-qc]].
  19. D. Läänemets, M. Hohmann and C. Pfeifer,
    Observables from spherically symmetric modified dispersion relations,
    Int. J. Geom. Meth. Mod. Phys. 19, No. 10 (2022) 2250155 [arXiv:2201.04694 [gr-qc]].
  20. M. Hohmann,
    A geometric view on local Lorentz transformations in teleparallel gravity,
    Int. J. Geom. Meth. Mod. Phys. 19, Supp. 1 (2022) 2240001 [arXiv:2112.15173 [gr-qc]].
  21. K. Flathmann and M. Hohmann,
    Parametrized post-Newtonian limit of generalized scalar-nonmetricity theories of gravity,
    Phys. Rev. D 105 (2022) 044002 [arXiv:2111.02806 [gr-qc]].
  22. M. Hohmann,
    Gauge-Invariant Post-Newtonian Perturbations in Symmetric Teleparallel Gravity,
    Astron. Rep. 65 (2021) 952 [arXiv:2111.06255 [gr-qc]].
  23. M. Hohmann,
    General covariant symmetric teleparallel cosmology,
    Phys. Rev. D 104 (2021) 124077 [arXiv:2109.01525 [gr-qc]].
  24. S. Bahamonde, M. Hohmann, L. Järv, T. Koivisto, M. Krššák, C. Pfeifer and M. Saal,
    Preface to the Special Issue on Teleparallel Gravity 2020,
    Int. J. Geom. Meth. Mod. Phys. 18, Supp. 1 (2021) 2102001.
  25. M. Hohmann, C. Pfeifer and N. Voicu,
    Finsler-based field theory - a mathematical foundation,
    J. Math. Phys. 63 (2022) 032503 [arXiv:2106.14965 [math-ph]].
  26. S. Bahamonde, K. F. Dialektopoulos, C. Escamilla-Rivera, G. Farrugia, V. Gakis, M. Hendry, M. Hohmann, J. Levi Said, J. Mifsud and E. di Valentino,
    Teleparallel Gravity: From Theory to Cosmology,
    Rep. Prog. Phys. 86 (2023) 026901 [arXiv:2106.13793 [gr-qc]].
  27. S. Bahamonde, M. Caruana, K. F. Dialektopoulos, V. Gakis, M. Hohmann, J. Levi Said, E. N. Saridakis and J. Sultana,
    Gravitational Wave Propagation and Polarizations in the Teleparallel analog of Horndeski Gravity,
    Phys. Rev. D 104 (2021) 084082 [arXiv:2105.13243 [gr-qc]].
  28. M. Hohmann,
    Parametrized Post-Newtonian Formalism,
    in: E. N. Saridakis et al. (eds), Modified Gravity and Cosmology: An Update by the CANTATA Network, Springer, Cham, 2021 [arXiv:2105.12582 [gr-qc]], pp 357-373.
  29. S. Bahamonde, K. F. Dialektopoulos, M. Hohmann and J. Levi Said,
    Teleparallel Gravity: Foundations and Cosmology,
    in: E. N. Saridakis et al. (eds), Modified Gravity and Cosmology: An Update by the CANTATA Network, Springer, Cham, 2021 [arXiv:2105.12582 [gr-qc]], pp 191-242.
  30. M. Hohmann,
    Variational Principles in Teleparallel Gravity Theories,
    Universe 7 (2021) 114 [arXiv:2104.00536 [gr-qc]].
  31. M. Hohmann,
    xPPN: An implementation of the parametrized post-Newtonian formalism using xAct for Mathematica,
    Eur. Phys. J. C 81 (2021) 504 [arXiv:2012.14984 [gr-qc]].
  32. M. Hohmann and C. Pfeifer,
    Teleparallel axions and cosmology,
    Eur. Phys. J. C 81 (2021) 376 [arXiv:2012.14423 [gr-qc]].
  33. K. Flathmann and M. Hohmann,
    Post-Newtonian limit of generalized symmetric teleparallel gravity,
    Phys. Rev. D 103 (2021) 044030 [arXiv:2012.12875 [gr-qc]].
  34. D. Blixt, M.-J. Guzmán, M. Hohmann and C. Pfeifer,
    Review of the Hamiltonian analysis in teleparallel gravity,
    Int. J. Geom. Meth. Mod. Phys. 18, Supp. 1 (2021) 2130005 [arXiv:2012.09180 [gr-qc]].
  35. M. Hohmann,
    General cosmological perturbations in teleparallel gravity,
    Eur. Phys. J. Plus 136 (2021) 65 [arXiv:2011.02491 [gr-qc]].
  36. M. Hohmann, C. Pfeifer and N. Voicu,
    Canonical variational completion of 4D Gauss-Bonnet gravity,
    Eur. Phys. J. Plus 136 (2021) 180 [arXiv:2009.05459 [gr-qc]].
  37. M. Hohmann,
    Complete classification of cosmological teleparallel geometries,
    Int. J. Geom. Meth. Mod. Phys. 18, Supp. 1 (2021) 2140005 [arXiv:2008.12186 [gr-qc]].
  38. L. Järv, M. Hohmann and M. Saal,
    Laiendatud geomeetrilised gravitatsiooniteooriad,
    in: T. Soomere (ed), Eesti Vabariigi preemiad 2020, Tallinn: Eesti Teaduste Akadeemia, 2020, pp 56-73.
  39. M. Hohmann, C. Pfeifer and N. Voicu,
    The kinetic gas universe,
    Eur. Phys. J. C 80 (2020) 809 [arXiv:2005.13561 [gr-qc]].
  40. S. Bahamonde, K. F. Dialektopoulos, M. Hohmann and J. Levi Said,
    Post-Newtonian limit of Teleparallel Horndeski gravity,
    Class. Quant. Grav. 38 (2020) 025006 [arXiv:2003.11554 [gr-qc]].
  41. M. Hohmann, C. Pfeifer and N. Voicu,
    Cosmological Finsler Spacetimes,
    Universe 6 (2020) 65 [arXiv:2003.02299 [gr-qc]].
  42. M. Hohmann,
    Metric-affine Geometries With Spherical Symmetry,
    Symmetry 12 (2020) 453 [arXiv:1912.12906 [math-ph]].
  43. M. Hohmann, C. Pfeifer and N. Voicu,
    Relativistic kinetic gases as direct sources of gravity,
    Phys. Rev. D 101 (2020) 024062 [arXiv:1910.14044 [gr-qc]].
  44. M. Hohmann,
    Gauge-invariant approach to the parametrized post-Newtonian formalism,
    Phys. Rev. D 101 (2020) 024061 [arXiv:1910.09245 [gr-qc]].
  45. K. Flathmann and M. Hohmann,
    Post-Newtonian limit of generalized scalar-torsion theories of gravity,
    Phys. Rev. D 101 (2020) 024005 [arXiv:1910.01023 [gr-qc]].
  46. T. Koivisto, M. Hohmann and L. Marzola,
    Axiomatic derivation of coincident general relativity and its premetric extension,
    Phys. Rev. D 103 (2021) 064041 [arXiv:1909.10415 [gr-qc]].
  47. E. D. Emtsova and M. Hohmann,
    Post-Newtonian limit of scalar-torsion theories of gravity as analogue to scalar-curvature theories,
    Phys. Rev. D 101 (2020) 024017 [arXiv:1909.09355 [gr-qc]].
  48. M. Hohmann,
    Hamiltonian of new general relativity using differential forms,
    Int. J. Mod. Phys. A 35 (2020) 2040014 [arXiv:1907.08343 [gr-qc]].
  49. U. Ualikhanova and M. Hohmann,
    Parameterized post-Newtonian limit of general teleparallel gravity theories,
    Phys. Rev. D 100 (2019) 104011 [arXiv:1907.08178 [gr-qc]].
  50. D. Blixt, M. Hohmann, M. Krššák and C. Pfeifer,
    Hamiltonian Analysis In New General Relativity,
    The Fifteenth Marcel Grossmann Meeting; World Scientific; pp 352-357 [arXiv:1905.11919 [gr-qc]].
  51. L. Järv, M. Hohmann, M. Krššák and C. Pfeifer,
    Flat connection for rotating spacetimes in extended teleparallel gravity theories,
    Universe 5 (2019) 142 [arXiv:1905.03305 [gr-qc]].
  52. T. Koivisto, M. Hohmann and T. Złośnik,
    The General Linear Cartan Khronon,
    Universe 5 (2019) 168 [arXiv:1905.02967 [gr-qc]].
  53. D. Blixt, M. Hohmann and C. Pfeifer,
    On the gauge fixing in the Hamiltonian analysis of general teleparallel theories,
    Universe 5 (2019) 143 [arXiv:1905.01048 [gr-qc]].
  54. M. Hohmann,
    Disformal Transformations in Scalar-Torsion Gravity,
    Universe 5 (2019) 167 [arXiv:1905.00451 [gr-qc]].
  55. M. Hohmann, L. Järv, M. Krššák and C. Pfeifer,
    Modified teleparallel theories of gravity in symmetric spacetimes,
    Phys. Rev. D 100 (2019) 084002 [arXiv:1901.05472 [gr-qc]].
  56. M. Hohmann,
    Spherical harmonic d-tensors,
    Int. J. Geom. Meth. Mod. Phys. 16, Supp. 2 (2019) 1941002 [arXiv:1812.11169 [math-ph]].
  57. M. Hohmann, C. Pfeifer and N. Voicu,
    Finsler gravity action from variational completion,
    Phys. Rev. D 100 (2019) 064035 [arXiv:1812.11161 [gr-qc]].
  58. D. Blixt, M. Hohmann and C. Pfeifer,
    Hamiltonian and primary constraints of new general relativity,
    Phys. Rev. D 99 (2019) 084025 [arXiv:1811.11137 [gr-qc]].
  59. M. Hohmann, L. Järv, M. Krššák and C. Pfeifer,
    Preface to the Special Issue on Geometric Foundations of Gravity in Tartu 2017,
    Int. J. Geom. Meth. Mod. Phys. 15, Supp. 1 (2018) 1802001.
  60. M. Hohmann, C. Pfeifer, J. Levi Said and U. Ualikhanova,
    Propagation of gravitational waves in symmetric teleparallel gravity theories,
    Phys. Rev. D 99 (2019) 024009 [arXiv:1808.02894 [gr-qc]].
  61. M. Hohmann, M. Krššák, C. Pfeifer and U. Ualikhanova,
    Propagation of gravitational waves in teleparallel gravity theories,
    Phys. Rev. D 98 (2018) 124004 [arXiv:1807.04580 [gr-qc]].
  62. M. Hohmann,
    Polarization of gravitational waves in general teleparallel theories of gravity,
    Astron. Rep. 62 (2018) 890 [arXiv:1806.10429 [gr-qc]].
  63. M. Hohmann, C. Pfeifer, M. Raidal and H. Veermäe,
    Wormholes in conformal gravity,
    JCAP 2018-10 (2018) 003 [arXiv:1802.02184 [gr-qc]].
  64. M. Hohmann and C. Pfeifer,
    Scalar-torsion theories of gravity II: L(T, X, Y, φ) theory,
    Phys. Rev. D 98 (2018) 064003 [arXiv:1801.06536 [gr-qc]].
  65. M. Hohmann,
    Scalar-torsion theories of gravity III: analogue of scalar-tensor gravity and conformal invariants,
    Phys. Rev. D 98 (2018) 064004 [arXiv:1801.06531 [gr-qc]].
  66. M. Hohmann,
    Scalar-torsion theories of gravity I: general formalism and conformal transformations,
    Phys. Rev. D 98 (2018) 064002 [arXiv:1801.06528 [gr-qc]].
  67. M. Hohmann, L. Järv and U. Ualikhanova,
    Covariant formulation of scalar-torsion gravity,
    Phys. Rev. D 97 (2018) 104011 [arXiv:1801.05786 [gr-qc]].
  68. M. Hohmann,
    Good vs. Bad Tetrads in f(T) Gravity and the Role of Spacetime Symmetries,
    Proceedings 2 (2018) 33.
  69. M. Hohmann, L. Järv, M. Krššák and C. Pfeifer,
    Teleparallel theories of gravity as analogue of non-linear electrodynamics,
    Phys. Rev. D 97 (2018) 104042 [arXiv:1711.09930 [gr-qc]].
  70. M. Hohmann and A. Schärer,
    Post-Newtonian parameters γ and β of scalar-tensor gravity for a homogeneous gravitating sphere,
    Phys. Rev. D 96 (2017) 104026 [arXiv:1708.07851 [gr-qc]].
  71. M. Hohmann, L. Järv and U. Ualikhanova,
    Dynamical systems approach and generic properties of f(T) cosmology,
    Phys. Rev. D 96 (2017) 043508 [arXiv:1706:02376 [gr-qc]].
  72. M. Hohmann,
    Post-Newtonian parameter γ and the deflection of light in ghost-free massive bimetric gravity,
    Phys. Rev. D 95 (2017) 124049 [arXiv:1701:07700 [gr-qc]].
  73. M. Hohmann and C. Pfeifer,
    Geodesics and the magnitude-redshift relation on cosmologically symmetric Finsler spacetimes,
    Phys. Rev. D 95 (2017) 104021 [arXiv:1612:08187 [gr-qc]].
  74. M. Hohmann, L. Järv, P. Kuusk, E. Randla and O. Vilson,
    Post-Newtonian parameter γ for multiscalar-tensor gravity with a general potential,
    Phys. Rev. D 94 (2016) 124015 [arXiv:1607.02356 [gr-qc]].
  75. M. Hohmann,
    Finsler fluid dynamics in SO(4) symmetric cosmology,
    The Fourteenth Marcel Grossmann Meeting; World Scientific; pp 1233-1238 [arXiv:1512.07927 [gr-qc]].
  76. M. Hohmann,
    Parameterized post-Newtonian limit of Horndeski's gravity theory,
    Proceedings of the Twelfth Asia-Pacific International Conference on Gravitation, Astrophysics, and Cosmology; World Scientific; pp 196-197 [arXiv:1508.05092 [gr-qc]].
  77. M. Hohmann,
    Symmetry in Cartan language for geometric theories of gravity,
    Proceedings of the Twelfth Asia-Pacific International Conference on Gravitation, Astrophysics, and Cosmology; World Scientific; pp 257-258 [arXiv:1508.05058 [math-ph]].
  78. M. Hohmann,
    Non-metric fluid dynamics and cosmology on Finsler spacetimes,
    Int. J. Mod. Phys. A 31 (2016) 1641012 [arXiv:1508.03304 [gr-qc]].
  79. M. Hohmann,
    Parameterized post-Newtonian limit of Horndeski's gravity theory,
    Phys. Rev. D 92 (2015) 064019 [arXiv:1506.04253 [gr-qc]].
  80. M. Hohmann,
    Spacetime and observer space symmetries in the language of Cartan geometry,
    J. Math. Phys. 57 (2016) 082502 [arXiv:1505.07809 [math-ph]].
  81. M. Hohmann,
    Aspects of multimetric gravity,
    J. Phys.: Conf. Ser. 532 (2014) 012009.
  82. M. Hohmann,
    Observer dependent geometries,
    invited contribution to Mathematical Structures of the Universe [arXiv:1403.4005 [math-ph]].
  83. M. Hohmann,
    Traversable wormholes without exotic matter in multimetric repulsive gravity,
    Phys. Rev. D 89 (2014) 087503 [arXiv:1312.5290 [gr-qc]].
  84. M. Hohmann,
    Parameterized post-Newtonian formalism for multimetric gravity,
    Class. Quant. Grav. 31 (2014) 135003 [arXiv:1309.7787 [gr-qc]].
  85. M. Hohmann, L. Järv, P. Kuusk and E. Randla,
    Post-Newtonian parameters γ and β of scalar-tensor gravity with a general potential,
    Phys. Rev. D 88 (2013) 084054 [Erratum-ibid. 89 (2014) 069901] [arXiv:1309.0031 [gr-qc]].
  86. M. Hohmann,
    Extensions of Lorentzian spacetime geometry: From Finsler to Cartan and vice versa,
    Phys. Rev. D 87 (2013) 124034 [arXiv:1304.5430 [gr-qc]].
  87. M. Hohmann,
    Propagation of gravitational waves in multimetric gravity,
    Phys. Rev. D 85 (2012) 084024 [arXiv:1105.2555 [gr-qc]].
  88. M. Hohmann,
    Quantum manifolds,
    AIP Conf. Proc. 1424 (2011) 149.
  89. M. Hohmann,
    Geometric constructions for repulsive gravity and quantization,
    PhD thesis.
  90. M. Hohmann and M. N. R. Wohlfarth,
    Multimetric extension of the PPN formalism: experimental consistency of repulsive gravity,
    Phys. Rev. D 82 (2010) 084028 [arXiv:1007.4945 [gr-qc]].
  91. M. Hohmann and M. N. R. Wohlfarth,
    Repulsive gravity model for dark energy,
    Phys. Rev. D 81 (2010) 104006 [arXiv:1003.1379 [gr-qc]].
  92. M. Hohmann and M. N. R. Wohlfarth,
    No-go theorem for bimetric gravity with positive and negative mass,
    Phys. Rev. D 80 (2009) 104011 [arXiv:0908.3384 [gr-qc]].
  93. M. Hohmann, R. Punzi and M. N. R. Wohlfarth,
    Quantum manifolds with classical limit,
    arXiv:0809.3111 [math-ph].
  94. M. Hohmann,
    Quantum aspects of spinning strings on AdS3 × S3 × T4 with RR-flux,
    diploma thesis.