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54 Gauge transformation of matter fields

In physics we often encounter theories which are invariant under “local symmetries”, i.e.,
“local actions” of a group. Many examples come from field theory, such as electromagnetism,
which is locally invariant under U(1), or the strong interaction between quarks, which is
locally invariant under SU(3). We will now discuss how these theories can be described
using the geometrical notions we introduced in the previous lectures. In this section we
start by introducing a few important notions in the way they are used in the context of
gauge theories. One conventionally distinguishes two types of fields in these theories - gauge
fields and matter fields. The latter is defined as follows.

Definition 54.1 (Matter field). A matter field is a section Φ : M → P ×ρ F of a fiber
bundle πρ : P ×ρ F → M with fiber F associated to a principal G-bundle π : P → M
with Lie group G.

Recall that the total space P ×ρF is constituted by equivalence classes [p, f ], where p ∈ P ,
f ∈ F and equivalence is defined by (p, f) ∼ (p · g, ρ(g−1, f)). We now pose the question
how matter fields change if we perform an operation on the principal bundle which preserves
its fibers and the right action of the structure group G. We define this operation as follows.

Definition 54.2 (Gauge transformation). Let π : P → M be a principal G-bundle
with Lie group G. A gauge transformation is a vertical principal bundle automorphism
of P , i.e., a diffeomorphism ϕ : P → P such that π ◦ϕ = π and Rg ◦ϕ = ϕ ◦Rg for all
g ∈ G. The gauge transformations form a group, which is called the gauge group.

Every gauge transformation ϕ induces a transformation ϕρ of the associated bundle P ×ρF
given by ϕρ([p, f ]) = [ϕ(p), f ]. This is well defined, since

ϕρ([p · g, ρ(g−1, f)]) = [ϕ(p · g), ρ(g−1, f)] = [ϕ(p) · g, ρ(g−1, f)] = [ϕ(p), f ] = ϕρ([p, f ]) .
(54.1)

This action is fiber preserving and thus induces an action on the space Γ(P×ρF ) of sections,
where

ϕρ(Φ) = ϕρ ◦ Φ . (54.2)
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Further, we obtain an action on the jet bundles Jr(P ×ρ F ), which is defined such that

ϕρ(j
r
xΦ) = jrxϕρ(Φ) . (54.3)

To see that this is well-defined, we have to check that ϕρ(jrxΦ) is independent of the choice
of the representative Φ, i.e., that jrxϕρ(Φ) = jrxϕρ(Φ

′) for jrxΦ = jrxΦ′. This is indeed the
case, which can easily be proven using the fact that ϕρ : P ×ρ F → P ×ρ F is a bundle
isomorphism.

55 Gauge transformation of gauge fields

The second ingredient we will need is the notion of a gauge field. Essentially, a gauge field
is a principal Ehresmann connection, which is a G-equivariant section ω of the jet bundle
π1,0 : J1(P )→ P over a principal bundle π : P →M . Here we are in a similar situation as
in the case of matter fields. Recall that matter fields, i.e., sections Φ ∈ Γ(P ×ρF ), can also
be understood as G-equivariant maps Φ ∈ C∞G (P, F ). The situation here is a bit different,
since we do not consider arbitrary G-equivariant maps from P to J1(P ), but only sections.
However, it is indeed possible to consider gauge fields as sections of a bundle overM , which
we construct as follows.

Definition 55.1 (Principal connection bundle). Let π : P → M be a principal G-
bundle with Lie group G and J1(P ) the first jet space. The space C = J1(P )/G of
G-orbits in J1(P ) together with the canonical projection χ : C → M defines a fiber
bundle called the principal connection bundle.

To check that this construction is valid, first note that the right actions of G on both P
and J1(P ) are free, i.e., for each p ∈ P the subgroup of G sending p to itself contains only
the unit element of G, and analogously for J1(P ). As a consequence, all group orbits in
P and J1(P ) are diffeomorphic to G. The orbits in P are simply the fibers of the bundle
π : P →M , so that the space P/G of orbits is canonically diffeomorphic to M . We denote
by C = J1(P )/G the space of orbits in J1(P ). Note that the projection π1 : J1(P ) → M
satisfies π1 ◦Rg = π1 for all g ∈ G, i.e., it sends all elements of an orbit to the same image
in M . Thus, there is a unique projection χ : C → M . One easily checks that this defines
a fiber bundle. Its sections should already be familiar, as the following theorem states.

Theorem 55.1. There is a one-to-one correspondence between principal Ehresmann con-
nections in a principal G-bundle π : P →M and sections of its principal connection bundle
χ : C →M .

Proof. Let ω : P → J1(P ) be a principal Ehresmann connection. Since ω is an equivariant
map, it preserves the orbits, i.e., if p and p′ belong to the same orbit in P , then ω(p) and
ω(p′) belong to the same orbit in J1(P ). Thus, ω defines a map Ω : M → C sending orbits
in P to orbits in J1(P ), such that the diagram

P
ω //

π

��

J1(P )

•·G
��

M
Ω // C

(55.1)
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commutes, where the map on the right is simply the canonical projection onto the space
of orbits. Further, ω is a section of the bundle π1,0 : J1(P ) → P , so that π1,0 ◦ ω = idP .
Thus, for all p ∈ P we have

χ(Ω(π(p))) = χ(ω(p) ·G) = π(π1,0(ω(p))) = π(p) , (55.2)

which follows from the fact that π1,0 is G-equivariant and thus π1 = π ◦ π1,0 = χ ◦ (• ·G).
This shows that Ω is a section of the principal connection bundle χ : C →M .
Conversely, let Ω : M → C be a section of the principal connection bundle. For p ∈ P ,
define ω(p) as the unique jet in J1(P ) such that π1,0(ω(p)) = p and ω(p) ·G = χ(x). One
easily checks that the jet ω(p) defined this way always exists, that it is unique and that
the resulting map ω : P → J1(P ) is a principal Ehresmann connection.

With this statement at hand, we can now come to the following definition.

Definition 55.2 (Gauge field). Let π : P →M be principal G-bundle with Lie group
G. A gauge field is a section Ω of the principal connection bundle χ : C →M .

We finally discuss the question how gauge transformations act on sections of the principal
connection bundle. The easiest way to construct such an action is to use G-equivariant
connection forms θ : TP → V P . In this case we can simply define ϕ(θ) = ϕ−1

∗ ◦ θ ◦ ϕ∗.
To see that this is again a G-equivariant connection form, first note that by construction,
ϕ(θ) is a vector bundle homomorphism covering the identity on P . Further, note that the
pushforward of fundamental vector yields

ϕ∗(X̃(p)) = ϕ∗(R
p
∗(X(e))) = (ϕ ◦Rp)∗(X(e)) = R

ϕ(p)
∗ (X(e)) = X̃(ϕ(p)) , (55.3)

so that the fundamental vector fields are invariant under the action of a gauge transfor-
mation. From this in particular follows that the vertical tangent bundle V P is invariant
under ϕ, i.e., ϕ∗(v) ∈ V P for all v ∈ V P . We thus have

ϕ(θ)(v) = (ϕ−1
∗ ◦ θ ◦ ϕ∗)(v) = (ϕ−1

∗ ◦ ϕ∗)(v) = v , (55.4)

so that ϕ(θ) restricts to the identity on V P . Finally, for all g ∈ G and w ∈ TP we find

ϕ(θ)(Rg∗(w)) = (ϕ−1
∗ ◦ θ ◦ϕ∗ ◦Rg∗)(w) = (Rg∗ ◦ϕ−1

∗ ◦ θ ◦ϕ∗)(w) = Rg∗(ϕ(θ)(w)) , (55.5)

where we used the fact that all maps appearing above are G-equivariant, so that we can
permute Rg∗ to the left. This shows that also ϕ(θ) is G-equivariant.
With this preliminary discussion we can now describe gauge transformations of principal
Ehresmann connections, and thus of gauge fields. Let ω : P → J1(P ) be a principal
Ehresmann connection, which assigns to p ∈ P with π(p) = x a jet ω(p) = j1

xσp ∈ J1(P ),
and θ the corresponding connection form. We define ϕ(ω) as the principal Ehresmann
connection corresponding to ϕ(θ). Then we have ϕ(ω)(p) = j1

x(ϕ−1 ◦σϕ(p)). To check this,
we calculate

ϕ(θ)p(w) = w − ϕ−1
∗ (σϕ(p)∗(π∗(w)))

= ϕ−1
∗
[
ϕ∗(w)− σϕ(p)∗(π∗(ϕ∗(w))))

]
= ϕ−1

∗ (θϕ(p)(ϕ∗(w))) ,

(55.6)

which shows that our formula is correct. Finally, taking the quotient by the group action
of G yields the action of the gauge group on the space Γ(C) of sections of the connection
bundle χ : C →M .
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56 Gauge fixing

Working with bundles, whose elements are equivalence classes of sections or orbits of a group
action, can sometimes become rather involved. In order to construct local coordinates on
these spaces one therefore usually constructs particular local trivializations of a bundle.
Recall that for a principal bundle a local trivialization is given by a local section. We thus
define the following notion.

Definition 56.1 (Gauge). Let π : P →M be a principal G-bundle with Lie group G.
A gauge on an open subset U ⊂M is a local section ε : U → P .

With the choice of a gauge we can now express matter and gauge fields in a simpler form,
which is of course valid only locally, i.e., only on U , and depends on the choice of the gauge.
For a matter field Φ : M → P ×ρ F we define

Φε : U → F
x 7→ [ε(x)]−1(Φ(x))

. (56.1)

Here [p] for p ∈ P is the fiber diffeomorphism [p] : F → Pπ(p) ×ρ F, f 7→ [p, f ]. Given
coordinates on U and F , we thus obtain a coordinate description for Φ.
For a gauge field Ω we can proceed similarly. The easiest way is to view the gauge field
in terms of the corresponding principal G-connection ϑ on P , and thus in particular as a
g-valued one-form ϑ ∈ Ω1(P, g) on P . Given a gauge ε we can thus define

Ωε = ε∗(ϑ) ∈ Ω1(M, g) . (56.2)

Thus, the connection pulls back to a g-valued one-form on M . This is the description most
often encountered in field theory.

57 Gauge invariance and Lagrangians

Finally, we pose the question how to treat theories involving gauge and matter fields using
the Lagrangian formalism we introduced in a previous lecture. Here we restrict ourselves to
theories in which there is only one Lie group G and one principal G-bundle π : P →M and
summarize all matter fields within a single associated bundle πρ : P ×ρ F → M . Thus, a
field configuration is given by a gauge field Ω : M → C and a matter field Φ : M → P ×ρF .
We can combine both into a section (Ω,Φ) of the Cartesian product bundle

E = C ×M (P ×ρ F ) =
⋃
x∈M

Cx × (Px ×ρ F ) , (57.1)

whose fibers are the Cartesian products of the fibers of C and P×ρF , and which canonically
inherits a bundle projection Π : E →M . The gauge group acts on both Ω and Φ, and thus
also on the pair (Ω,Φ). This defines an action of the gauge group on sections of E, and
thus also on the jet bundles Jr(E), and finally on the ∞-jet bundle J∞(E). This allows
us to define the following notion.
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Definition 57.1 (Gauge invariant Lagrangian). A Lagrangian L ∈ Ωn,0(J∞(E)) is
called gauge invariant if it is invariant under the action of the gauge group on J∞(E).

A Dictionary

English Estonian
gauge kalibratsioon

gauge transformation kalibratsiooniteisendus
gauge field kalibratsiooniväli
matter field mateeriaväli
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