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51 Connections on fiber bundles

In this lecture we will discuss different types of connections. The most general type we
discuss here is called an Ehresmann connection. There are many different, but equivalent
ways to define Ehresmann connections. The one we use here is probably the most elegant
and makes use of the notion of the jet bundle, which we discussed in a previous lecture.

Definition 51.1 (Ehresmann connection). Let π : E → M be a fiber bundle. An
Ehresmann connection is a section of the jet bundle π1,0 : J1(E)→ E.

To better understand the geometric meaning of this definition, recall that an element of
J1(E) is an equivalence class of local sections around a point x ∈ M , i.e., maps σ :
Uσ → E with x ∈ Uσ for an open subset Uσ ⊂ M , where two local sections σ, τ are
considered equivalent if for all curves γ ∈ C∞(R, Uσ ∩ Uτ ) with γ(0) = x and all functions
f ∈ C∞(E,R) holds

(f ◦ σ ◦ γ)(0) = (f ◦ τ ◦ γ)(0) and (f ◦ σ ◦ γ)′(0) = (f ◦ τ ◦ γ)′(0) . (51.1)

The first condition simply translates to σ(x) = τ(x), while the second condition can be
written as σ∗(u) = τ∗(u) for all u ∈ TxM . The equivalence class of σ, for which we
introduced the notation j1xσ, is thus fully characterized by the following data:

• the point π1(j1xσ) = x ∈M ,

• the image π1,0(j1xσ) = σ(x) ∈ Ex = π−1(x),

• a linear map σ∗|x : TxM → Tσ(x)E such that π∗ ◦ σ∗|x = idTxM .

In the given case we are interested in sections ω of the bundle π1,0 : J1(E) → E. By
definition of the section we have π1,0 ◦ ω = idE . For all e ∈ E thus follows that ω(e) ∈
π−11,0(e), so that ω(e) must be of the form j1xσ with σ(x) = e and x = π(e). This requirement
already uniquely fixes the first two items from the list above, so that in order to specify
a section ω we only need to supply the last item. To see how much freedom we have for
choosing this item, we consider two different jets j1xσ, j1xτ (where this time σ and τ should
be sections of π : E →M which are not in the same equivalence class, i.e., define different
jets). Since we are dealing with linear maps, we can take the difference

0 = (π∗ ◦ σ∗|x)− (π∗ ◦ τ∗|x) = π∗ ◦ (σ∗|x − τ∗|x) , (51.2)
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which shows that the image of σ∗|x − τ∗|x must be contained in the vertical tangent
space VeE. In other words, for any u ∈ TxM , the image σ∗|x (u) − τ∗|x (u) is vertical.
Note, however, that σ∗|x (u) is not vertical, so that it is not sufficient to specify a vertical
vector only. The reason for this is that the condition π∗ ◦ σ∗|x = idTxM specifies an affine
space, i.e., the difference of any two such linear maps σ∗|x , τ∗|x lies in the vector space
Hom(TxM,VeE), but the space of linear maps satisfying this condition is not a vector
space.
To further illustrate this construction, we introduce coordinates (xα) on a trivializing neigh-
borhood U ⊂ M and (ya) on the fiber space of the bundle π : E → M , so that we have
coordinates (xα, ya) on E and the projection π simply discards the second part of these
coordinates. We can denote the coordinates on the first jet space by (xα, ya, yaα). In these
coordinates a section of the bundle π1,0 : J1(E)→ E is thus expressed by a set of coordinate
functions yaα(x, y).
A word of warning should be issued here. The coordinates yaα look like coordinates for
a map (uα∂α 7→ uαyaα∂̄a) ∈ Hom(TxM,VeE), but as we have seen in our coordinate free
introduction, they are not. The reason for this coordinate expression is simply that while
introducing coordinates on E we have fixed a local trivialization. If we choose a different
trivialization, these components will not transform as components of a vector space, but
as components of an affine space, which is what they really are.
There exist a number of other, equivalent ways to describe an Ehresmann connection,
which we will discuss in the following. For this purpose, we introduce another notion by
the following definition.

Definition 51.2 (Connection form). Let π : E →M be a fiber bundle. A connection
form on E is a vector bundle homomorphism θ : TE → V E covering the identity map
idE on E and restricting to the identity map on V E, i.e., θ|V E = idV E .

This definition requires a few explanations. A bundle morphism θ : TE → V E covers a
map ϕ : E → E if θ(w) ∈ Vϕ(e)E for all w ∈ TeE. In this case it covers the identity, so that
ϕ = idE . Further, θ is a vector bundle homomorphism, which means that each restriction
θ|e : TeE → VeE is linear. Further, it is in fact a projection onto V E, since θ(w) ∈ V E for
all w ∈ TE and θ restricts to the identity on V E, so that θ ◦ θ = θ.
We also illustrate this definition using the same local coordinates (xα, ya) on E which
we introduced earlier. Writing a tangent vector w ∈ TeE in the form w = uα∂α + va∂̄a
we obtain coordinates (uα, va) on TeE, (va) on VeE and thus (xα, ya, uα, va) on TE and
(xα, ya, va) on V E. In these coordinates a connection form θ can be expressed in the form

θ(x, y, u, v) = (uαθaα(x, y) + va) ∂̄a ∈ V(x,y)E . (51.3)

A connection form is thus uniquely determined by the coordinate functions θaα(x, y). Note
that these have the same index structure as the coordinate functions yaα(x, y) we constructed
for an Ehresmann connection. This is not an arbitrary coincidence. On a more fundamental
level, note that also connection forms form an affine space and not a vector space. The
following theorem should thus not be too surprising.

Theorem 51.1. For every fiber bundle π : E → M there is a one-to-one correspondence
between Ehresmann connections and connection forms on E.
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Proof. We have seen that an Ehresmann connection assigns to each e ∈ E with π(e) = x
a jet j1xσe with π1(j1xσe) = x and π1,0(j1xσe) = σe(x) = e such that π∗ ◦ σe∗|x = idTxM , and
that the latter is the only ingredient that differs between different Ehresmann connections.
Given this jet we can define for each e ∈ E a linear function

θe : TeE → VeE
w 7→ w − σe∗(π∗(w))

. (51.4)

It is clear that θe(w) ∈ VeE, since

π∗(θe(w)) = π∗(w)− π∗(σe∗(π∗(w))) = π∗(w)− π∗(w) = 0 . (51.5)

Further, for w ∈ VeE, we have π∗(w) = 0, and thus θe(w) = w. Together with the linearity
it follows that θe is a projection onto VeE. Finally, since we have such a function θe for all
e ∈ E, they constitute a map θ : TE → V E which covers the identity on E. One easily
checks that θ is a connection form.
Conversely, let θ be a connection form on E, i.e., a vector bundle homomorphism θ : TE →
V E covering the identity map idE on E and restricting to the identity map on V E. For
each e ∈ E it thus defines a projection θ|e : TeE → VeE. Let σe be a local section of
the bundle π : E → M around x = π(e) such that σe(x) = e and θ(σe∗(u)) = 0 for all
u ∈ TxM . The latter condition means that σe∗(u) lies in the kernel of the projection θ|e.
This completely fixes σe∗, since for every local section σe we also have π∗ ◦ σe∗ = idTxM .
The set of all such local sections σe is thus simply the jet j1xσe. The jets for each e ∈ E
finally define a section ω : E → J1(E), e 7→ j1xσe of the jet bundle, and thus an Ehresmann
connection.

We illustrate these constructions using the coordinates (xα, ya) on E. Recall that an
Ehresmann connection ω in these coordinates can be written in the form yaα(x, y). For
w = uα∂α + va∂̄a ∈ TeE we then have

θe(w) = w−σe∗(π∗(w)) = uα∂α+va∂̄a−uα(∂α+yaα(x, y)∂̄a) = (va−uαyaα(x, y))∂̄a . (51.6)

It thus follows that the coordinate expression for the connection form θ is simply given by
θaα(x, y) = −yaα(x, y).
Following the opposite construction, we start from a connection form θ, which assigns to a
vector w = uα∂α + va∂̄a ∈ T(x,y)E the vertical vector (uαθaα(x, y) + va) ∂̄a ∈ V(x,y)E. This
vector w lies in the kernel of θ if and only if va = −uαθaα(x, y). Consider a section σ of the
bundle π : E → M , which in coordinates is described as ya(x). Its differential σ∗ maps a
vector u = uα∂α ∈ TxM to

σ∗(u) = uα
(
∂α + ∂αy

a(x)∂̄a
)
. (51.7)

This lies in the kernel of θ for all uα if and only if ∂αya(x) = −θaα(x, y). For the Ehres-
mann connection ω corresponding to θ we thus find the coordinate expression yaα(x, y) =
−θaα(x, y).
We finally discuss another equivalent description of an Ehresmann connection, which may
appear more abstract in the beginning, but gives a deeper insight into the geometric struc-
ture of Ehresmann connection. For this purpose we introduce the following notion.
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Definition 51.3 (Horizontal distribution). Let π : E → M be a fiber bundle. A
horizontal distribution on E is an assignment e 7→ HeE of a horizontal tangent space
HeE ⊂ TeE to every e ∈ E such that TeE = VeE⊕HeE and for every e ∈ E there exists
a neighborhood Ue on which the horizontal tangent spaces are spanned by n = dimM
vector fields (X1, . . . , Xn).

A horizontal distribution thus assigns to each e ∈ E a complement of the vertical tangent
space VeE. The condition that these horizontal vector spaces are locally spanned by vector
fields can be understood geometrically as a requirement that this assignment is smooth.
This means in particular that the union of the horizontal vector spaces forms a manifold
HE, which is the total space of a vector bundle over E, called the horizontal tangent
bundle. Note that while the vertical tangent bundle V E is canonically defined over the total
space of every fiber bundle, a horizontal bundle is not canonically given and thus defines
an additional structure. The following theorem states that this structure is essentially
the same as an Ehresmann connection (and in fact the most common definition of an
Ehresmann connection in the literature):

Theorem 51.2. For every fiber bundle π : E → M there is a one-to-one correspondence
between Ehresmann connections and horizontal distributions on E.

Proof. We can make use of the preceding theorem that an Ehresmann connection is uniquely
given by a connection form and vice versa. Given a connection form θ on E, the kernel of
θ is a horizontal distribution. Conversely, given a horizontal distribution, we can uniquely
split every vector w ∈ TE in the form w = wV + wH , where wV ∈ V E is vertical and
wH ∈ HE is horizontal. Then θ : w 7→ wV defines a connection form.

The constructions used in this section work for every fiber bundle π : E →M . However, we
often have fiber bundles which have additional structure, such as principal fiber bundles or
vector bundles. In this case we wish to consider only those connections which are compatible
with this additional structure. We will discuss these connections in the following sections.

52 Connections on vector bundles

The first special case we consider is that of a vector bundle. In this case every fiber of the
bundle carries the structure of a vector space. Thus, also the space of section is a vector
space, where the addition and scalar multiplication are defined pointwise. From this follows
that also the jet spaces Jrx(E) for x ∈M are vector spaces, since for any local sections σ, τ
around x and µ, ν ∈ R the definition

µjrxσ + νjrxτ = jrx(µσ + ντ) (52.1)

yields a vector space structure. Thus, πr : Jr(E)→M is a vector bundle. (Note, however,
that the bundles πr,k : Jr(E) → Jk(E), and thus in particular πr,0 : Jr(E) → E, are
not vector bundles, since the fibers of these bundles are not vector (sub)spaces, but affine
spaces.) This allows us to define the following notion.
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Definition 52.1 (Linear Ehresmann connection). Let π : E →M be a vector bundle.
A linear Ehresmann connection on E is a vector bundle homomorphism ω : E → J1(E)
such that π1,0 ◦ ω = idE .

This definition essentially consists of two parts. Being a map ω : E → J1(E) with π1,0◦ω =
idE means that a linear Ehresmann connection is a section of the bundle π1,0 : J1(E)→ E,
and thus an Ehresmann connection. In addition, the restrictions ω|x : Ex → J1

x(E) must
be vector space homomorphisms for all x ∈M .
To illustrate this definition, let (xα, ya) be local coordinates on E as in the previous section,
where in addition we demand that the coordinates (ya) on the fiber space F correspond to
a basis (e1, . . . , ef ) of F , where f = dimF and y = yaea. Recall that a general Ehresmann
connection on a fiber bundle is uniquely determined by a set yaα(x, y) of coordinate func-
tions. For a linear Ehresmann connection these must be of the form yaα(x, y) = yabα(x)yb.
On vector bundles one conventionally uses a different description for connections, which is
given as follows.

Definition 52.2 (Koszul connection). Let π : E → M be a vector bundle. A Koszul
connection on E is an R-linear function ∇ : Γ(E) → Γ(E ⊗ T ∗M) such that ∇(εf) =
(∇ε)f + ε⊗ df for all ε ∈ Γ(E) and f ∈ C∞(M,R).

We illustrate this definition using the same coordinates as above. In these coordinates
a section ε ∈ Γ(E) is expressed in the form y(x) = ya(x)ea(x), where (ea(x)) is a basis
of Ex and ya(x) are smooth functions. A Koszul connection assigns to ε a section ∇ε ∈
Γ(E⊗T ∗M), whose coordinate expression follows from the Leibniz rule, which states that

∇ε(x) = ∂αy
a(x)ea(x)⊗ dxα + ya(x)∇ea(x) . (52.2)

We can express ∇ea in the basis ea ⊗ dxα in the form ∇ea(x) = ωabα(x)eb(x) ⊗ dxα to
finally obtain

∇ε(x) =
[
∂αy

a(x) + ωabα(x)yb(x)
]
ea(x)⊗ dxα = ya;α(x)ea(x)⊗ dxα , (52.3)

where we introduced the semicolon notation.
Koszul connections are very helpful as they can be used to define a number of operations on
vector bundles. Although they are defined rather differently from Ehresmann connections,
they are closely related. One may already get this impression from the coordinate expres-
sions yabα and ωabα, which carry the same index structure. More formally, we formulate it
as follows.

Theorem 52.1. For every vector bundle π : E →M there is a one-to-one correspondence
between linear Ehresmann connections and Koszul connections on E.

Proof. Let ε : M → E be a section. For x ∈ M it defines a point e = ε(x) ∈ E and a
linear map ε∗|x : TxM → TeE with π∗ ◦ ε∗|x = idTxM . Also a linear Ehresmann connection
ω : E → J1(E) defines a linear map σe∗|x : TxM → TeE with π∗ ◦ σe∗|x = idTxM through
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the jet ω(e) = j1xσe. Their difference ∇ωε|x = ε∗|x − σe∗|x therefore defines a linear map
from TxM to VeE. Hence,

∇ωε|x ∈ Hom(TxM,VeE) ∼= VeE ⊗ T ∗xM ∼= Ex ⊗ T ∗xM . (52.4)

Doing this for each x ∈ M we obtain a section ∇ωε ∈ Γ(E ⊗ T ∗M). The smoothness of
this section can be proven using the smoothness of ω and ε. Further, given a function
f ∈ C∞(M,R) we find that

∇ω(εf)|x = (εf)∗|x−σfe∗|x = fε∗|x+ (ε⊗ df)|x− fσe∗|x = (f∇ωε)|x+ (ε⊗ df)|x . (52.5)

This shows that ∇ω satisfies the Leibniz rule and hence is a Koszul connection.
We will not prove the converse direction, but simply provide the construction how to
obtain a linear Ehresmann connection from a Koszul connection ∇ : Γ(E)→ Γ(E⊗T ∗M).
For e ∈ E with π(e) = x ∈ M choose a section ε ∈ Γ(E) such that ε(x) = e. Then
ε∇x = ε∗|x − ∇ε|x : TxM → TeE is a linear map, which we can take as an ingredient to
construct a section ω∇ : E → J1(E) as described in the previous section. Of course, to
complete the proof one still needs to show that this is independent of the choice of the
section ε.

From the construction above one can derive how the coordinate expressions yabα and ωabα
we introduced earlier are related. A quick calculation shows that similarly to the case of
general Ehresmann connections we have yabα = −ωabα.
A Koszul connection allows us to perform another operation on vector bundles. Given a
section of a vector bundle and a vector field on the base manifold, it allows us to take the
derivative of this section along the vector field. This is defined as follows.

Definition 52.3 (Covariant derivative). Let π : E → M be a vector bundle with a
Koszul connection ∇. The covariant derivative of a section σ ∈ Γ(E) with respect to
a vector field X ∈ Vect(M) is the section ∇Xε = ιX(∇ε).

It should be clear what the covariant derivative looks like in coordinates. If we write
∇ε = ya;α(x)ea(x)⊗ dxα and X(x) = Xα(x)∂α, then ∇Xε = Xα(x)ya;α(x)ea(x).

53 Connections on principal bundles

Recall that a principal G-bundle π : P →M is equipped with a right action of a Lie group
G which is fiber preserving and free and transitive on the fibers. For p ∈ P and g ∈ G we
can write this action in the form Rg(p) = p ·g. This right action also induces a right action
on the space Γ(P ) of (local) sections given by Rg(σ) = Rg ◦ σ for σ ∈ Γ(P ). To see that
this is indeed a right action and not a left action, one can explicitly calculate

Rgh(σ) = Rgh ◦ σ = Rh ◦Rg ◦ σ = Rh(Rg(σ)) , (53.1)

where the step Rgh = Rh ◦Rg follows from the fact that we have a right action on P . Note
that since Rg is a fiber preserving diffeomorphism for all g ∈ G, the r-jets for any r ∈ N of
the images Rg(σ), Rg(τ) of two sections σ, τ ∈ Γ(P ) agree if any only if σ and τ have the
same r-jets. For all x ∈M thus holds

jrxRg(σ) = jrxRg(τ) ⇔ jrxσ = jrxτ . (53.2)

6



This defines a right action on the jet spaces Jr(P ) given by Rg(jrxσ) = jrxRg(σ). Making
use of this right action on J1(P ) we can now define the following.

Definition 53.1 (Principal Ehresmann connection). Let π : P → M be a principal
G-bundle with Lie group G. A principal Ehresmann connection on P is a G-equivariant
section of the jet bundle π1,0 : J1(P )→ P .

In addition to the definition of a general Ehresmann connection we thus have the condition
that the section ω : P → J1(P ) must be G-equivariant. To study the consequences of this
condition, recall that an Ehresmann connection assigns to every p ∈ P a jet ω(p) = j1xσp
with x = π(p), where σp is a local section of π : P → M around x such that σp(x) = p.
The condition of equivariance then takes the form

j1xσp·g = ω(p · g) = ω(Rg(p)) = Rg(ω(p)) = Rg(j
1
xσp) = j1x(Rg ◦ σp) . (53.3)

Of course also principal Ehresmann connections can be expressed using connection forms
or horizontal distributions. The most commonly used description makes use of connection
forms. Recall that a connection form on a bundle π : P → M is a vector bundle homo-
morphism θ : TP → V P covering the identity map on P and restricting to the identity on
V P . Since both TP and V P carry right actions by the Lie group G, which are given by
the differential Rg∗ of the right action on P , there is a well-defined notion of G-equivariant
connection forms. The following statement should thus not be a big surprise.

Theorem 53.1. For every principal G-bundle π : P → M with Lie group G there is
a one-to-one correspondence between principal Ehresmann connections and G-equivariant
connection forms on P .

Proof. We have already proven that for general fiber bundles there is a one-to-one corre-
spondence between Ehresmann connections ω and connection forms θ. We now have to
show that ω is a principal Ehresmann connection if and only if θ is G-equivariant. We will
thus start with a principal Ehresmann connection ω, which assigns to e ∈ E with π(e) = x
the jet ω(e) = j1xσe. This defines the connection form θe at e as w 7→ w − σe∗(π∗(w)), as
shown for general Ehresmann connections. To see that θ is equivariant, we check that

θe·g(Rg∗(w)) = Rg∗(w)− σe·g∗(π∗(Rg∗(w)))

= Rg∗(w)− (Rg ◦ σe)∗(π∗(w))

= Rg∗(w − σe∗(π∗(w)))

= Rg∗(θe(w)) .

(53.4)

Thus, θ is equivariant. We also see from the derivation above that if ω is not a principal
Ehresmann connection, then θ is not equivariant.

We can thus describe any principal Ehresmann connection in terms of a G-equivariant
connection form. However, it is more common to replace the target space V P of the
connection form by the Lie algebra g. This is possible, since the fundamental vector fields
establish a linear isomorphism between g and every vertical tangent space VpP . One thus
often uses the following definition for a connection on a principal bundle.
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Definition 53.2 (Principal G-connection). Let π : P → M be a principal G-bundle
with Lie group G. A principal G-connection on P is a g-valued one-form ϑ ∈ Ω1(P, g)
on P such that:

• ϑ is G-equivariant: ϑ = Adg(R
∗
g(ϑ)) for all g ∈ G.

• For all X ∈ g and p ∈ P the fundamental vector field X̃ yields ιX̃ϑ(p) = X.

This definition requires a few explanations. The space Ω1(P, g) of Lie algebra valued one-
forms is simply the tensor product space g ⊗ Ω1(P ). The map Ad : G → Aut(g) is called
the adjoint representation. In order to define it, we need the following map.

Definition 53.3 (Inner automorphism). For a Lie group G, the inner automorphism
α : G→ Aut(G) is defined such that for all g, h ∈ G holds αg(h) = ghg−1.

In other words, for all g ∈ G, the map αg : G → G is an automorphism, i.e., it satisfies
αg(hh

′) = αg(h)αg(h
′) for all h, h′ ∈ G and thus in particular αg(e) = e. Thus, the

differential αg∗ maps TeG ∼= g to itself. We can thus define the following notion.

Definition 53.4 (Adjoint representation). For a Lie group G, the adjoint representa-
tion is the map Ad : G→ Aut(g) defined by Adg = αg∗.

In other words, for all g ∈ G, the map Adg : g → g is an automorphism, i.e., it satisfies
Adg[X,Y ] = [Adg(X),Adg(Y )] for all X,Y ∈ g. With this definition, we can now come to
the following statement about principal G-connections.

Theorem 53.2. For every principal G-bundle π : P → M with Lie group G there is
a one-to-one correspondence between principal Ehresmann connections and principal G-
connections on P .

Proof. For every p ∈ P there exists a vector space isomorphism •̃|p : g → VpP defined by
the fundamental vector fields. Via this isomorphism there exist isomorphisms between the
following spaces:

Hom(TpP, VpP ) ∼= Hom(TpP, g) ∼= g⊗ T ∗pP . (53.5)

Thus, a vector bundle homomorphism θ : TP → V P covering the identity on E uniquely
determines a section ϑ ∈ Ω1(P, g). It is easy to see that θ restricts to the identity on V P
if and only if ιX̃ϑ(p) = X for all X ∈ g and p ∈ P . Further, it follows from the definition
of the adjoint representation that θ is G-equivariant if and only if ϑ is G-equivariant.

We finally discuss the relation between connections on a principal bundle and connections
on an associated bundle. For our purpose it is enough to mention the following statement.
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Theorem 53.3. Let π : P → M be a principal G-bundle with Lie group G and πρ :
P ×ρ F → M an associated bundle with fiber F . A principal Ehresmann connection ω :
P → J1(P ) on P , which assigns to p ∈ P with π(p) = x ∈ M the jet j1xσp, induces a
connection ωρ : P ×ρ F → J1(P ×ρ F ), which assigns to [p, f ] ∈ P ×ρ F the jet j1x[σp, f ].

Proof. We first have to check that ωρ is well-defined. For this purpose, we have to check
that it is independent of the representative (p, f) for [p, f ]. Given another representative
(p · g, ρ(g−1, f)) we find that

ωρ([p · g, ρ(g−1, f)]) = j1x[σp·g, ρ(g−1, f)] = j1x[Rg ◦ σp, ρ(g−1, f)] = j1x[σp, f ] = ωρ([p, f ]) ,
(53.6)

so that this is indeed satisfied. Here we used the fact that ω is a principal Ehresmann
connection, so that a representative σp·g for the jet ω(p · g) = j1xσp·g is given by Rg ◦ σp.
Further, ωρ is a section, since

πρ 1,0(ωρ([p, f ])) = [σp, f ](x) = [σp(x), f ] = [p, f ] . (53.7)

This shows that ωρ is an Ehresmann connection on P ×ρ F .

A Dictionary

English Estonian
connection seostus

covariant derivative kovariantne tuletis
adjoint representation adjungeeritud esitus
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