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44 Symmetries of Lagrangian systems

We have previously discussed Lagrangian systems in the language of the variational bicom-
plex, which is defined on the infinite jet space of a fiber bundle. We will now discuss a
particular notion of symmetry of a Lagrangian in this formalism. Since Lagrangians are
defined as differential forms on the infinite jet space J∞(E) of a fiber bundle π : E →M ,
we will describe symmetries in terms of (complete) vector fields on J∞(E), whose flow
leaves the Euler-Lagrange equations invariant.
However, we cannot consider arbitrary vector fields on J∞(E). To see this, note that the
flow of a vector field on J∞(E) is a one-parameter group of diffeomorphisms of J∞(E).
Recall that the elements of J∞(E) are jets of sections of π : E →M . We are in particular
interested in those diffeomorphisms of J∞(E) which are generated by diffeomorphisms of
the space Γ(E) of sections. In other words, we are looking for diffeomorphisms φ whose
action on a jet j∞r σ of a section σ ∈ Γ(E) at a point x ∈M is given by φ(j∞x σ) = j∞x ϕ(σ)
for some diffeomorphism ϕ of Γ(E). This in particular means that φ should preserve
the subspace π∞(x) = J∞x (E) ⊂ J∞(E) for every x ∈ M , from which follows that the
generating vector field must be vertical. We will now construct these vector fields, starting
with the following definition.

Definition 44.1 (Evolutionary vector field). Let π : E → M be a fiber bundle and
ν : V E → E the vertical tangent bundle of E. An evolutionary vector field is a map
X ∈ C∞(J∞(E), V E) such that ν ◦X = π∞,0.

First of all, note that an evolutionary vector field, despite its name, is not a vector field.
In the literature one often finds the term generalized vector field for a map taking jets of
sections to tangent vectors on E. Formally, it can be written as a “vector field on E with
coefficients in J∞(E).
To further understand the meaning of the definition, consider a section σ ∈ Γ(E). At a
point x ∈ M this gives us the image σ(x) ∈ E and the ∞-jet j∞x σ, where π∞,0(j∞x σ) =
σ(x). An evolutionary vector field X assigns to the jet j∞x σ a vertical tangent vector
X(j∞x σ) ∈ Vσ(x)E. This tangent vector will describe how much the value σ(x) of the
section σ changes under a certain type of flow.
An evolutionary vector field thus describes how much a section will change at each point.
This tells us also how a section as a whole will change under this flow, and thus also how
its jets will change. In other words, we can obtain a vertical vector field on J∞(E), which
we define as follows.
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Definition 44.2 (Prolongation). Let π : E → M be a fiber bundle and X ∈
C∞(J∞(E), V E) an evolutionary vector field. Its prolongation is the unique verti-
cal vector field prX on J∞(E) such that X = π∞,0∗ ◦ prX and LprXθ is a contact
form for every contact form θ.

To clarify this definition, recall that a contact forms is defined as a differential form on
J∞(E) whose pullback along the ∞-jet j∞σ of any section σ ∈ Γ(E) vanishes. Since we
wish that the flow of prX maps the ∞-jets of sections again to ∞-jets of sections, it also
maps contact forms to contact forms. However, it is easier to work with contact forms,
which is why we used them in the definition above.
As a further illustration, we write the prolongation in terms of coordinates. Let (xα) be
coordinates on M and (xα, ya) coordinates on E corresponding to a local trivialization. In
these coordinates an evolutionary vector field X can be written in the form X = Xa∂̄a,
where the coefficients Xa depend on the jet coordinates (xα, yaΛ). One can show that the
prolongation of X is then given by

prX =
∑

Λ

dΛX
a∂̄Λ
a . (44.1)

Here dΛ denotes the total derivative. The reason for this formula is intuitively clear: if the
flow of X describes the transformation of a section σ, then we need to take all derivatives
of X to see how the flow of prX transforms the jet of a section.
The prolongations of evolutionary vector fields have a few nice properties, which we sum-
marize here.

Theorem 44.1. The prolongation prX of an evolutionary vector field X satisfies LprXdH =
dHLprX and LprX = ιprXdV + dV ιprX .

We will not prove these properties here, but use them later. Now we have found the
class of vector fields on J∞(E) which correspond to transformations of the space Γ(E) of
sections. We can now restrict ourselves to those vector fields from this class which leave
the dynamics of the Lagrangian system, given by the Euler-Lagrange equations, invariant.
We define them as follows.

Definition 44.3 (Symmetry). Let π : E →M be a fiber bundle with dimM = n and
L ∈ Ωn,0(J∞(E)) a Lagrangian. A symmetry of L is an evolutionary vector field X
such that LprXL ∈ Ωn,0(J∞(E)) is dH -exact.

The definition above states that the flow of prX changes the Lagrangian L only by a
dH -exact form. This means that the pullback (j∞σ)∗(L) of L to M along the ∞-jet of a
section changes only by an exact form onM . This in turn means that the action functional

S[σ] =

∫
M

(j∞σ)∗(L) (44.2)

is invariant. It also follows that LprXEL = 0, i.e., the Euler-Lagrange equations are
invariant.
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45 Conserved currents

The task of finding the solutions to the Euler-Lagrange equations can often be simplified
if the Lagrangian system contains something known as a conserved current in field theory,
or a constant of motion in mechanics. Here we will use the term conserved current and the
following definition.

Definition 45.1 (Conserved current). Let π : E →M be a fiber bundle with dimM =
n and L ∈ Ωn,0(J∞(E)) a Lagrangian. A conserved current of L is an element ψ ∈
Ωn−1,0(J∞(E)) such that dHψ = 0 on the subspace of J∞(E) where EL = 0.

In order to understand the meaning of this, let σ ∈ Γ(E) a solution of the Euler-Lagrange
equations, i.e., EL ◦ j∞σ = 0. Then (j∞σ)∗(ψ) is a n − 1-form on M , where n = dimM ,
with

d(j∞σ)∗(ψ) = (j∞σ)∗(dHψ) = 0 . (45.1)

In other words, for each solution σ, the pullback (j∞σ)∗(ψ) is closed. This resembles the
standard notion of a conserved current.

46 Noether’s theorem

With the preliminary definitions made in the previous sections we can now come to the
central topic of this lecture, which is Noether’s theorem. In the formalism we use here, it
is formulated as follows.

Theorem 46.1 (Noether’s theorem). Let X be a symmetry of a Lagrangian L ∈ Ωn,0(J∞(E))
on a fiber bundle π : E →M with dimM = n. Then

ψ = ιprXη − σ ∈ Ωn−1,0(J∞(E)) , (46.1)

where dHσ = ιprXdV L and dHη = EL− dV L, is a conserved current.

Proof. By definition of a symmetry, ιprXdV L is dH -exact, i.e., there exists σ ∈ Ωn−1,0(J∞(E))
such that dHσ = ιprXdV L. Further, by the definition of the internal Euler operator %, the
difference EL−dV L = %(dV L)−dV L is also dH -exact, i.e., there exists η ∈ Ωn−1,1(J∞(E))
such that dHη = EL− dV L.
Using the fact that prX is the prolongation of an evolutionary vector field, we can now
evaluate dHψ and find

dHψ = dHιprXη − dHσ
= dιprXη − dV ιprXη − ιprXdV L

= LprXη − ιprXdη − dV ιprXη − ιprXdV L

= (dV ιprX + ιprXdV )η − ιprXdHη − ιprXdV η − dV ιprXη − ιprXdV L

= −ιprXdHη − ιprXdV L

= −ιprXEL .

(46.2)

This obviously vanishes where EL = 0, so that ψ is a conserved current.
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The theorem is as elegant and as simple as a theorem could be. We will apply it to a few
examples.

Example 46.1 (Momentum conservation). Let M = R and E = R×Q with a manifold
Q, so that the bundle π : E →M is a trivial bundle with π = prR being the projection
onto the first factor. Using the coordinate t on R and coordinates (qa) on Q, we have
coordinates (t, qa) on E and (t, qa = qa0 , q̇

a = qa1 , q̈
a = qa2 , . . .) on J∞(E). This systems

can be used to model, for example, the motion of a point mass on a manifold Q, with t
measuring time and qa the position of the point mass.
We now consider a Lagrangian of the form L = L(q̇)dt ∈ Ω1,0(J∞(E)), where L depends
only on the velocity q̇a, but not on the position qa. Taking the vertical derivative we
obtain

dV L =
∂L
∂q̇a

θ̇a ∧ dt . (46.3)

Further applying the internal Euler operator % we obtain

EL = %dV L = −dt
∂L
∂q̇a

θa ∧ dt = − ∂2L
∂q̇a∂q̇b

q̈bθa ∧ dt , (46.4)

where dt is the total time derivative. The second derivative of L appearing here is also
called the Lagrange metric, and is usually assumed to be non-degenerate, so that the
Euler-Lagrange equations imply q̈a = 0. From the expressions above it is easy to see
that

EL− dV L = −
(
dt
∂L
∂q̇a

θa +
∂L
∂q̇a

θ̇a
)
∧ dt = dH

(
∂L
∂q̇a

θa
)

= dHη (46.5)

is indeed dH -exact, by the definition of the internal Euler operator %.
We now consider the evolutionary vector field X = ξa∂̄a on J∞(E) with constant ξa.
Its prolongation is simply the vector field itself, prX = X. One easily checks that it is
a symmetry of the Lagrangian, since

ιprXdV L = ιξa∂̄a

(
∂L
∂q̇a

θ̇a ∧ dt
)

= 0 . (46.6)

This ultimately follows from the fact that L does not depend on the position qa, so that
dV L does not contain the contact form θa, which would give a non-vanishing contribution
with ∂̄a. We thus simply have σ = 0. This yields us the conserved current

ψ = ιprXη − σ = ξa
∂L
∂q̇a

= ξapa . (46.7)

The components pa defined above are called canonical momenta. One can see that this
is indeed a conserved current, since

dHψ = ξadtpadt = ξa
∂2L
∂q̇a∂q̇b

q̈bdt (46.8)

vanishes on solutions of the Euler-Lagrange equations.

Example 46.2 (Total energy conservation). We consider the same fiber bundle as in the
previous example, but allow the Lagrangian L = L(q, q̇)dt ∈ Ω1,0(J∞(E)) to depend
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also on the position qa. The vertical derivative is then given by

dV L =

(
∂L
∂qa

θa +
∂L
∂q̇a

θ̇a
)
∧ dt . (46.9)

Application of the internal Euler operator then yields

EL = %dV L =

(
∂L
∂qa
− dt

∂L
∂q̇a

)
θa ∧ dt =

(
∂L
∂qa
− ∂2L
∂q̇a∂qb

q̇b − ∂2L
∂q̇a∂q̇b

q̈b
)
θa ∧ dt .

(46.10)
From this we read off that

EL− dV L = −
(
dt
∂L
∂q̇a

θa +
∂L
∂q̇a

θ̇a
)
∧ dt = dH

(
∂L
∂q̇a

θa
)

= dHη , (46.11)

which actually yields the same expression for η as in the previous example.
We now consider the evolutionary vector field X = q̇a∂̄a, whose prolongation is given by

prX =
∞∑
λ=0

qaλ+1∂̄
λ
a . (46.12)

This is a symmetry of the Lagrangian, since

ιprXdV L =

(
∂L
∂qa

q̇a +
∂L
∂q̇a

q̈a
)
dt = dtLdt = dHL = dHσ (46.13)

is dH -exact with σ = L. This gives us the conserved current

ψ = ιprXη − σ =
∂L
∂q̇a

q̇a − L = paq̇
a − L = H , (46.14)

which is called the Hamiltonian and describes the total energy of the system. This is a
conserved current, since

dHψ = dtHdt =

(
∂2L
∂q̇a∂qb

q̇b +
∂2L
∂q̇a∂q̇b

q̈b
)
q̇adt+

∂L
∂q̇a

q̈adt− ∂L
∂qa

q̇adt− ∂L
∂q̇a

q̈adt

=

(
∂2L
∂q̇a∂qb

q̇b +
∂2L
∂q̇a∂q̇b

q̈b − ∂L
∂qa

)
q̇adt ,

(46.15)

which vanishes when the Euler-Lagrange equations are imposed.

A Dictionary

English Estonian
evolutionary vector field evolutsiooniline vektoriväli (?)

symmetry sümmeetria
conserved current jääv vool (?)
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