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39 Flows of vector fields

In the last lecture we have discussed the action of Lie groups on manifolds. We will now
restrict ourselves to the action of a particular group, namely that of the real line (R,+).
This is in fact an important special case, since any one-parameter subgroup ϕ : R→ G of
a Lie group G acting on a manifold M induces an action of (R,+) on M , and all of these
actions together describe (locally) the action of G. To study the local behavior of Lie group
actions, and in particular those of (R,+), we start with a definition.

Definition 39.1 (Integral curve). Let M be a manifold and X a vector field on M .
An integral curve of X is a curve γ ∈ C∞((a, b),M) such that γ̇(t) = X(γ(t)).

One may ask whether such integral curves exist for any vector field. This is indeed the case,
and is guaranteed by the following theorem, which comes from the theory of differential
equations.

Theorem 39.1. Let M be a manifold and X a vector field on M . For each x ∈ M there
exists an open set U ⊂M containing x, ε > 0 and a map γ : (−ε, ε)×U →M, (t, y) 7→ γy(t)
such that for all y ∈ U the curve γy is an integral curve of X with γy(0) = y.

The most interesting case for us is given when an integral curve can be defined for all on
R. For this case we define the following notion.

Definition 39.2 (Complete vector field). A vector field X on a manifold M is called
complete if for each x ∈M there exists an integral curve γ ∈ C∞(R,M) of X.

Given a complete vector field, we can define the following notion.

Definition 39.3 (Flow). Let M be a manifold and X a complete vector field on M .
The flow of X is the unique map φ : R×M → M such that for each x ∈ M the map
φ•(x) : R→M is an integral curve of X and φ0(x) = x.
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In fact, the flow can also be defined locally for a non-local vector field. In this case it is
simply a map from an open subset U ∈ R×M to M , where {0} ×M ⊂ U . The flow has
a number of nice properties, one of which can be written most nicely for complete vector
fields.

Theorem 39.2. The flow of a complete vector field X is both a left and a right Lie group
action of (R,+) on M .

Proof. Since (R,+) is abelian, every left action is also a right action. We thus simply have
to check that φ : R ×M → M is a smooth map such that φs+t(x) = φs(φt(x)) for all
s, t ∈ R and x ∈ M . We will not check the smoothness here. For fixed t ∈ R and x ∈ M
the maps γ1 : s 7→ φs+t(x) and γ2 : s 7→ φs(φt(x)) defines curves on M . For these curves
we have

γ̇1(s) = X(φs+t(x)) = X(γ1(s)) , γ̇2(s) = X(φs(φt(x))) = X(γ2(s)) , (39.1)

so that both of them are integral curves of X. Further, they have the same initial point
γ1(0) = φt(x) = γ2(0). Since integral curves are unique, it thus follows that γ1(s) = γ2(s)
for all s ∈ R, and therefore φs+t(x) = φs(φt(x)).

In fact, the relation φs+t(x) = φs(φt(x)) holds also for local flows, whenever both sides are
well-defined. This will be sufficient for the constructions in this lecture. However, note
that the flow is a group action only for complete vector fields.

40 The Lie derivative of tensor fields

Using the tools from the previous section we can now define a useful and important object
in differential geometry.

Definition 40.1 (Lie derivative). Let T ∈ Γ(T rsM) be a tensor field and X ∈ Vect(M)
a vector field on a manifold M . Let φ : R ×M ⊇ U → M be the flow of X. The Lie
derivative of T with respect to X is the tensor field defined by

LXT = lim
t→0

φ∗tT − T
t

. (40.1)

We see that the Lie derivative can be seen as the infinitesimal change of the tensor field
T along the flow of X: starting from a point x ∈ M one follows the flow line of X, takes
the tensor field at that point φt(x), pulls it back along φt to obtain a tensor at the original
point x and then measures how much this tensor at x changes with t. Of course one has to
show that this limit really exists an that it yields a smooth tensor field. Instead of proving
this here in a rigorous, coordinate-free way, we only illustrate the definition and derive the
coordinate expression of the Lie derivative.
Using coordinates (xa) on M , let X = Xa∂a be a vector field and

T = T a1···ar b1···bs∂a1 ⊗ . . .⊗ ∂ar ⊗ dxb1 ⊗ . . .⊗ dxbs . (40.2)

Writing the pullback φ∗tT in the same coordinates as

φ∗tT = T ′t = T ′a1···art b1···bs∂a1 ⊗ . . .⊗ ∂ar ⊗ dxb1 ⊗ . . .⊗ dxbs . (40.3)

2



With this notation the coordinate expression for the Lie derivative takes the form

(LXT )a1···ar b1···bs(x) = lim
t→0

T ′a1···art b1···bs(x)− T a1···ar b1···bs(x)

t
=

d

dt
T ′a1···art b1···bs(x)

∣∣∣∣
t=0

.

(40.4)
To evaluate this derivative, recall that the pullback of a tensor field by a diffeomorphism
is given by

T ′a1···art b1···bs(x) = T c1···crd1···ds(x
′
t(x))

∂xa1

∂x′c1t
(x′t(x)) · · · ∂x

ar

∂x′crt
(x′t(x))

∂x′d1t
∂xb1

(x) · · · ∂x
′ds
t

∂xbs
(x) ,

(40.5)
where we wrote the flow φ of X in the form x′t(x). It is related to the vector field X via
the flow equation

Xa(x) =
d

dt
x′at (x)

∣∣∣∣
t=0

. (40.6)

This equation together with the chain rule is used to evaluate

d

dt
T a1···ar b1···bs(x

′
t(x))

∣∣∣∣
t=0

= Xc(x)∂cT
a1···ar

b1···bs(x) . (40.7)

From the fact that partial derivatives commute follows that

d

dt

∂x′bt
∂xa

(x)

∣∣∣∣
t=0

= ∂a
d

dt
x′bt (x)

∣∣∣∣
t=0

= ∂aX
b(x) . (40.8)

We further use the fact that φ−1t = φ−t, from which follows that

d

dt

∂xa

∂x′bt
(x′t(x))

∣∣∣∣
t=0

=
d

dt

∂x′a−t
∂xb

(x′t(x))

∣∣∣∣
t=0

= −∂bXa(x) +Xc(x)∂cδ
a
b = −∂bXa(x) . (40.9)

Putting everything together we finally find the coordinate expression for the Lie derivative
as

(LXT )a1···ar b1···bs = Xc∂cT
a1···ar

b1···bs

− ∂cXa1T ca2···ar b1···bs − . . .− ∂cXarT a1···ar−1c
b1···bs

+ ∂b1X
cT a1···ar cb2···bs + . . .+ ∂bsX

cT a1···ar b1···bs−1c .

(40.10)

The Lie derivative of tensor fields has a few helpful and important properties, which we
summarize below.

Theorem 40.1. Let M be a manifold, S, T tensor fields on M , X,Y vector fields on M ,
µ, ν ∈ R and k, l ∈ R. The Lie derivative satisfies:

• Linearity in the tensor fields:

LX(µS + νT ) = µLXS + νLXT . (40.11)

• Linearity in the vector fields:

LµX+νY T = µLXT + νLY T . (40.12)

• Commutator:
L[X,Y ]T = LXLY T − LY LXT . (40.13)
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• Leibniz rule:
LX(S ⊗ T ) = (LXS)⊗ T + S ⊗ (LXT ) . (40.14)

• Compatibility with contraction:

LX(trkl T ) = trkl (LXT ) . (40.15)

We will not prove these properties here. Instead, we will discuss a few examples for the Lie
derivative of particular tensor fields.

41 The Lie derivative of real functions

The simplest possible tensor field is of course a tensor field of type (0, 0), which is the same
as a real function. In this case the Lie derivative has a very simple form.

Theorem 41.1. For a function f ∈ C∞(M,R) the Lie derivative with respect to a vector
field X is given by

LXf = Xf . (41.1)

In other words, the Lie derivative of a function reduces to the action of a vector field. From
this follow a few useful properties of the Lie derivative in this special case.

Theorem 41.2. For a vector field X ∈ Vect(M) and real functions f, g ∈ C∞(M,R) on a
manifold M the Lie derivative satisfies:

• Leibniz rule:
LX(fg) = LXf · g + f · LXg . (41.2)

• Multiplication of the vector field:

LgXf = g · LXf . (41.3)

The Leibniz rule follows immediately from the Leibniz rule for tensor fields, since for real
functions we simply have f ⊗ g = fg. The second property holds only for functions and
not for other tensor fields.

42 The Lie derivative of vector fields

As the next example we discuss the Lie derivative of vector fields. Also in this case it
reduces to a familiar object as follows.

Theorem 42.1. For a vector field Y ∈ Vect(M) the Lie derivative with respect to a vector
field X is given by

LXY = [X,Y ] . (42.1)

From the fact that Vect(M) together with the Lie bracket forms a Lie algebra one can
derive the following properties of the Lie derivative of vector fields.

Theorem 42.2. For vector fields X,Y, Z ∈ Vect(M) on a manifold M the Lie derivative
satisfies:

• Antisymmetry:
LXY = −LYX . (42.2)

• Jacobi identity:
LX [Y,Z] = [LXY, Z] + [Y,LXZ] . (42.3)

The second relation can be brought into various different forms.
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43 The Lie derivative of differential forms

The last special case for the Lie derivative which we discuss in this lecture is the Lie
derivative of differential forms. Also in this case there exists a helpful formula for the Lie
derivative in terms of objects we have already previously encountered.

Theorem 43.1. For a k-form ω ∈ Ωk(M) with k ≥ 1 the Lie derivative with respect to a
vector field X is given by “Cartan’s magic formula”

LXω = ιX(dω) + d(ιXω) . (43.1)

Again we will omit the proof, since it is rather lengthy. One can directly use the formula
above and the properties of the operations on differential forms to derive the following
properties of the Lie derivative.

Theorem 43.2. For vector fields X,Y ∈ Vect(M), differential forms ω ∈ Ωk(M), σ ∈
Ωl(M) and functions f ∈ C∞(M,R) on a manifold M the Lie derivative satisfies:

• Compatibility with exterior derivative:

dLXω = LXdω . (43.2)

• Leibniz rule with exterior product:

LX(ω ∧ σ) = (LXω) ∧ σ + ω ∧ (LXσ) . (43.3)

• Relation with interior product:

ι[X,Y ]ω = LXιY ω − ιY LXω = ιXLY ω − LY ιXω . (43.4)

• Distribution law:
LfXω = fLXω + df ∧ ιXω . (43.5)

A Dictionary

English Estonian
integral curve integraaljoon

flow voog
Lie derivative Lie tuletis
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