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36 Lie groups

In this lecture we will introduce manifolds which carry an additional algebraic structure,
namely that of a group. In order to work with this structure, it must be compatible with
the manifold structure. We make this precise in the following definition.

Definition 36.1 (Lie group). A Lie group is a manifoldG which carries the structure of
a group, such that the group multiplication · : G×G→ G and the inverse •−1 : G→ G
are smooth maps.

This compatibility condition is a bit similar to the compatibility condition for vector bun-
dles, where we wanted the vector space operations (addition and scalar multiplication) to
be smooth operations. There are many examples for Lie groups which frequently appear
in physics:

Example 36.1. The group (R,+) of real numbers with the addition as group operation
is a Lie group of dimension 1.

Example 36.2. The complex numbers z ∈ C with |z| = 1 and group operation the
multiplication is a Lie group of dimension 1 which is diffeomorphic to the circle S1.

Example 36.3. The following matrix groups for n ∈ N are Lie groups, where the group
multiplication is given by matrix multiplication:

• The general linear group GL(n) of real invertible n× n matrices is a Lie group of
dimension n2.

• The special linear group SL(n) of real n× n matrices with determinant 1 is a Lie
group of dimension n2 − 1.

• The orthogonal group O(n) of real n×n matrices such that AAt = 1 is a Lie group
of dimension n(n− 1)/2.

• The special orthogonal group SO(n) of real n×n matrices with determinant 1 such
that AAt = 1 is a Lie group of dimension n(n− 1)/2.

1



• The unitary group U(n) of complex n × n matrices such that AA† = 1 is a Lie
group of dimension n2.

• The special unitary group SU(n) of complex n × n matrices with determinant 1
such that AA† = 1 is a Lie group of dimension n2 − 1.

In order to relate different Lie groups to each other, we need the same compatibility con-
dition for homomorphisms between Lie groups.

Definition 36.2 (Lie group homomorphism / isomorphism). Let G1 and G2 be Lie
groups. A Lie group homomorphism from G1 to G2 is a smooth map ϕ : G1 → G2

such that ϕ(gh) = ϕ(g)ϕ(h) for all g, h ∈ G1. If it is also a diffeomorphism, it is called
a Lie group isomorphism.

There are numerous homomorphisms and isomorphisms between the groups given in the
examples above.

Example 36.4. The map ϕ : R→ S1 ⊂ C, x 7→ eix is a Lie group homomorphism.

Example 36.5. The map ϕ : S1 ⊂ C→ SO(2) defined by

ϕ(z) =

(
Re(z) Im(z)
−Im(z) Re(z)

)
(36.1)

is a Lie group isomorphism.

37 Lie group actions

A familiar concept from algebra is that of the action of a group on a set. Since we are
working with Lie groups here, we are in particular interested how a Lie group can act on
a manifold. Again we demand compatibility of the differentiable and algebraic structures,
as in the following definition.

Definition 37.1 (Lie group action). Let G be a Lie group and M a manifold. A left
Lie group action is a smooth map φ : G×M → M such that φ(gh, x) = φ(g, φ(h, x))
for all g, h ∈ G and x ∈M . A right Lie group action is a smooth map θ :M ×G→M
such that θ(x, gh) = θ(θ(x, g), h) for all g, h ∈ G and x ∈M .

We also say that a group G acts from the left / right on a manifold M . The following
statement follows immediately from the definition above.

Theorem 37.1. Let φ : G×M →M be a left Lie group action. For each g ∈ G the map
x 7→ φ(g, x) is a diffeomorphism on M with inverse given by x 7→ φ(g−1, x). The same
holds for right Lie group actions.
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We further distinguish between different types of Lie group actions.

Definition 37.2 (Types of Lie group actions). Let G be a Lie group andM a manifold.
A left Lie group action φ : G×M →M is called . . .

• . . . transitive if for all x, y ∈M there exists a g ∈ G such that φ(g, x) = y.

• . . . effective (or faithful) if for all distinct g, h ∈ G there exists x ∈ M such that
φ(g, x) 6= φ(h, x).

• . . . free if for all distinct g, h ∈ G and for all x ∈M holds φ(g, x) 6= φ(h, x).

The same naming is used for right Lie group actions.

It follows immediately that every free action is also effective. Of course there are many
examples of group actions which appear in physics.

Example 37.1. Each of the matrix groups G from the previous section acts from the left
on Rn via multiplication. This group action is effective, but neither transitive nor free.

Example 37.2. Every Lie group G acts on itself from the left by left multiplication
φ(g, x) = gx and from the right by right multiplication θ(x, g) = xg. Both actions are
free and transitive.

The last example is of particular interest, because it is a property of every Lie group. The
diffeomorphisms obtained from these actions deserve their own names.

Definition 37.3 (Translation maps). Let G be a Lie group. For g ∈ G the left
translation is the map Lg : G → G, h 7→ gh, while the right translation is the map
Rg : G→ G, h 7→ hg.

We further introduce the following concepts, which will help us analyze the structure of
Lie group actions.

Definition 37.4 (Orbit). Let φ : G×M →M be a left Lie group action. For x ∈M
the orbit is the set

{φ(g, x), g ∈ G} ⊂M . (37.1)

The same is defined for a right Lie group action.

Example 37.3. Let φ : SO(3)×R3 → R3 be the left action given by matrix multiplication.
For x ∈ R3 with x 6= 0 the orbit is the sphere with radius ‖x‖ around the origin. For
x = 0 the orbit contains only the origin itself.
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Definition 37.5 (Stabilizer). Let φ : G ×M → M be a left Lie group action. For
x ∈M the stabilizer is the subgroup

{g ∈ G |φ(g, x) = x} . (37.2)

The same is defined for a right Lie group action.

Example 37.4. Let φ : SO(3)×R3 → R3 be the left action given by matrix multiplication.
For x ∈ R3 with x 6= 0 the stabilizer is the subgroup of rotations around the axis xR.
For x = 0 the stabilizer is SO(3) itself.

38 Lie algebras

So far we have introduced the basic structure of Lie groups and their actions on manifolds.
We now consider particular classes of vector fields and differential forms on Lie groups,
which play an important role in physics. We start with the following definition.

Definition 38.1 (Invariant vector field). Let G be a Lie group. A vector field X on G
is called left invariant if its pullback along the diffeomorphism Lg for all g ∈ G satisfies
L∗g(X) = X. Similarly, it is called right invariant if R∗g(X) = X for all g ∈ G.

From the fact that diffeomorphisms preserve the Lie bracket follows the following property.

Theorem 38.1. Let X,Y be left (right) invariant vector fields on a Lie group G. Then
also their Lie bracket [X,Y ] is left (right) invariant.

In the following we will use the standard convention and work with left invariant vector
fields in order to be consistent with the literature. The statement above then tells us that
the left invariant vector fields together with the Lie bracket form a Lie algebra, which plays
a fundamental role.

Definition 38.2 (Lie algebra). Let G be a Lie group. Its Lie algebra is the Lie algebra
g = Lie(G) defined by the left invariant vector fields together with the Lie bracket of
vector fields.

The question arises whether this Lie algebra is finite-dimensional, and what is its dimension.
The following theorem answers both of these questions.

Theorem 38.2. The Lie algebra g of a Lie group G is canonically isomorphic as a vector
space to the tangent space TeG at the unit element e ∈ G.

Proof. This is easy to see. Given a left-invariant vector field X, one can simply evaluate it
at e to obtain X(e) ∈ TeG. Conversely, given v ∈ TeG, one can uniquely construct a left
invariant vector field X as X(g) = Lg∗(v) ∈ TgG.
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It thus follows immediately that the dimension of the Lie algebra g is the same as the
dimension of the Lie group G, and we can simply identify g and TeG. This allows us to
construct the Lie algebras of the matrix groups shown in the first section.

Example 38.1. The Lie algebras of the matrix groups for n ∈ N are as follows, where
the Lie bracket [A,B] is given by the matrix commutator AB −BA:

• The general linear algebra gl(n) of real n×n matrices is a Lie algebra of dimension
n2.

• The special linear algebra sl(n) of real n×n matrices with trace 0 is a Lie algebra
of dimension n2 − 1.

• The orthogonal algebra o(n), which is the same as the special orthogonal algebra
so(n), of real, antisymmetric n×nmatrices, A = −At, is a Lie algebra of dimension
n(n− 1)/2.

• The unitary algebra u(n) of complex, anti-hermitian n× n matrices, A = −A†, is
a Lie algebra of dimension n2.

• The special unitary algebra su(n) of complex, anti-hermitian n× n matrices, A =
−A†, with trace 0 is a Lie algebra of dimension n2 − 1.

To further explore the relationship between Lie groups and their Lie algebras, we define
the following.

Definition 38.3 (One-parameter subgroup). A one-parameter subgroup of a Lie group
G is a Lie group homomorphism ϕ : (R,+)→ G.

In other words, a one-parameter subgroup is a curve ϕ on G such that ϕ(s+ t) = ϕ(s)ϕ(t)
for all s, t ∈ R. In particular it follows that ϕ(0) = e is the unit element of G. A one-
parameter subgroup thus defines an element ϕ̇(0) ∈ TeG ∼= g. The following theorem states
that also the converse is true.

Theorem 38.3. Let G be a Lie group and X ∈ g a left invariant vector field. Then there
exists a unique one-parameter subgroup ϕX such that ϕ̇X(t) = X(ϕX(t)) for all t ∈ R.

The proof is a bit lengthy, but simple, so we will omit it here. This theorem allows us to
finally define another important concept.

Definition 38.4 (Exponential map). Let G be a Lie group and g its Lie algebra. The
exponential map is the map

exp : g → G
X 7→ ϕX(1)

, (38.1)

where ϕX is the unique one-parameter subgroup such that ϕ̇X(t) = X(ϕX(t)) for all
t ∈ R.
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We will conclude with a few properties of the exponential map.

Theorem 38.4. The exponential map satisfies:

• It maps the zero element 0 ∈ g to the unit e of the Lie group: exp(0) = e.

• For all X ∈ g holds exp(−X) = exp(X)−1.

• For all X ∈ g and s, t ∈ R holds exp((s+ t)X) = exp(sX) exp(tX).

A Dictionary

English Estonian
Lie group Lie rühm
Lie algebra Lie algebra

Lie group action Lie rühma toime
transitive group action transitiivne rühma toime
effective group action effektiivne rühma toime
free group action vaba rühma toime
translation map lükkekujutus (?)

orbit orbiit
stabilizer stabilisaator

exponential map eksponentsiaalkujutus
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