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31 Action principle and variation

We finally come to the question how to derive equations of motion, and thus the space of
solutions of the Lagrangian system introduced in the last section. The principle of least
action states that solutions of a Lagrangian system are those sections o € I'(E) for which
the action assumes a local minimum in the space of sections. This will now be clarified.

Definition 31.1 (Local minimum of the action). Let 7 : E — M be a fiber bundle
with action functional S. A section o € I'(E) is called a local minimum of the action if
for all smooth families G, : R — T'(E) of sections with 6y = o the function
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has a local minimum at € = 0.

Here we call the family o : R — I'(E) of sections smooth if and only if the map G4(e) :
R x M — FE is smooth. It is clear that a necessary condition for a local minimum o of the
action is that the action is stationary, which is expressed by the equation
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for all smooth families of sections with 69 = o. In the remainder of this lecture we will
only discuss this necessary condition, and simplify it in several steps.

32 Infinitesimal change of oo-jets

One may already guess that 45 depends only on &g = ¢ and some object which one could
denote dé./delc—p. This objects describes how the section &, € I'(E) changes as € varies.
For fixed p € M it describes how the image 6(p) € E changes with €, and thus yields the
tangent vector £(p) of the curve € — (p) at e = 0. This tangent vector is vertical, i.e.,
m+(£(p)) = 0, and thus an element of the vertical tangent space Vo(p) £, since the curve
¢ — &(p) must be contained in the fiber 7~!(p) c E, which follows from the fact that each
g is a section. In summary, the object & = dd./de|.—o assigns to each p € M a vertical
tangent vector {(p) € V, () E. Writing the vertical bundle as v : VE — E we thus see that
£e C®(M,VE) with vo& = o. Further, since o is a section, we find that mov o { = idyy,



so that € is a section of the bundle mov : VE — M. Note that this bundle is not a vector
bundle, since the vector space structure on V E is defined only on the fibers over FE.

To illustrate the construction above, we introduce coordinates (z%) on a trivializing subset
U c M and (z%,y*) on 71 (U) = E. The tangent bundle T'E is spanned by the coordinate
vector fields 0, = 0/0x® and 0, = 0/0y®, where the latter only span the vertical tangent
bundle VE. We thus have coordinates (z%, y*, u®,v*) on TFE and (2%, y®*,v*) on V E, where
(x®,y%) specify a point in E and the remaining coordinates denote a vector u®dy + v%0,
in V; ,E. In these coordinates a point p € U can be expressed by its coordinates x, while
a section o can locally be expressed by the coordinate functions y(x). Given a family o
of sections, we thus have a family of functions y(x). The coordinate expression for £ then
takes the form

dy¢ ()

de

x> v*(1)0, = 0a € Vo) E - (32.1)
e=0

We now consider the variation of j*, € I'(J®(FE)), which we aim to express in terms of
&. This variation can be understood in the same way as the variation of .. For a fixed

p € M we have a curve
€= j76c(p) = jy € J(E) < JP(E). (32.2)

One may intuitively want to take the tangent vector of this curve at ¢ = 0. However, since
J®(FE) is not a manifold, we first have to define the space in which it lives and how to
derive it.

Definition 32.1 ((Vertical) tangent bundle of J*(FE)). Let 7 : E — M be a fiber
bundle and J(FE) its infinite jet space. The tangent bundle of J*(E) is the projective
limit

0
TJ*(E) =lmTJ"(E) = {(vo,vl, )€ X TIJ(E)VE <r:mps(vr) = vy
r=0
(32.3)

The wertical tangent bundle of J*(E) is the projective limit V.J(E) = lim V.J"(E)
defined analogously, where V. J"(E) = ker 7, € TJ"(E).

In other words, an element of V. J*(E) is an infinite sequence of elements v, € V"(E) such
that for all k£ < r the condition 7, j«(v,) = vy, is satisfied. For the curve above this infinite
sequence is given by

d
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One easily checks that the members of this sequence are indeed vertical tangent vectors
and satisfy the condition m, px(v,) = vy for all & < r.

We also introduce suitable coordinate bases on T'J*(E) and VJ*(E). Recall that on
J*®(E) we used coordinates (z®,y}) derived from the coordinates () on M and (z%,y®)
on E. An element of a tangent space T,J*(E) with ¢ € J®(FE) can be written in the form

d 4.
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,”.>e\G$ng(E). (32.4)
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This yields us coordinates (u®,v{) on T,J*(FE), and thus coordinates (z“,y$,u®,v}) on
TJ*(E), where the first half specifies the point ¢ and the second half the tangent vector
at ¢. On the vertical tangent bundle V. J*(E) one thus has coordinates (z%,y%,v%).

We finally express these elements in terms of the section & we encountered earlier. For
this purpose, note that since £ is a section, one can construct is prolongation j*¢ to the
infinite jet bundle over mrov : VE — M. To understand the role of this section, we need
the following statement.

Theorem 32.1. For r € N, there exists a canonical isomorphism from J" (rov : VE —
M) to VJ"(r : E — M), which yields an isomorphism from J*(mov : VE — M) to
VJ®(r:E— M).

We will not construct this isomorphism explicitly here. Using coordinates one can easily

see that on J®(mov : VE — M) one can introduce the same coordinates (z%, y%,v%) as on

VJ*(m: E — M). In these coordinates the isomorphism mentioned above simply amounts

to the identity map. We can thus view the oo-jet of the section £ : M — V E as a section

j*€: M — VJ®(E), which in coordinates takes the form
o dy (@)

a A AN
x v (x)0; = — O € Vyro
e=0

o E. (32.6)

It is now easy to see that j*¢ is the object dj*d./de we wanted to construct.

33 Variation of forms on J*(F)

In order to calculate the variation of the action we need to know how (j*&¢)*(L) varies
with e. This is given by the following theorem.

Theorem 33.1. Let 6. : M — E be a smooth family of sections of the fiber bundle
7:E — M and w e QF0(J®)(E)) a horizontal k-form on the infinite jet bundle J*(E).
Then the pullback of w along j* G, satisfies

L5 W)| = (70)" (meldve) (33.)
e=0

where £ = do¢/de|c—p and o = &9.

We will not prove this here, but rather illustrate it using the coordinates we introduced in
the previous section. Recall that any horizontal k-form can be written in the form

W(Z,Yr) = Way-ay (T, ya)dz™ A oo A dz®F . (33.2)

Its pullback to M along the co-jet of a section G, is obtained by replacing the coordinate
arguments y% by the partial derivatives dpy¢(x) of &, so that one obtains

(170)* (W) (@) = Way-ap (T, OaYe(x))dx™ A .o A da® . (33.3)

Taking the derivative with respect to € and using the chain rule yields the left hand side

(75 (@)
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= [vj‘{(a:)éé\wm...ak (z,Oay())] dz® A ... A dz®F

a’}wa o (T, Opy (2 }dwo‘l Ao Adx™
1 k( Ay( )) (33.4)
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where we used the coordinate expression v% (z)02 for the co-jet j°¢ of £. To compare with
the right hand side, we calculate the vertical derivative

dyw(,yn) = 02 Way oy (T, ya)0% A dz® A LA da® (33.5)

After inserting the vertical vector field j°¢, which satisfies 0% (j°¢) = v (z) and dx(j°¢) =
0, and taking the pullback via o we finally arrive at the same coordinate expression as
for the left hand side.

If w = Lis a Lagrangian, we thus find that the action is stationary at the sectiono : M — E
if and only if

0-os= Bl [ (%) (ectav) (33.6)
d€ e=0 M
for every £ : M — VE with vo £ = w, i.e., if and only if
(5%0) (1j¢(dv L)) (33.7)

is exact every £ : M — VFE with vo & = w. This already brings us closer to our goal.
However, this expression is still rather cumbersome, as it requires calculating the oo-jet
j®& for every possible &, and checking whether the result is an exact form. To get rid of
this calculation, we need another step.

34 Integration by parts

We will now further simplify the condition for a stationary action. In this section we
discuss the question under which circumstances the pullback (7°0)*(w) of a horizontal
k-form w € QFO(J®(E)) is exact. The answer to this question is given by the following
statement.

Theorem 34.1. The pullback (j%0)*(w) of a dg-exact horizontal k-form w € QF0(J®(E))
18 exact.

We will not prove this here, but illustrate it using coordinates. Let w be the k-form given
by
wW(z, Ya) = Way-ay (T, ya)dz A oo A dz® (34.1)

For its pullback along the oco-jet of a section o we write
(1%0)* (W) (T) = Wayap (T, Ony(x))dz™ A L. A dz® (34.2)
In the case that w = dpn is dp-exact, we have

anal---akq

anal---ak,
dpn(z,ya) = W‘*‘Zy&l,...,)\ﬁﬂ ..... W e
A

dz® A dz™ A ... A dz1
oyt

(34.3)
whose pullback along o is just the total derivative

(7o) (dnn)(z) = d(50)* (n)(z) . (34.4)

This yields the statement above for our chosen coordinates - of course we would have to
show it in an coordinate independent fashion if we wanted a proof.

Returning to our original problem, we may thus add an arbitrary dpg-exact form dgn €
QM0(J*(E)) to tjee(dy L) without changing the exactness of (j%0)* (1j0¢(dyvL)). Here
also the following statement will help.



Theorem 34.2. For any horizontal k-form n and section & : M — V E holds
dH(Ljocf?]) = *Ljoog(dHT]) . (345)

The proof is straightforward. This in particular means that if 1 is dpy-exact, then also
Ljogn is dp-exact. For our problem thus follows that we may add an arbitrary dp-exact
form dyn € Q™1(J®(E)) to dy L. We define the following operator, which will yield us this
form.

Definition 34.1 (Internal Euler operator). Let 7 : E — M be a fiber bundle with
dim(M) = n and Q™5(J®(F)) with s > 1 the space of forms of type (n,s) on the
infinite jet bundle J*(E). The internal Fuler operator is the unique function o :
Q3 (JP(E)) — Q™5(J®(FE)) such that:

e 0 is a projector: o = p.

e For w e Q™*(J®(E)), the difference w — p(w) is dy-exact, i.e. there exists n €
Q= 1$(J®(E)) such that dgn = w — o(w).

e o vanishes on dy-exact forms: gody = 0.

e 1x 0 =0 for all vector fields X on J*(E) with g 0 0 X = 0.

We will not prove the existence and uniqueness of the internal Euler operator here, and
we will not construct it explicitly. Instead, we will only provide the coordinate expression,
which is given by

Q : Qn,S(JCD(E)) N Q?’L,S(J(D(E))

w — 12(—1)|A\9210M0) A dp <L59w> : (34.6)

58

Here we introduced the total derivative operator
dy = (d) - (dn) (34.7)

which acts on functions f € QY(J*(E)) as

-----

daf = aaf + Zy?}\l >\a+17---7)\n)él[7}f . (348)
A

To construct its action on higher degree forms, one uses the rules
do(w A n) =da(W) An+wAde(n), doldw)=d(dw). (34.9)
From these follows in particular the action on the coordinate one-forms as
dod” =0, dadyf = dyls,  \. 11 a0 (34.10)

Note that the total derivative is not an exterior derivative - it does not change the degree
of a form, does not square to zero and is not an antiderivation.



Since g is a projector, p(Q2™*(J*(FE))) is an invariant subspace which we denote F*(J*(E)),
which we can describe in coordinates as follows. Since a vector field X on J*(E) with
Teo,0% © X = 0 has the coordinate expression

X = > Xpo%, (34.11)
|A|>1

it follows from the last condition in the definition of the internal Euler operator that the
elements of F*(J*(FE)) are of the form

w= war--ase?&,,,,,o) Ao A 02157'”70) Adrt AL A da™, (34.12)
For a section € : M — V E, which we expressed by the coordinate functions y*(x) and v*(z),
we thus find that ¢jocw does not depend on the derivatives of the coordinate functions

v%(x). We can thus simplify the task of finding sections ¢ : M — E for which the action
is stationary by replacing dy L with o(dy L).

35 Euler operator and Euler-Lagrange equations

We now finally use the results we derived so far and put them together. For this purpose
we first introduce another helpful shorthand notation.

Definition 35.1 (Euler operator). The Euler operator is the function £ = p o dy :
QO(JH(E)) - FHI?(E)).

Writing a Lagrangian L € Q™0(J®(E)) in coordinates as L = Ldz' A ... A dz", we can
write the Euler operator as

EL = ELOG o) A dz' A ... A da™, (35.1)
where
EL = Z DMy (32c) . (35.2)

For completeness, we introduce another operator.

Definition 35.2 (Augmented vertical derivative). For s > 1, the augmented vertical
derivative is the function dy = gody : F*(J*(E)) — FtL(J®(E)).

With this definition we can now extend the variational bicomplex introduced in the last



lecture as follows.

: : 35.3
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Here we omitted the part J*(F) in the notation. The edge
Q00 du,  du om0 B p1 dv, o (35.4)

is called the Fuler-Lagrange complex.
To proceed with our problem of stationary actions, we come to another very helpful state-
ment.

Theorem 35.1. Let £ : M — VE be a section and 0 = vo& : M — E. The pullback
(1%0)* (1joe(EL)) is exact if and only if it vanishes.

This greatly simplifies our task. Instead of determining whether a differential form is exact,
we need to check whether it vanishes. But we can simplify our task even more by the help
of the following statement.

Theorem 35.2. Let 0 : M — E be a section. The pullback (j“o0)* (1j0¢(EL)) vanishes
for all § : M — VE with o =vo& if and only if (EL) oo = 0.

We have now found an amazingly simple condition. Given a Lagrangian L € Q™°(J®(E))
we can now determine the sections o : M — FE as the solutions of the equation

(EL)oo =0, (35.5)

which in coordinates turns into a differential equation for o. This equation is called the
Euler-Lagrange equation.



