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28 The infinite jet space

We have seen in the last lecture that for every fiber bundle π : E ÑM the jet spaces JrpEq
for r P N form an inverse sequence

M
π
ÐÝ E

π1,0
ÐÝÝ J1pEq

π2,1
ÐÝÝ J2pEq

π3,2
ÐÝÝ . . . , (28.1)

where the maps πr,k : JrpEq Ñ JkpEq are the projections of fiber bundles. For the purpose
of this lecture we need to discuss what happens in the limit r Ñ 8. We define this limit
as follows.

Definition 28.1 (Infinite jet space). Let π : E ÑM be a fiber bundle. Its infinite jet
space is the projective limit

J8pEq “ lim
ÐÝ

JrpEq “

#

pz0, z1, . . .q P
8
ą

r“0

JrpEq

ˇ

ˇ

ˇ

ˇ

ˇ

@k ď r : πr,kpzrq “ zk

+

. (28.2)

An element of J8pEq is thus an infinite sequence of elements zr P JrpEq such that for all
k ď r the condition πr,kpzrq “ zk is satisfied. To understand the meaning of this, recall
that a jet zr P JrpEq is an equivalence class of local sections of E such that their “partial
derivatives up to order r” agree. The condition πr,kpzrq “ zk here simply means that if
zr “ jrpσ for some point p PM and some local section σ P ΓppEq, then zk “ jkpσ. In other
words, any lower element zk of this sequence is uniquely defined by any higher element zr
by throwing away any derivatives of order higher than k. Naively, we could thus just forget
about almost all elements of the sequence and only look at the last one, which contains
all derivatives - but of course, there is no such last element in an infinite sequence. So the
only way to describe a section and “all of its infinitely many derivatives” is by an infinite
sequence like the one above, and these sequences form the infinite jet space J8pEq.
Given coordinates pxαq on a trivializing neighborhood U P M and pyaq on the fiber F of
the bundle π : E Ñ M , so that we have coordinates pxα, yaq on π´1pUq – U ˆ F we
have previously introduced coordinates pxα, yaΛq with 0 ď |Λ| ď r on π´1

r pUq Ă JrpEq. We
get (infinitely many) coordinates on J8pEq by dropping the upper bound and allowing all
multiindices Λ with |Λ| P N.
Note that J8pEq is not a manifold in the sense we defined manifolds - it is not locally
diffeomorphic to any finite-dimensional Euclidean space Rn. It has some properties of a
manifold, so that some operations on manifolds can be generalized to J8pEq, but not all
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of them, so we have to be careful when working with this object. The following notions
can nicely be generalized.

Definition 28.2 (8-jet projection). Let π : E Ñ M be a fiber bundle. For r P N we
define the jet projection

π8,r : J8pEq Ñ JrpEq
pz0, z1, . . .q ÞÑ zr

. (28.3)

The function π8,0 : J8pEq Ñ E is called the target projection, while π8 “ π ˝ π8,0 :
J8pEq ÑM is called the source projection.

As it is also the case for finite jet bundles, these projections throw away all derivatives of
higher order that a fixed r P N.

Definition 28.3 (8-jet of a section). Let π : E Ñ M be a fiber bundle, p P M and
σ P ΓppEq a local section whose domain contains p. We define the 8-jet j8p σ of σ at
p as the infinite sequence

pj0
pσ, j

1
pσ, . . .q P J

8pEq . (28.4)

The 8-jet is the object which captures “all derivatives” of a local section σ at some point
p PM .

Definition 28.4 (8-jet prolongation). Let π : E ÑM be a fiber bundle and σ a local
section with domain U ĂM . Its 8-jet prolongation is the function

j8σ : U Ñ J8pEq
p ÞÑ j8p σ

. (28.5)

As in the finite-dimensional case, taking the 8-jet at each point p in the domain of σ yields
its prolongation into J8pEq.

29 The variational bicomplex

Another concept that can nicely be generalized to J8pEq is that of differential forms. Note
that the pullbacks along the projection maps define a sequence

ΩkpMq
π˚
ÝÝÑ ΩkpEq

π˚1,0
ÝÝÑ ΩkpJ1pEqq

π˚2,1
ÝÝÑ ΩkpJ2pEqq

π˚3,2
ÝÝÑ . . . (29.1)

for all k P N. Here it makes sense to consider k-forms with arbitrarily high k, since the
dimension of the manifolds JrpEq is growing with r, so there will be non-trivial k-forms
for any k. We can use this sequence to define the following object.
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Definition 29.1 (Pullback to J8pEq). Let π : E Ñ M be a fiber bundle and J8pEq
its infinite jet space. For k P N we define the space ΩkpJ8pEqq as the direct limit

ΩkpJ8pEqq “ lim
ÝÑ

ΩkpJrpEqq “
8
ě

r“0

ΩkpJrpEqq

N

„ , (29.2)

where two k-forms ω P ΩkpJrpEqq and χ P ΩkpJr
1

pEqq are considered equivalent,
ω „ χ, if and only if there exists r2 ě maxpr, r1q such that π˚r2,rpωq “ π˚r2,r1pχq. The
equivalence class of ω P ΩkpJrpEqq is denoted π˚8,rpωq P ΩkpJ8pEqq and called the
pullback of ω to J8pEq.

Note that despite the notation, the elements of ΩkpJ8pEqq are not differential forms, and
J8pEq is not a manifold, so we cannot immediately use any operations which we defined
on differential forms. Instead, they are equivalence classes of differential forms on finite
jet spaces. Note that since for r1 ě r the pullbacks π˚r1,r : ΩkpJrpEqq Ñ ΩkpJr

1

pEqq are
injective functions (which is a consequence of the fact that the maps πr1,r : Jr

1

pEq Ñ JrpEq

are surjective), two k-forms ω P ΩkpJrpEqq and χ P ΩkpJr
1

pEqq are equivalent if and only
if π˚r1,rω “ χ. In other words, we identify all elements of ΩkpJrpEqq with their images in
ΩkpJr

1

pEqq. We thus obtain a sequence of inclusions

ΩkpJ0pEqqẴΩkpJ1pEqqẴ . . . ẴΩkpJ8pEqq , (29.3)

where Ẵ should be read as “the set formed by equivalence classes of elements contained in
the set on the left is a subset of the set formed by equivalence classes of elements contained
in the set on the right”.
To illustrate this definition, we discuss how to write the elements of ΩkpJ8pEqq using
the coordinates pxα, yaΛq we introduced on (finite and infinite) jet bundles. Any k-form
ω P ΩkpJrpEqq on a finite jet bundle JrpEq can be written as a finite linear combination of
k-fold wedge products of the coordinate one-forms dxα, dyaΛ, where |Λ| ď r. The pullback
π˚r1,rpωq P ΩkpJr

1

pEqq of ω is a k-form on Jr
1

pEq which has the same coordinate repre-
sentation. Hence, the equivalence relation we introduced above simply identifies k-forms
if and only if their coordinate representations in the coordinates pxα, yaΛq agree. We can
thus formally write an element of ΩkpJ8pEqq as a finite linear combination of k-fold wedge
products of the coordinate one-forms dxα, dyaΛ, where |Λ| P N. Note, however, that so far
this is only a notation - we have not defined a wedge product of such equivalence classes
yet. But actually we can do so.

Definition 29.2 (Exterior product). Let π : E Ñ M be a fiber bundle and ω P

ΩkpJ8pEqq, χ P ΩlpJ8pEqq. By definition, we can find r P N, ω̄ P ΩkpJrpEqq and
χ̄ P ΩlpJrpEqq such that ω “ π˚8,rpω̄q and χ “ π˚8,rpχ̄q. We define the exterior product
(or wedge product)

ω ^ χ “ π˚8,rpω̄ ^ χ̄q P Ωk`lpJ8pEqq . (29.4)

We need a few remarks on this definition. First, note that we can always pick representatives
ω̄, χ̄ of the equivalence classes ω, χ which are differential forms on the same jet space JrpEq.
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If we had picked one of them to be on a different jet space Jr1pEq with r1 ă r, we could
just obtain another representative on JrpEq by applying the pullback π˚r,r1 . Further, the
wedge product above is well-defined, i.e., independent of the choice of the jet space JrpEq
from which we take the representatives, since the pullback distributes over wedge products.
Note that in coordinates the wedge product just looks as it always looks like for ordinary
differential forms, so we can just calculate it as usual. The same applies to the exterior
derivative, which we define as follows.

Definition 29.3 (Exterior derivative). Let π : E Ñ M be a fiber bundle and ω P
ΩkpJ8pEqq. By definition, we can find r P N and ω̄ P ΩkpJrpEqq such that ω “ π˚8,rpω̄q.
We define the exterior derivative

dω “ π˚8,rpdω̄q P Ωk`1pJ8pEqq . (29.5)

Also this is well-defined, since pullbacks and the exterior derivative commute. Also the
exterior derivative looks in coordinates just as in the finite case. Finally, it is also easy
to prove that the exterior derivative and exterior product satisfy all their nice properties
which they also have for ordinary differential forms on finite-dimensional manifolds. We
can therefore just use them as we would naturally do. In particular, the exterior derivative
satisfies d2 “ 0, so that we have an infinite sequence

Ω0pJ8pEqq
d
ÝÑ Ω1pJ8pEqq

d
ÝÑ . . . , (29.6)

where the image of each function lies inside the kernel of the next one. This structure
is called a complex. We will further refine this structure, and for this purpose need to
decompose it further as follows.

Definition 29.4 (Horizontal form). Let π : E ÑM be a fiber bundle. An element ω P
ΩkpJ8pEqq is called horizontal if it is the pullback ω “ π˚8,rpω̄q of a horizontal k-form
ω̄ P ΩkpJrpEqq, i.e., such that ω̄ vanishes on the kernel kerπr˚ of πr˚ : TJrpEq Ñ TM .
The subspace of horizontal elements of ΩkpJ8pEqq is denoted Ωk,0pJ8pEqq.

The kernel of πr˚ is defined as the set of tangent vectors v P TJrpEq for which πr˚pvq “ 0.
These tangent vectors are tangent to the fibers π´1

r ppq – Jrp pEq for p PM . In coordinates
pxα, yaΛq on J

rpEq the space of vertical vectors is spanned by the vector fields BΛ
a “ B{By

a
Λ.

A k-form ω̄ P ΩkpJrpEqq vanishes on these vectors if its coordinate representation contains
only wedge products of dxα, but no dyaΛ. The same holds for the coordinate representation
of ω P ΩkpJ8pEqq.
We also define a suitable counterpart.

Definition 29.5 (Contact form). Let π : E Ñ M be a fiber bundle. An element
ω P ΩkpJ8pEqq is called a contact form if its pullback pj8σq˚pωq P ΩkpMq vanishes
for every local section σ of π : E Ñ M . The subspace of contact forms of ΩkpJ8pEqq
is denoted Ω0,kpJ8pEqq.
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The meaning of the pullback pj8σq˚pωq for ω P ΩkpJ8pEqq should be almost clear. We can
pick a representative ω̄ P ΩkpJrpEqq, and take its pullback pjrσq˚pω̄q P ΩkpMq along the
map jrσ : M Ñ JrpEq. This pullback is independent of the choice of the representative,
and so defines a unique pullback pj8σq˚ : ΩkpJ8pEqq Ñ ΩkpMq.
Using coordinates pxα, yaΛq on J

8pEq it is easy to write down a basis for the space Ω0,1pJ8pEqq
of contact one-forms. We define the basic contact forms θaΛ as

θaΛ “ dyaΛ ´ y
a
pλ1`1,λ2,...,λnq

dx1 ´ yapλ1,λ2`1,...,λnq
dx2 ´ . . .´ yapλ1,λ2,...,λn`1qdx

n , (29.7)

where n “ dimpMq. Any contact one-form θ can be written in the form θ “ fΛ
a θ

a
Λ. Further,

they can be used to generate higher contact k-forms. This is indeed the case, due to the
following property.

Theorem 29.1. The wedge product of horizontal forms is horizontal. The wedge product
of contact forms is a contact form.

This is not difficult to prove - it follows immediately from the fact that the pullback
distributes over wedge products. Using horizontal and contact forms we can now generate
all of ΩkpJ8pEqq as a consequence of the following property.

Theorem 29.2. For each k P N, the space ΩkpJ8pEqq splits into a direct sum

ΩkpJ8pEqq “
k
à

m“0

Ωm,k´mpJ8pEqq , (29.8)

where Ωk,lpJ8pEqq denotes the space spanned by wedge products of horizontal k-forms and
contact l-forms.

In coordinates, the space Ωk,lpJ8pEqq is spanned by wedge products of the form

dxα1 ^ . . .^ dxαk ^ θa1Λ1
^ . . .^ θalΛl

. (29.9)

It is now easy to see how the exterior product and exterior derivative behave under this
splitting.

Theorem 29.3. Let ω P Ωk,lpJ8pEqq and χ P Ωk1,l1pJ8pEqq. Then ω^χ P Ωk`k1,l`l1pJ8pEqq
and dω P Ωk`1,lpJ8pEqq ‘ Ωk,l`1pJ8pEqq.

This property of the exterior product is immediately clear. For the exterior derivative it
means that dω can be uniquely written as the sum of two terms, one of them belonging to
Ωk`1,lpJ8pEqq, the other one to Ωk,l`1pJ8pEqq. This allows us to decompose the exterior
derivative in the following way.

Definition 29.6 (Horizontal and vertical differentials). Let π : E Ñ M be a fiber
bundle. For m,n P N the horizontal (or total) differential dH : Ωm,npJ8pEqq Ñ
Ωm`1,npJ8pEqq and vertical differential dV : Ωm,npJ8pEqq Ñ Ωm,n`1pJ8pEqq are the
unique functions such that dHω ` dV ω “ dω for all ω P Ωm,npJ8pEqq.

In order to work with these differentials, we first state a few of their properties, which will
then allow us to write them using coordinates.
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Theorem 29.4. For each ω P Ωm,npJ8pEqq and χ P Ωm1,n1pJ8pEqq the horizontal and
vertical differentials dH and dV satisfy:

• dH and dV are antiderivations:

dHpω^χq “ dHω^χ`p´1qm`nω^dHχ , dV pω^χq “ dV ω^χ`p´1qm`nω^dV χ .
(29.10)

• d2
H “ 0, d2

V “ 0 and dHdV “ ´dV dH .

With these properties we can now construct the coordinate expressions for dH and dV by
applying them to functions (zero-forms) and one-forms, since all differential forms can be
construct from these simplest forms. For f P Ω0,0pJ8pEqq we have the vertical differential
given by

dV f “
Bf

ByaΛ
θaΛ . (29.11)

For the horizontal differential then follows

dHf “ df ´ dV f “ Dαf dx
α , (29.12)

where we introduced the total derivative

Dαf “
Bf

Bxα
`
ÿ

Λ

yapλ1,...,λα`1,...,λnq

Bf

ByaΛ
. (29.13)

For the horizontal coordinate differentials we have

dHpdx
αq “ 0 , dV pdx

αq “ 0 . (29.14)

Finally, the basic contact forms satisfy

dHθ
a
Λ “ dx1^θapλ1`1,λ2,...,λnq

`dx2^θapλ1,λ2`1,...,λnq
`. . .`dxn^θapλ1,λ2,...,λn`1q , dV θ

a
Λ “ 0 .
(29.15)

Since any differential form on J8pEq can be constructed as a linear combination of wedge
products of the forms above, we can thus explicitly calculate the vertical and horizontal
differentials for all differential forms.
We now return to the sequence induced by the exterior derivative d : ΩkpJ8pEqq Ñ
Ωk`1pJ8pEqq. Using the horizontal and vertical differentials we can construct a similar
structure, which is not a complex, but a bicomplex. For dimpMq “ n it has the form

...
...

...
...

Ω0,1pJ8pEqq
dH //

OO

Ω1,1pJ8pEqq //

OO

Ωn´1,1pJ8pEqq
dH //

OO

Ωn,1pJ8pEqq

OO

Ω0,0pJ8pEqq
dH //

dV

OO

Ω1,0pJ8pEqq //

dV

OO

Ωn´1,0pJ8pEqq
dH //

dV

OO

Ωn,0pJ8pEqq

dV

OO

(29.16)

This structure is called the variational bicomplex, and we will apply it to describe physical
systems in the Lagrangian formulation.
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30 Lagrangians and action functionals

We now come to a physical application of the formalism introduced in the previous section.
The physical system we consider here is called a Lagrangian system. It is modeled by a
fiber bundle π : E Ñ M , where physical solutions of the system are a subset of the space
of sections ΓpEq. This set of solutions is obtained from an action principle. In order to
clarify these terms, we start with a few definitions.

Definition 30.1 (Lagrangian). Let π : E ÑM be a fiber bundle with dimM “ n. A
Lagrangian on E is a horizontal n-form L P Ωn,0pJ8pEqq.

Recall that the elements of J8pEq describe sections σ P ΓpEq by choosing a point p P M
and evaluating the section to σppq and its partial derivatives of any order. A Lagrangian
thus depends on p, σppq and its derivatives at p, i.e., on the local behavior of the section
σ. We know that we can obtain a global property if we integrate a differential form. This
will be done in the next definition.

Definition 30.2 (Action functional). Let π : E Ñ M be a fiber bundle and L a
Lagrangian on E. The action functional of L is the function

S : ΓpEq Ñ R

σ ÞÑ

ż

M
pj8σq˚pLq

. (30.1)

Note that while the Lagrangian L is not a differential form on a manifold, its pullback
pj8σq˚pLq P ΩnpMq is a n-form on M , and as such can be integrated. To illustrate this
further, we give an example from classical mechanics.

Example 30.1 (First order Lagrangian of a point mass on a metric manifold with po-
tential). Let M “ R and Q a manifold of dimension n. Let E “ R ˆ Q be the trivial
fiber bundle with projection π : RˆQÑ R onto the first factor. Sections of this bundle
are uniquely expressed by maps γ P C8pR, Qq, i.e., by curves on Q. We use the one-
dimensional Euclidean coordinate t on R and arbitrary coordinates pqaq on Q, so that
we have coordinates pt, qaq on RˆQ. From these coordinates we derive the coordinates
pt, qa

p0q, q
a
p1qq on J

1pEq – Rˆ TQ.
To construct a particular Lagrangian, let further g P ΓpT 0

2Qq be a non-degenerate,
positive definite, symmetric tensor field of type p0, 2q (the metric) and V P C8pQ,Rq
(the potential). To illustrate this, we do this in five steps, each of which we explain in
our geometric language:

• We take an element of J1pEq – R ˆ TQ and project it onto the second factor.
This yields a tangent vector qp1q “ qa

p1qBa P Tqp0qQ, where qp0q P Q is the result of
using the bundle map of TQ on qp1q. For convenience, we write q “ qp0q, 9q “ qp1q
and also the coordinates qa “ qa

p0q, 9qa “ qa
p1q.
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• We take the metric g, which is a section of the tensor bundle T 0
2Q, and maps q

to gpqq P T 0
2 qQ. This is a covariant tensor, so we can contract it with two copies

of the vector 9q P TqQ and obtain a real number. In coordinates we thus get
gabpqq 9qa 9qb P R. Doing this for all elements of J1pEq gives us a real function on
J1pEq.

• We take the potential V , which is a real function on Q, and evaluate it at q, so
we obtain another real number V pqq. Doing this for all elements of J1pEq gives us
another real function on J1pEq.

• We take the canonical one-form ω “ dt P Ω1pRq on R and pull it back via the
projection π8 : J8pEq Ñ R. This yields us a horizontal one-form π˚8pωq “ dt P
Ω1,0pJ8pEqq.

• We combine the two real functions and the one-form constructed above to the
Lagrangian

Lpt, q, 9qq “

ˆ

1

2
gabpqq 9qa 9qb ´ V pqq

˙

dt P Ω1,0pJ8pEqq . (30.2)

Finally, we construct the action functional. For this purpose we consider a section,
which in our chosen coordinates is described by functions qaptq. The pullback along this
section then simply amounts to replacing the coordinates qa and 9qa in the Lagrangian
by qaptq and dqaptq{dt. This yields a one-form on M “ R, which can be integrated to
the action

Srqs “

ż

R

ˆ

1

2
gabpqptqq

dqaptq

dt

dqbptq

dt
´ V pqptqq

˙

dt (30.3)

One now easily recognizes the action of a point mass, with all function arguments explic-
itly written out in order to clarify that this is now truly an object on M . Of course one
may ask why we use this particular Lagrangian - for now the answer is simply: “Because
it yields us the correct physics in the end.” But we still need to arrive at the reason for
this.

We discuss another example from field theory.

Example 30.2 (First order Lagrangian of a massive scalar field on a metric manifold). Let
M be a manifold of dimension n and E “M ˆR the trivial line bundle with projection
π : M ˆRÑM onto the first factor. Sections of this bundle are uniquely expressed by
maps ϕ P C8pM,Rq, i.e., by real functions on M . We use arbitrary coordinates pxaq on
M and the one-dimensional Euclidean coordinate φ on R, so that we have coordinates
pxa, φq on M ˆ R. From these coordinates we derive the coordinates

pxa, φ, φ,aq “ px
a, φp0,...,0q, φp1,0,...,0q, . . . , φp0,...,0,1qq (30.4)

on J1pEq – T ˚M ˆ R.
To construct a particular Lagrangian, let further g P ΓpT 0

2Mq be a non-degenerate,
symmetric tensor field of type p0, 2q (the metric) and V P C8pR,Rq (the potential).
To illustrate this, we do this in five steps, each of which we explain in our geometric
language:

• From an element pxa, φ, φ,aq we obtain elements φ P R, φ,adxa P T ˚xM and x PM
by applying suitable projections as in the previous example.
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• Since the metric is non-degenerate, it possesses an inverse g´1 P ΓpT 2
0Mq, which is

also non-degenerate and symmetric. If we evaluate it at x PM , we get an element
g´1pxq P T 2

0 xM . Contracting this element with two copies of φ,adxa yields a real
number gabpxqφ,aφ,b.

• The potential V P C8pR,Rq can be applied to φ P R, which yields another real
number V pφq P R.

• The metric induces a volume form
a

| det gpxq|dnx on M . The pullback of this
volume form along π8 : J8pEq ÑM is a horizontal n-form on J8pEq.

• From the objects constructed above we compose the Lagrangian
ˆ

1

2
gabpxqφ,aφ,b ´ V pφq

˙

a

|det gpxq|dnx . (30.5)

To obtain the action, one finally considers a section, which is described in coordinates
by a function φpxq, and replaces the coordinates φ and φ,a by φpxq and Bφpxq{Bxa. The
resulting one-form on M then yields the action

Srφs “

ż

M

ˆ

1

2
gabpxq

Bφpxq

Bxa
Bφpxq

Bxb
´ V pφpxqq

˙

a

| det gpxq|dnx . (30.6)

Also here we have explicitly written out every dependence on the point x to illustrate
that we are indeed integrating over a n-form on M . Note that in this example we have
treated only φ as a dynamical field and assumed a fixed background metric g. Both of
these objects are sections of vector bundles, and normally one would consider the sum
of these vector bundles as the starting point of the construction to make both fields
dynamical.

We see that we can formulate these two classical examples in terms of differential geometric
objects (sections of bundles) without using coordinates. The coordinates are used here
only to illustrate the process and to provide explicit formulas. However, the Lagrangian
formulation presented here is independent of the choice of coordinates.

A Dictionary

English Estonian
projective limit projektiivne piir
direct limit direktne piir
contact form puutevorm (?)

action functional mõjufunktsionaal
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