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26 Jets

In the previous lecture we have learned that tangent and cotangent vectors generalize the
notions of the derivative of a function. Tangent vectors naturally appear as derivatives of
curves γ ∈ C∞(R,M), while cotangent vectors appear as total derivatives of real functions
f ∈ C∞(M,R). We have also seen that the differential ϕ∗ of a map ϕ ∈ C∞(M,N) further
generalizes this notion to maps between arbitrary manifolds. We now wish to generalize
this notion to higher derivatives. In other words, we will generalize the notion of Taylor
polynomials. These generalizations are called jets. In the most simple case of functions
f ∈ C∞(R,R) they are exactly the Taylor polynomials, which we formally define as follows.

Definition 26.1 (Jets of C∞(R,R)). Let f ∈ C∞(R,R) be a real function of one
variable and p ∈ R. For r ∈ N, we define the r-jet jrpf of f at p as the equivalence class

jrpf =
{
g ∈ C∞(R,R)

∣∣∣ f(p) = g(p) ∧ f ′(p) = g′(p) ∧ . . . ∧ f (r)(p) = g(r)(p)
}

(26.1)

of functions g ∈ C∞(R,R) whose Taylor polynomials at p agree with the Taylor poly-
nomial of f up to order r. The space of all r-jets at p is denoted Jrp (R,R), while the
space of all r-jets is denoted Jr(R,R).

In this simple case we can of course identify the jet jrpf with the Taylor polynomial

f(p) + f ′(p)x+ . . .+
f (r)(p)

r!
xr , (26.2)

since there is a one-to-one correspondence between these polynomials and the equivalence
classes we used in our definition. In fact, in the literature one also finds this definition in
terms of polynomials instead of equivalence classes. However, we will stick to equivalence
classes here, because the more general jets will always be equivalence classes of maps and
not possess the algebraic structure suggested by polynomials. To see how this works, we
will introduce jets of curves.

Definition 26.2 (Jets of C∞(R,M)). Let M be a manifold, γ ∈ C∞(R,M) a curve
on M and p ∈ R. For r ∈ N, we define the r-jet jrpγ of γ at p as the equivalence class

jrpγ =
{
β ∈ C∞(R,M)

∣∣ ∀f ∈ C∞(M,R) : jrp(f ◦ γ) = jrp(f ◦ β)
}

(26.3)
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of curves β ∈ C∞(R,M) such that for all functions f ∈ C∞(M,R) the r-jets jrp(f ◦ γ)
and jrp(f ◦ β) agree. The space of all r-jets at p is denoted Jrp (R,M), while the space
of all r-jets is denoted Jr(R,M).

In this definition the composition f ◦γ ∈ C∞(R,R) is simply a real function of one variable,
for which we have defined jets already earlier in this section. We say that two curves β, γ
belong to the same equivalence class, and thus have the same r-jet jrpγ = jrpβ, if for all
f ∈ C∞(M,R) the compositions f ◦ γ and f ◦ β have the same r-jets. To illustrate this,
we will explicitly construct the first order jets.

Example 26.1 (First order jets of C∞(R,M)). Let M be a manifold, γ ∈ C∞(R,M) a
curve on M and p ∈ R. The 1-jet j1

pγ is the equivalence class of curves β ∈ C∞(R,M)
such that for all functions f ∈ C∞(M,R) we have (f ◦γ)(p) = (f ◦β)(p) and (f ◦γ)′(p) =
(f ◦ β)′(p). The first condition implies that γ(p) = β(p), which together with the
second condition implies γ̇(p) = β̇(p). In other words, each equivalence class is uniquely
described by the tangent vector γ̇(p) ∈ TM , so that we have J1

p (R,M) ∼= TM . This
holds for all p ∈ R, so that we have J1(R,M) ∼= R× TM .

This shows that 1-jets are in this case simply tangent vectors, so that jets generalize the
concept of tangent vectors. To see that we can also generalize cotangent vectors, we define
jets of real functions as follows.

Definition 26.3 (Jets of C∞(M,R)). Let M be a manifold, f ∈ C∞(M,R) a real
function on M and p ∈ M . For r ∈ N, we define the r-jet jrpf of f at p as the
equivalence class

jrpf =
{
g ∈ C∞(M,R)

∣∣∀γ ∈ C∞(R,M)|γ(0)=p : jr0(f ◦ γ) = jr0(g ◦ γ)
}

(26.4)

of functions g ∈ C∞(M,R) such that for all curves γ ∈ C∞(R,M) with γ(0) = p the
r-jets jr0(f ◦ γ) and jr0(g ◦ γ) agree. The space of all r-jets at p is denoted Jrp (M,R),
while the space of all r-jets is denoted Jr(M,R).

The construction is very similar to that of Jr(R,M). We have simply reversed the order of
composition in order to obtain a function f ◦ γ ∈ C∞(R,R). As an example, we construct
the first order jets.

Example 26.2 (First order jets of C∞(M,R)). Let M be a manifold, f ∈ C∞(M,R)
a real function on M and p ∈ M . The 1-jet j1

pf is the equivalence class of functions
g ∈ C∞(M,R) such that for all curves γ ∈ C∞(R,M) with γ(0) = p we have (f ◦γ)(0) =
(g ◦ γ)(0) and (f ◦ γ)′(0) = (g ◦ γ)′(0). The first condition implies that f(p) = g(p),
while the second condition implies df(p) = dg(p). In other words, each equivalence class
is uniquely described by the function value f(p) and the value df(p) ∈ T ∗pM of its total
derivative at p, so that J1

p (M,R) ∼= T ∗pM ×R. This holds for all p ∈M , so that we have
J1(M,R) ∼= T ∗M × R.
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This shows that jets also generalize the concept of cotangent vectors. But the most powerful
property of jets is the fact that we can also extend the definition to jets of maps between
arbitrary manifolds. This can be done as follows.

Definition 26.4 (Jets of C∞(M,N)). Let M,N be manifolds, ϕ ∈ C∞(M,N) a map
and p ∈M . For r ∈ N, we define the r-jet jrpϕ of ϕ at p as the equivalence class

jrpϕ = {ϑ ∈ C∞(M,N) | ∀γ ∈ C∞(R,M)|γ(0)=p, f ∈ C∞(N,R) :

jr0(f ◦ ϕ ◦ γ) = jr0(f ◦ ϑ ◦ γ)} (26.5)

of maps ϑ ∈ C∞(M,N) such that for all curves γ ∈ C∞(R,M) with γ(0) = p and
functions f ∈ C∞(N,R) the r-jets jr0(f ◦ ϕ ◦ γ) and jr0(f ◦ ϑ ◦ γ) agree. The space of
all r-jets at p is denoted Jrp (M,N), while the space of all r-jets is denoted Jr(M,N).

One should add a word of warning here. In the previous examples it appeared that the
jet spaces would be vector spaces, which may seem logical, since polynomials form vector
spaces. However, this is in general not the case. This false intuition comes from the fact
that functions ϕ ∈ C∞(Rm,Rn) for a vector space, whose structure comes from the vector
space structure of Rn. For maps between general manifolds there is no such structure. But
there is another nice structure on the jet spaces, which is that of a manifold.

Theorem 26.1. Let M,N be manifolds of dimensions dimM = m,dimN = n and r ∈ N.
For each p ∈ M the space Jrp (M,N) is a manifold of dimension n

(
m+r
r

)
, while Jr(M,N)

is a manifold of dimension m+ n
(
m+r
r

)
.

Instead of giving a complete proof we simply construct charts (coordinates) on Jr(M,N),
but not prove the compatibility of these charts. Let (xα) be coordinates on M and (ya)
coordinates on N , with Greek indices in the range 1, . . . ,dimM and Latin indices in the
range 1, . . . ,dimN . In these coordinates a map ϕ : M → N can be expressed by the
coordinate functions y(x). The r-jet of ϕ is then given by those maps ϑ : M → N which
have the same Taylor polynomial

∑
λ1+...+λm≤r

(x1 − x1
0)λ1 · . . . · (xm − xm0 )λm

λ1! · . . . · λm!

∂λ1+...+λm

(∂x1)λ1 · · · (∂xm)λm
ya(x0) (26.6)

up to order r around a chosen point p with coordinates xα0 . A r-jet jrpϕ is thus uniquely
determined by the values of the coordinate functions ya(x0) and their derivatives of order
at most r at x0. We will use these values as coordinates on Jrp (M,N). To simplify the
notation, we define a multiindex Λ = (λ1, . . . , λm) to be an m-tuple of natural numbers
λα ∈ N and denote their sum by |Λ|. For the |Λ|’th order derivative appearing in the Taylor
polynomial we simply write ∂Λy

a(x0). In this notation, a r-jet jrpϕ is uniquely determined
by the values ∂Λy

a(x0) for 0 ≤ |Λ| ≤ r. This allows us to use them as coordinates
yaΛ = ∂Λy

a(x0) on Jrp (M,N). In order to construct coordinates on Jr(M,N) we need to
specify the point p as well, using the coordinates (xα) on M . Suitable coordinates on
Jr(M,N) are thus given by (xα, yaΛ) with 0 ≤ |Λ| ≤ r.
Note that some authors also use the notations (ya, yaΛ) for coordinates on Jrp (M,N) and
(xα, ya, yaΛ) for coordinates on Jr(M,N) instead, where 1 ≤ |Λ| ≤ r. In other words, the
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coordinates ya(0,...,0) are instead denoted ya. This is of course equivalent to our choice of
coordinates.
Now the dimension of Jrp (M,N) follows directly from counting the number of terms in Tay-
lor polynomials. The vector space of homogeneous polynomials of degree r in m variables
has dimension

(
m+r−1

r

)
. The vector space of polynomials of degree at most r is thus

r∑
r′=0

(
m+ r′ − 1

r′

)
=

(
m+ r

r

)
. (26.7)

The Taylor polynomials of n functions of m variables up to order r thus form a vector
space of dimension n

(
m+r
r

)
, which is the dimension of Jrp (M,N). In Jr(M,N) there is one

such space for each point p ∈M , so that its dimension is by m larger.
Once again it should be noted that despite their nice coordinate form, which maps jets into
a vector space of polynomials, there is no vector space structure on jets, i.e., there is no
way to treat them as vectors. It is only their coordinate representation we used here that
has this structure, but it is not defined on the jets themselves without using coordinates.

Example 26.3. Let dimM = 2 and dimN = 1. We use coordinates (x1, x2) on M and
the coordinate y on N in order to construct coordinates on J3

p (M,N) and J3(M,N).
Here we need to consider the multiindices

Λ ∈ {(0, 0), (1, 0), (0, 1), (2, 0), (1, 1), (0, 2), (3, 0), (2, 1), (1, 2), (0, 3)} . (26.8)

On J3
p (M,N) we have thus coordinates (yΛ) with Λ taking the values above, so that

dim J3
p (M,N) = 10. On J3(M,N) we have coordinates (x1, x2, yΛ) with Λ taking the

values above, so that dim J3(M,N) = 12. This agrees with the dimension formulas
above.

27 Jet bundles

We have already learned that a particularly useful class of maps are sections of fiber bundles,
and that many useful objects such as vector or tensor fields fall into this category. We will
now study the jets of these maps. Since jets only depend on the local behavior of a map,
we define the following helpful object.

Definition 27.1 (Local section). Let π : E →M be a fiber bundle. A local section on
an open subset U ⊂M (its domain) is a map ϕ : U → E such that π ◦ ϕ = idU .

The main reason for using local instead of global sections is the fact that there are fiber
bundles which do not have any global sections, but are still interesting objects for con-
structing jet bundles. We will (probably) not encounter any such examples in this lecture
course, so for our purposes we can simply drop the word “local” from the following definition
and work with global sections instead.
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Definition 27.2 (Jets of local sections). Let π : E →M be a fiber bundle, p ∈M and
Γp(E) the space of all local sections whose domain contains p. For r ∈ N and a local
section σ ∈ Γp(E) with domain Uσ we define the r-jet jrpσ of σ at p as the equivalence
class

jrpσ = {τ ∈ Γp(E) | ∀γ ∈ C∞(R, Uσ ∩ Uτ )|γ(0)=p, f ∈ C∞(E,R) :

jr0(f ◦ σ ◦ γ) = jr0(f ◦ τ ◦ γ)} (27.1)

of local sections τ ∈ Γp(E) with domain Uτ such that for all curves γ ∈ C∞(R, Uσ∩Uτ )
with γ(0) = p and functions f ∈ C∞(E,R) the r-jets jr0(f ◦ σ ◦ γ) and jr0(f ◦ τ ◦ γ)
agree. The space of all r-jets at p is denoted Jrp (E), while the space of all r-jets is
denoted Jr(E).

The main difference between this definition and the definition from the previous sections
is that we do not consider arbitrary maps from M to E, but only sections. This restriction
also reduces the number of dimensions of the jet space, which we can state as follows.

Theorem 27.1. Let π : E → M be a fiber bundle with fiber F and dimensions dimM =
m,dimF = n and r ∈ N. For each p ∈ M the space Jrp (E) is a manifold of dimension
n
(
m+r
r

)
, while Jr(E) is a manifold of dimension m+ n

(
m+r
r

)
.

We see that instead of the dimension dimE of the target manifold we only have the
dimension dimF which enters the formula of the dimension. To see why this is the case, we
can construct coordinates in the same way as we did for the jet manifolds of arbitrary maps.
By definition, every fiber bundle is locally trivial, i.e., for every p ∈M there exists an open
set U ⊂M containing p such that U ×F ∼= π−1(U) ⊂ E. Given coordinates (xα) on U and
(ya) on F we can thus use coordinates (xα, ya) on π−1(U). Let now σ : U → π−1(U) be a
local section, whose domain we also assume to be U . (If it had a different domain U ′ 3 p
instead, we could simply replace U by U ∩ U ′ in the remainder of this construction.) This
section is described by assigning coordinates (xα, ya) of the target space to coordinates
(xα) of the domain. However, the first part of these target coordinates is already fixed by
the condition that σ is a section, and thus π ◦ σ = idU . Hence, σ is uniquely determined
by the coordinate functions ya(x). In other words, a section σ looks locally just like a map
from U to F . Using the coordinate functions ya(x) we can use the same construction as in
the previous section to construct coordinates (yaΛ) on Jrp (E) and (xα, yaΛ) on Jr(E).
Now it is also easy to see the following.

Theorem 27.2. Let π : E →M be a fiber bundle and p ∈M . Then J0
p (E) ∼= π−1(p) ∼= F

and J0(E) ∼= E.

Proof. Recall that a 0-jet j0
pσ of a local section σ is uniquely determined by the value

σ(p) ∈ π−1(p) ∼= F , which proves the first statement. The second statement follows from
the fact that J0(E) is simply the union of Jrp (E) for all p ∈ M , while E is the union of
all π−1(p). One can easily show that the maps J0

p (E) → F and J0(E) → E derived from
these identifications are diffeomorphisms.

Given now a number of jet manifolds, we may consider maps between them. A very useful
class of maps is defined as follows.
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Definition 27.3 (Jet projection). Let π : E → M be a fiber bundle and 0 ≤ k ≤ r.
The k-jet projection is the map πr,k : Jr(E) → Jk(E) which assigns to the r-jet jrpσ
of any local section σ its k-jet jkpσ for every p ∈ M . The map πr,0 : Jr(E) → E is
also called the target projection, while πr = π ◦ πr,0 : Jr(E) → M is called the source
projection.

Of course we must check that the projections given above are indeed well-defined. This is
the case, since any two local sections σ, τ which have the same r-jet also have the same
k-jet for k ≤ r, which follows immediately from the definition of jets. Therefore, the k-jet
jkpσ of a local section σ is uniquely determined by its r-jet jrpσ, as we presumed in the
definition above. We will not prove here that the jet projections are smooth maps - the
proof is lengthy, but simple. In coordinates (xα, yaΛ) on Jr(E) one can easily see that
the projection πr,k simply discards all coordinates yaΛ with |Λ| > k and keeps only the
coordinates on Jk(E). These maps have even more nice properties.

Theorem 27.3. The triples (Jr(E), Jk(E), πr,k), (Jr(E), E, πr,0) and (Jr(E),M, πr) are
fiber bundles.

Also this can easily be proven, but we will not do it here. The last bundle of this list will
be of particular interest for us, and has its own name.

Definition 27.4 (Jet bundle). Let π : E → M be a fiber bundle and r ∈ N. The
bundle (Jr(E),M, πr) is called the r’th jet bundle of E.

Once we have constructed a fiber bundle, we are of course interested in its sections. For
the jet bundle of a fiber bundle E there is a particular way to construct sections of Jr(E)
from the sections of E, which we define as follows.

Definition 27.5 (Jet prolongation). Let π : E → M be a fiber bundle and σ ∈ Γ(E)
a section. For r ∈ N the r-jet prolongation jrσ of σ is the section of the bundle
πr : Jr(E)→M such that (jrσ)(p) = jrpσ for all p ∈M .

It is once again easy to check that this construction is well-defined and indeed yields a
section of the jet bundle. We illustrate this construction using coordinates (xα) on U ⊂M ,
(ya) on F and (xα, ya) on π−1(U), from which we derive coordinates (xα, yaΛ) on π−1

r (U).
In these coordinates a section σ is locally expressed by the coordinate functions ya(x). Its
r-jet prolongation jrσ is then expressed by the coordinate functions yaΛ(x) = ∂Λy

a(x).
Now we have constructed an important and helpful tool which we will apply to physics.
We can now make precise what it means that some function “depends on the value and
derivatives up to order r of some section at some point”. Such a function will simply be a
function on Jr(E), and if we feed it with a jet prolongation of some section, it will have
exactly the dependence we need.
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A Dictionary

English Estonian
jet juga

jet manifold joamuutkond (?)
jet bundle joakihtkond (?)

jet projektion joaprojektsioon
jet prolongation joapikendus
local section lokaalne lõige
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