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18 Maps between vector bundles

In this lecture we discuss how maps can be used to transport objects living on the tangent,
cotangent, tensor and exterior bundles between manifolds. All of these bundles are vector
bundles, and we will construct particular classes of maps between the total spaces of these
bundles. We start with a general definition of these classes and discuss a few of their
properties, which will be useful in the examples we discuss later.

Definition 18.1 (Vector bundle homomorphism). Let (E,M, πE) and (F,N, πF ) be
vector bundles. A vector bundle homomorphism is a smooth map θ : E → F such that
for each x ∈M there exists y ∈ N such that the restriction of θ to a fiber Ex is a linear
function which maps Ex into the fiber Fy.

The definition in particular says that a vector bundle homomorphism θ must be fiber-
preserving: for two elements v, w ∈ Ex of the same fiber over a point x ∈M there exists a
point y ∈ N such that also the images θ(v) and θ(w) lie in the same fiber Fy over y. This
point y obviously cannot depend on the particular choice of v ∈ Ex, because it must be
the same all over Ex, and thus can depend only on x. In other words, a fiber-preserving
map θ : E → F between the total spaces of a bundle automatically induces also a map
θ̃ : M → N between their base spaces, which is the unique map such that the diagram

E
θ //

πE
��

F

πF
��

M
θ̃

// N

(18.1)

commutes. This map is smooth as a consequence of the smoothness of θ. One also calls
θ a vector bundle homomorphism over θ̃. We get even more for a more restricted class of
maps:

Definition 18.2 (Vector bundle isomorphism). A vector bundle isomorphism is a vec-
tor bundle homomorphism which is invertible and whose inverse is also a vector bundle
homomorphism. Two vector bundles between which a vector bundle isomorphism exists
are called isomorphic.
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Any vector bundle isomorphism θ is also a diffeomorphism, and the map θ̃ constructed
above is also a diffeomorphism in this case. The following statement is easy to prove.

Theorem 18.1. Let (E,M, πE), (F,N, πF ) and (G,O, πG) be vector bundles and θ1 : E →
F and θ2 : F → G vector bundle homomorphisms (isomorphisms). Then also θ2 ◦ θ1 is a
vector bundle homomorphism (isomorphism).

19 The pushforward

We now apply the abstract constructions to vector bundles we have already encountered,
starting with the tangent bundle, where we can construct a map as follows.

Definition 19.1 (Differential and pushforward). Let M and N be manifolds and
ϕ : M → N a smooth map. The differential of ϕ is the smooth map ϕ∗ : TM → TN
which assigns to a tangent vector v ∈ TM (which is a derivation acting on functions on
M) its pushforward ϕ∗(v) ∈ TN (derivation acting on functions on N) along ϕ defined
by

ϕ∗(v)(f) = v(f ◦ ϕ) (19.1)

for f ∈ C∞(N,R).

To see that this definition makes sense and indeed yields a map ϕ∗ : TM → TN one of
course needs to check that ϕ∗(v) as defined above is a derivation and that ϕ∗ is smooth.
It is not very difficult to check this, so we will omit it here. Instead, we continue with an
even stronger statement.

Theorem 19.1. The differential ϕ∗ : TM → TN of a smooth map ϕ : M → N is a vector
bundle homomorphism over ϕ.

Also this is not difficult to prove, and we will not do it here. To get a better picture of the
differential and the pushforward, we can write them in coordinates. Let (xa) be coordinates
on M and (yα) coordinates on N . We use different indices (Latin for M and Greek for N)
here to distinguish between objects living on different manifolds, and to make clear that
Latin indices run from 1 to dimM , while Greek indices run from 1 to dimN . In these
coordinates a map ϕ : M → N can simply be written as y(x). A tangent vector v ∈ TxM
takes the form va∂a and acts on a function g ∈ C∞(M,R) by v(g) = va∂ag(x). If this
function is given by g = f ◦ ϕ for some f ∈ C∞(N,R), we find

ϕ∗(v)(f) = v(f ◦ ϕ) = va∂af(y(x)) = va
∂yα

∂xa
∂αf(y(x)) , (19.2)

using the chain rule for functions of several variables. It follows that the coordinate ex-
pression for ϕ∗(v) is given by

ϕ∗(v) = va
∂yα

∂xa
∂α . (19.3)

This also explains the name differential for the map ϕ∗, as it is basically some kind of
derivative of ϕ. This also also suggests that the differential itself satisfies a chain rule,
which we state as follows.
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Theorem 19.2. Let M,N,O be manifolds and ϕ1 : M → N and ϕ2 : N → O smooth
maps. Then their differentials satisfy

(ϕ2 ◦ ϕ1)∗ = ϕ2∗ ◦ ϕ1∗ . (19.4)

Proof. Let f ∈ C∞(O,R) be a function on O and v ∈ TM . It follows that

ϕ2∗(ϕ1∗(v))(f) = ϕ1∗(v)(f ◦ ϕ2)

= v((f ◦ ϕ2) ◦ ϕ1)

= v(f ◦ (ϕ2 ◦ ϕ1))

= (ϕ2 ◦ ϕ1)∗(v)(f) ,

(19.5)

using the fact that map composition ◦ is associative.

20 The pullback

While the pullback transfers objects (vectors) along a map in the same direction as the
map points, the pullback works in the opposite direction and transfers objects (sections
of bundles) from the target manifold to the source manifold. In fact, there are different
notions of pullbacks, depending on the type of object to which it is applied. The simplest
possible case is the pullback of a function.

Definition 20.1 (Pullback of a function). LetM and N be manifolds and ϕ : M → N
a smooth map. The pullback of a function f ∈ C∞(N,R) to M along ϕ is the function
ϕ∗(f) = f ◦ ϕ ∈ C∞(M,R).

It is clear that ϕ∗(f) is a smooth function on M , since the composition of smooth maps is
smooth. A slightly more sophisticated type of pullback is defined as follows.

Definition 20.2 (Pullback of a covector field). Let M and N be manifolds and ϕ :
M → N a smooth map. The pullback of a covector field ω ∈ Ω1(N) to M along ϕ is
the covector field ϕ∗(ω) ∈ Ω1(M) such that for all x ∈M and v ∈ TxM holds

〈v, ϕ∗(ω)(x)〉 = 〈ϕ∗(v), ω(ϕ(x))〉 . (20.1)

Note that there is a fundamental difference between the pullback and the pushforward,
besides the fact that they transfer objects in different directions: while the pushforward
takes single tangent vectors from TM to TN , the pullback takes whole sections of T ∗N to
sections of T ∗N . This can be understood as follows.
A map ϕ : M → N assigns to each point x ∈M a point y = ϕ(x) ∈ N , but this map is in
general not surjective or injective. Given a single vector v ∈ TxM , the pushforward yields
a single vector ϕ∗(v) ∈ TyN . However, we cannot use the pushforward and apply it to a
vector field X ∈ Vect(M) to obtain a vector field on Y ∈ Vect(N), because this would be
a map Y : N → TM which assigns a unique vector to each y ∈ N . But the pushforward
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does not yield any vector at points y ∈ M which lie outside the image of ϕ. Further, if ϕ
is not injective, it maps different vectors X(x) and X(x′) with ϕ(x) = ϕ(x′) = y into TyN .
The converse holds for the pullback. We cannot pull a single covector p ∈ T ∗yN back to
M , because y may lie outside the image of ϕ and thus have no preimage at all, or may
have multiple preimages. But if we have a covector field ω ∈ Ω1(N), which assigns a
covector ω(y) to each point y ∈ N , we can obtain a covector field ϕ∗(ω) ∈ Ω1(M) as
follows. We need to construct a section of T ∗M , which assigns to each x ∈ M a covector
ϕ∗(ω)(x) ∈ T ∗xM . Here we make use of the fact that TxM and T ∗xM are dual vector spaces,
so that we can identify such a covector with a linear function on TxM . To construct such
a function, we take a vector v ∈ TxM and push it (linearly) to a vector ϕ∗(v) ∈ TyN . Now
we use the covector ω(y) ∈ T ∗yN , which is a linear function on TyN . This is exactly the
construction given in the definition of the pullback.
To illustrate this definition we write the pullback in coordinates. Let (xa) be coordinates
on M and (yα) coordinates on N , as in the previous section. Using these coordinates a
covector field ω ∈ Ω1(N) takes the form ωαdy

α, while a vector v ∈ TxM can be written as
v = va∂a. The definition of the pullback then reads

〈v, ϕ∗(ω)(x)〉 = 〈ϕ∗(v), ω(ϕ(x))〉 = ϕ∗(v)αωα(y(x)) = va
∂yα

∂xa
ωα(y(x)) , (20.2)

so that ϕ∗(ω) can be written in coordinates in the form

ϕ∗(ω)(x) = ωα(y(x))
∂yα

∂xa
dxa . (20.3)

We now have pullbacks of 0-forms (real functions) and 1-forms (covector fields) on N . One
may already guess that this procedure can be extended to arbitrary k-forms on N . For this
purpose, recall that an element of ΛkT ∗yN can be viewed as an alternating multilinear form
on TyN , i.e., a function from TyN × . . .× TyN to R which is linear in each argument and
totally antisymmetric with respect to permutations of its arguments. With this in mind
we can define the pullback of a differential form as follows.

Definition 20.3 (Pullback of a differential form). Let M and N be manifolds and
ϕ : M → N a smooth map. The pullback of a k-form ω ∈ Ωk(N) to M along ϕ is the
k-form ϕ∗(ω) ∈ Ω1(M) such that for all x ∈M and v1, . . . , vk ∈ TxM holds

ϕ∗(ω)(x)(v1, . . . , vk) = ω(ϕ(x))(ϕ∗(v1), . . . , ϕ∗(vk)) . (20.4)

Again one easily checks that this definition indeed yields a k-form on M . Also the coor-
dinate expression can be easily derived. Following the same procedure as above one easily
sees that

ϕ∗(ωα1···αk
dyα1 ∧ . . . ∧ dyαk) = ωα1···αk

∂yα1

∂xa1
· · · ∂y

αk

∂xak
dxa1 ∧ . . . ∧ dxak . (20.5)

A bit less obvious are the following very useful properties of the pullback of differential
forms.

Theorem 20.1. Let M and N be manifolds and ϕ : M → N a smooth map. For any
differential forms α ∈ Ωp(N), β ∈ Ωq(N) on N the pullback satisfies

ϕ∗(α) ∧ ϕ∗(β) = ϕ∗(α ∧ β) and d(ϕ∗(α)) = ϕ∗(dα) . (20.6)
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The proof is rather lengthy, but simple, so we will not discuss it here. We finally generalize
the pullback even further. In a similar way as an element of ΛkT ∗yN can be regarded as
an alternating multilinear form on TyN , an element of

⊗k T ∗yN corresponds to a (general)
multilinear form on TyN . This allows us to extend the pullback to covariant tensor fields,
i.e., tensor fields of type (0, s). In fact, the definition is identical to the case of a differential
form.

Definition 20.4 (Pullback of a covariant tensor field). Let M and N be manifolds
and ϕ : M → N a smooth map. The pullback of a covariant tensor field A ∈ T 0

sN
to M along ϕ is the covariant tensor field ϕ∗(A) ∈ T 0

sM such that for all x ∈ M and
v1, . . . , vk ∈ TxM holds

ϕ∗(A)(x)(v1, . . . , vk) = A(ϕ(x))(ϕ∗(v1), . . . , ϕ∗(vk)) . (20.7)

It should be clear now that this is indeed a tensor field of type (0, s) on M and that its
coordinate expression is given by

ϕ∗(Aα1···αk
dyα1 ⊗ . . .⊗ dyαk) = Aα1···αk

∂yα1

∂xa1
· · · ∂y

αk

∂xak
dxa1 ⊗ . . .⊗ dxak . (20.8)

21 Diffeomorphisms and coordinate transformations

We have seen in the previous sections that the ways we can transfer objects along an
arbitrary smooth map ϕ : M → N are limited since ϕ is in general neither injective nor
surjective. We can remove these limitations by taking ϕ to be a diffeomorphism, i.e., a
bijective map whose inverse is again smooth. In this case the differential ϕ∗ : TM → TN
becomes a vector bundle isomorphism, and we can make use of various derived vector bundle
isomorphisms to transfer single tensors and tensor fields freely between both manifolds.
This will be done in this section. We start be defining the pullback of a vector field.

Definition 21.1 (Pullback of a vector field). LetM and N be manifolds and ϕ : M →
N a diffeomorphism. The pullback of a vector field X ∈ Vect(N) to M along ϕ is the
vector field ϕ∗(X) ∈ Vect(M) such that ϕ∗(X)(x) = ϕ−1∗ (X(ϕ(x))) for each x ∈M .

In the definition we have explicitly used the inverse of ϕ∗, which should remind us that
this construction is valid only if ϕ is a diffeomorphism. In coordinates (xa) on M and (ya)
on N (where we now use the same type of letters for the indices, because diffeomorphic
manifolds necessarily have the same dimension) we find that

ϕ∗(X) = Xa ∂x
b

∂ya
∂b , (21.1)

which follows from the rule for the derivative of inverse functions on Rn. Since we can now
pull back both vector and covector fields, we can also pull back arbitrary tensor fields. The
definition is as follows.
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Definition 21.2 (Pullback of a tensor field). Let M and N be manifolds and ϕ :
M → N a diffeomorphism. The pullback of tensor fields on N to tensor fields on M
is defined as the linear function ϕ∗ : Γ(T rsN) → Γ(T rsM) that for any r vector fields
X1, . . . , Xr ∈ Vect(N) and s 1-forms ω1, . . . , ωs ∈ Ω1(N) holds

ϕ∗(X1⊗. . .⊗Xr⊗ω1⊗. . .⊗ωs) = ϕ∗(X1)⊗. . .⊗ϕ∗(Xr)⊗ϕ∗(ω1)⊗. . .⊗ϕ∗(ωs) . (21.2)

In coordinates we find for a tensor field A ∈ Γ(T rsN) the pullback

ϕ∗(Aa1···ar b1···bs∂
′
a1 ⊗ . . .⊗ ∂

′
ar ⊗ dy

b1 ⊗ . . .⊗ dybs)

= Aa1···ar b1···bs
∂xc1

∂ya1
· · · ∂x

cr

∂yar
∂yb1

∂xd1
· · · ∂y

bs

∂xds
∂c1 ⊗ . . .⊗ ∂cr ⊗ dxd1 ⊗ . . .⊗ dxds , (21.3)

where we wrote (∂′a) for the coordinate basis of TyN .
We finally remark that all formulas derived in this lecture also hold for the special case
M = N and ϕ = idM . This may seem trivial, but also in this case we are allowed to use
two different sets of coordinates (xa) and (ya). The formulas above then simply describe
how the coordinate expressions for tensor fields transform under a change of coordinates.

A Dictionary

English Estonian
homomorphism homomorfism
isomorphism isomorfism
pushforward edasitõuge
pullback tagasitõmme
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