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13 Differential forms

In the last lecture we already discussed tensor bundles and tensor fields. We now come to a
useful class of tensor fields, whose component expressions are completely antisymmetric in
all indices. These tensor fields are called differential forms and play a role for calculating
derivatives and integrals. We start with a few basic definitions.

Definition 13.1 (Exterior power bundle). For a vector bundle E over a manifold M
and k ∈ N the k’th exterior power bundle ΛkE is the union

ΛkE =
⋃
x∈M

ΛkEx , (13.1)

where ΛkEx is the k’th exterior power space of the fiber vector space Ex over x ∈M .

Recall from linear algebra that the exterior power ΛkV of a vector space of dimension n
with basis (ei, i = 1, . . . , n) is spanned by the vectors

ei1 ∧ . . . ∧ eik =
1

k!

∑
σ∈Sk

sgn(σ)eiσ(1) ⊗ . . .⊗ eiσ(k) , (13.2)

where the sum is taken over all permutations σ (elements of the symmetric group Sk
permuting k objects) and sgn(σ) is the signature of σ. It follows that there are

(
n
k

)
linearly

independent vectors of this type, which constitute a basis of ΛkV . The following statement
is thus straightforward to prove.

Theorem 13.1. The exterior power bundle ΛkE of a vector bundle E of rank n is a vector
bundle of rank (

n

k

)
=

n!

k!(n− k)!
. (13.3)

In this lecture we are in particular interested in exterior powers of the cotangent bundle
and their sections, which have their own name:

Definition 13.2 (Differential form). A differential form (or more precisely a k-form)
on a manifold M is a section of the bundle ΛkT ∗M for k ∈ N. The space of all k-forms
on M is denoted Ωk(M).
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Given coordinates (xa) on M , we can use the coordinate basis (dxa) of T ∗xM to construct
a basis of ΛkT ∗xM with basis elements of the form dxa1 ∧ . . . ∧ dxak . A differential form
ω ∈ Ωk(M) can thus be expressed in the form

ω = ωa1···akdx
a1 ∧ . . . ∧ dxak , (13.4)

where the components are totally antisymmetric, ωa1···ak = ω[a1···ak]. It thus becomes clear
that a k-form is simply a totally antisymmetric tensor field of type (0, k). Here we used
the bracket notation for (anti)symmetrizing over indices:

A[a1···ak] =
1

k!

∑
σ∈Sk

sgn(σ)Aaσ(1)···aσ(k) (13.5a)

A(a1···ak) =
1

k!

∑
σ∈Sk

Aaσ(1)···aσ(k) (13.5b)

There are some special cases. For k = 0 we have Λ0T ∗xM
∼= R, so that a 0-form is simply

a real function and Ω0(M) ∼= C∞(M,R). We also encountered Λ1T ∗xM
∼= T ∗xM , so that a

1-form is the same as a covector field. This justifies the notation Ω1(M) for the space of
covector fields introduced in the last lecture.
In the following we will study a few operations on differential forms and their properties.

14 The exterior product

Recall from linear algebra that given a vector space V , the exterior algebra defines a wedge
product

∧ : ΛpV × ΛqV → Λp+qV
(u, v) 7→ u ∧ v , (14.1)

which acts on basis vectors in the obvious way,

(ei1 ∧ . . . ∧ eip) ∧ (ej1 ∧ . . . ∧ ejq) = ei1 ∧ . . . ∧ eip ∧ ej1 ∧ . . . ∧ ejq , (14.2)

and is linear in both u and v. Pointwise application of the wedge product to differential
forms allows us to define the following:

Definition 14.1 (Exterior product). Let M be a manifold and α ∈ Ωp(M) and β ∈
Ωq(M). Their exterior product is the differential form α ∧ β ∈ Ωp+q(M) such that for
all x ∈M

(α ∧ β)(x) = α(x) ∧ β(x) . (14.3)

Using coordinates (xa), we have

α ∧ β = (αa1···apdx
a1 ∧ . . . ∧ dxap) ∧ (βb1···bqdx

b1 ∧ . . . ∧ dxbq)
= α[a1···apβb1···bq ]dx

a1 ∧ . . . ∧ dxap ∧ dxb1 ∧ . . . ∧ dxbq .
(14.4)

The antisymmetrization comes from the fact that the wedge product of the basis elements
(dxa) is totally antisymmetric.
The following properties of the exterior product follow directly from the properties of the
wedge product.

2



Theorem 14.1. For α ∈ Ωp(M), β ∈ Ωq(M) and γ ∈ Ωr(M), the exterior product
satisfies:

• Graded anticommutativity:
α ∧ β = (−1)pqβ ∧ α . (14.5)

• Associativity:
α ∧ (β ∧ γ) = (α ∧ β) ∧ γ = α ∧ β ∧ γ . (14.6)

• R-linearity in each factor.

A special case is given if p = 0 or q = 0. In this case one of the terms in the wedge product
is a real function f ∈ C∞(M,R), and the exterior product reduces to the ordinary product

f ∧ α = α ∧ f = fα. (14.7)

15 The exterior derivative

We have seen in the previous lecture that the total derivative df of a function f ∈ Ω0(M) ∼=
C∞(M,R) is a covector field, and hence a 1-form. The total derivative can thus be viewed
as a function d : Ω0(M)→ Ω1(M), which is a special case of the following construction.

Definition 15.1 (Exterior derivative). For a manifold M , the exterior derivative d :
Ωk(M)→ Ωk+1(M) for all k ∈ N is the unique linear function such that:

• df is the total derivative for any f ∈ Ω0(M) ∼= C∞(M,R).

• d(dω) = 0 for any ω ∈ Ωk(M).

• d(α∧β) = dα∧β+ (−1)pα∧ dβ for α ∈ Ωp(M) and β ∈ Ωq(M), where p, q ∈ N.

In coordinates (xa) we can write a k-form as ω = ωa1···akdx
a1 ∧ . . . ∧ dxak and use the

definition above to derive the formula

dω = d(ωa1···akdx
a1 ∧ . . . ∧ dxak)

= d(ωa1···ak) ∧ dxa1 ∧ . . . ∧ dxak

+ ωa1···ak

k∑
i=1

(−1)i−1dxa1 ∧ . . . ∧ dxai−1 ∧ d(dxai) ∧ dxai+1 ∧ . . . ∧ dxak

= ∂[bωa1···ak]dx
b ∧ dxa1 ∧ . . . ∧ dxak ,

(15.1)

where the antisymmetrization in the last line again comes from the total antisymmetry of
the wedge product.

16 The interior product

Also the pairing 〈X,ω〉 between a vector field X ∈ Vect(M) and a covector field ω ∈ Ω1(M)
introduced in the previous lecture is a special case of a more general construction, which
we discuss in this section and which is defined as follows.
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Definition 16.1 (Interior product). For a manifold M , the interior product ι :
Vect(M)×Ωk+1(M)→ Ωk(M) is the unique function such that for any X ∈ Vect(M):

• ιXα = 〈X,α〉 for α ∈ Ω1(M).

• ιX(λα+ µβ) = λιXα+ µιXβ for λ, µ ∈ R and α, β ∈ Ωk+1(M).

• ιX(α ∧ β) = (ιXα) ∧ β + (−1)pα ∧ (ιXβ) for α ∈ Ωp(M) and β ∈ Ωq(M), where
p, q ∈ N.

For a vector field X = Xa∂a and a differential form ω = ωa1···akdx
a1 ∧ . . .∧ dxak expressed

in coordinates (xa) we can directly use the properties given in the definition above to read
off the coordinate formula

ιXω = ιXb∂b
(ωa1···akdx

a1 ∧ . . . ∧ dxak)

= Xbωa1···ak

k∑
i=1

(−1)i−1〈∂b, dxai〉dxa1 ∧ . . . ∧ dxai−1 ∧ dxai+1 ∧ . . . ∧ dxak

= ωa1···ak

k∑
i=1

(−1)i−1Xaidxa1 ∧ . . . ∧ dxai−1 ∧ dxai+1 ∧ . . . ∧ dxak

= kXa1ωa1···akdx
a2 ∧ . . . ∧ dxak ,

(16.1)

where the last line follows from the fact that we took the components ωa1···ak to be totally
antisymmetric. This antisymmetry also plays a role in the following statement.

Theorem 16.1. For X,Y ∈ Vect(M) and ω ∈ Ωk(M) the interior product satisfies
ιX(ιY ω) = −ιY (ιXω).

We will not prove this here, and instead present another theorem, which can be helpful in
practical calculations.

Theorem 16.2. Given a k-form ω ∈ Ωk(M) and k+1 vector fields X0, . . . Xk ∈ Vect(M),
the exterior derivative, interior product and Lie bracket are related by

ιXk · · · ιX0dω =

k∑
i=0

(−1)iXi

(
ιXk · · · ιXi+1ιXi−1 · · · ιX0ω

)
+

k−1∑
i=0

k∑
j=i+1

(−1)i+jιXk · · · ιXj+1ιXj−1 · · · ιXi+1ιXi−1 · · · ιX0ι[Xi,Xj ]ω . (16.2)

For a 1-form ω ∈ Ω1(M) this formula reduces to

ιY ιXdω = X(ιY ω)− Y (ιXω)− ι[X,Y ]ω

= X(〈Y, ω〉)− Y (〈X,ω〉)− 〈[X,Y ], ω〉 .
(16.3)

17 Volume forms

The last concept we introduce in this lecture is based on what we have learned about
differential forms, and will finally lead us to integrals, and which we define as follows.
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Definition 17.1 (Volume form). A volume form on a manifold M of dimension n is a
nowhere vanishing n-form, i.e., a differential form ω ∈ Ωn(M) such that ω(x) 6= 0 for
all x ∈M .

Using coordinates (xa), a volume form can always be written in the form ω = w dx1 ∧
. . . ∧ dxn with w(x) 6= 0 everywhere. Note that although at first sight it looks like w is a
real function on M , this is not the case - the value of w in this definition depends on the
choice of coordinates (xa), while the value of a real function f ∈ C∞(M,R) depends only
on a point on M , but not on the choice of coordinates used for its description. However,
functions can be used to compare volume forms. If ω is a volume form and f ∈ C∞(M,R)
is nowhere vanishing, then obviously also fω is a volume form. In fact, every volume form
can be expressed by any other volume form and a function:

Theorem 17.1. Let ω and ω′ be volume forms on a manifold M . Then there exists a
unique nowhere vanishing function f ∈ C∞(M,R) such that ω′ = fω.

Not every manifold allows for a volume form. In fact, volume forms come together with
some additional structure, which we will define next.

Definition 17.2 (Orientable manifold). A manifold is called orientable if it possesses
an atlas such that the determinants of the Jacobian matrices of all transition functions
are positive.

With this definition we can now state:

Theorem 17.2. A manifold possesses a volume form if and only if it is orientable.

We will revisit this topic in the next lecture.

A Dictionary

English Estonian
differential form diferentsiaalvorm
exterior power välisaste
exterior product väliskorrutis
exterior derivative välisdiferentsiaal
interior product sisekorrutis (?)
volume form ruumala vorm

orientable manifold orienteeritav muutkond
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