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10 The cotangent bundle

We now come to a concept which is somehow dual to the tangent bundle. While elements
of the tangent bundle can be interpreted as velocities along trajectories, elements of the
cotangent bundle measure how a function changes along a manifold. We start with the
definition of the cotangent space.

Definition 10.1 (Cotangent space). Let M be a manifold and x ∈ M . Let Ix ⊂
C∞(M,R) be the ideal of real functions f on M for which f(x) = 0 and I2x ⊂ Ix the
ideal generated by functions fg with f, g ∈ Ix. Both Ix and I2x are vector spaces, and
I2x is a subspace of Ix. The cotangent space T ∗xM at x is the quotient vector space
Ix/I

2
x.

We also illustrate this definition using local coordinates (xa) around a point x0 ∈M . Using
Hadamard’s lemma we can write any smooth function f in a certain neighborhood around
x0 in the form

f(x) = f(x0) + (xa − xa0)f̃a(x) , (10.1)

where f̃a are smooth functions defined in a neighborhood around x0. The ideal Ix0 contains
those functions f for which f(x0) = 0. For the product h = fg of two functions f, g ∈ Ix0

we thus have

h(x) = f(x)g(x) = (xa − xa0)(xb − xb0)f̃a(x)g̃b(x) = (xa − xa0)h̃a(x) , (10.2)

from which we see that I2x0
contains those functions h ∈ Ix0 for which h̃a(x0) = 0. The

equivalence class [f ]x0 ∈ Ix0/I
2
x0

of f ∈ Ix0 thus contains all functions g ∈ Ix0 such that
f̃a(x0) = g̃a(x0), and is thus fully characterized by f̃a(x0). This shows that T ∗x0

M is a
vector space of dimension dimM . Our choice of coordinates induces a basis of T ∗x0

M ,
which we denote (dxa), and in which we can write [f ]x0 ∈ T ∗x0

M as

[f ]x0 = f̃a(x0)dx
a . (10.3)

From a geometric point of view, we see that f̃a(x0) simply describes the change of f(x)
along the direction xa at x = x0, given by

f̃a(x0) =
∂

∂xa
f(x)

∣∣∣∣
x=x0

. (10.4)
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This shows that the cotangent space is somehow “dual” to the tangent space (which we will
make precise in the next section): while the tangent space Tx0M consists of all possible ways
to differentiate functions at x0 (or all possible “differential operators” at x0, so that two
differential operators are the same if they yield the same result, no matter what function
we supply as input), the cotangent space consists of all equivalence classes of functions that
we can feed a differential operator as input data (where equivalence is defined such that
two functions belong to the same equivalence class if differentiating them yields the same
result, no matter which differential operator we apply to them).
We can proceed similarly to the construction of the tangent bundle and assemble the
cotangent spaces to form the cotangent bundle.

Definition 10.2 (Cotangent bundle). The cotangent bundle of a manifold M is the
disjoint union

T ∗M =
⊎
x∈M

T ∗xM . (10.5)

The canonical projection of the tangent bundle is the function π̃ : T ∗M → M such
that π̃(p) = x for p ∈ T ∗xM .

Also here we take the disjoint union, in full analogy to the construction of the tangent
bundle. One may already guess the following theorems.

Theorem 10.1. The cotangent bundle T ∗M of a manifold M of dimension n is a manifold
of dimension 2n.

Theorem 10.2. The structure (T ∗M,M, π̃) is a vector bundle of rank n = dimM .

We will not prove these theorems here, because the proof proceeds in exactly the same
way as shown in the previous section for the tangent bundle: using coordinates (xa), one
obtains a basis (dxa) of the tangent space, and can express any tangent space element as
p = padx

a. This yields coordinates (xa, pa) on the cotangent bundle, which enter the proof
in the same way as the coordinates (xa, va) on the tangent bundle.
Sections of the cotangent bundle are of similar importance as sections of the tangent bundle,
and also deserve their own name.

Definition 10.3 (Covector field). A covector field (or 1-form) on a manifold M is a
section of the cotangent bundle T ∗M . The space of all covector fields on M is denoted
Γ(T ∗M) or Ω1(M).

The term 1-form and the notation Ω1(M) will become clear in the next lecture, when
we discuss general p-forms, with 0 ≤ p ≤ dimM . As it was also the case with vector
fields, we can use coordinates (xa) to write a covector field in the form ω = ωadx

a, where
the component functions ωa are smooth. Every smooth function on a manifold defines a
covector field as follows.
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Definition 10.4 (Total differential). Let M be a manifold and f ∈ C∞(M,R) a
function on M . Its total differential df(x) at a point x ∈ M is the equivalence class
[f − f(x)]x ∈ T ∗xM of f − f(x) ∈ Ix modulo I2x. It defines a covector field df .

For the components ωa of ω = df in a coordinate basis follows that ωa = ∂af .

11 Relation between tangent and cotangent bundle

In the last section we already had some hints that there is a duality between the tangent
and cotangent bundles. We now make this precise and give the following theorem.

Theorem 11.1. The tangent space TxM and the cotangent space T ∗xM at any point x on
a manifold M are dual vector spaces.

Proof. To show that TxM is the dual vector space of T ∗xM , we need to show that there
is an isomorphism θ : TxM → (T ∗xM)∗, which we construct as follows. Recall that the
elements of T ∗xM = Ix/I

2
x are equivalence classes [f ]x = f + I2x of functions f ∈ Ix. For

such an equivalence class [f ]x ∈ T ∗xM and a derivation v ∈ TxM we define

θ(v) : T ∗xM → R, [f ]x 7→ v(f) . (11.1)

We still need to check that this is well-defined and does not depend on the choice of the
representative f . Since derivations are linear functions, this is equivalent to showing that
v vanishes on I2x. Since the elements of I2x are products of functions f, g ∈ Ix, we have

v(fg) = v(f)g(x) + f(x)v(g) = 0 , (11.2)

since f(x) = g(x) = 0. Further, we see that θ(v) is linear, since

θ(v)(λ[f ]x+µ[g]x) = θ(v)([λf+µg]x) = v(λf+µg) = λv(f)+µv(g) = λθ(v)([f ]x)+µθ(v)([g]x) .
(11.3)

To see that θ is an isomorphism of the vector spaces TxM and (T ∗xM)∗, we need to show
that it is linear and possesses an inverse. Linearity follows from

θ(λv + µw)([f ]x) = λv(f) + µw(f) = λθ(v)([f ]x) + µθ(w)([f ]x) . (11.4)

We finally show the existence of an inverse ϑ : (T ∗xM)∗ → TxM by explicit construction.
Let α ∈ (T ∗xM)∗ and define

ϑ(α) : C∞(M,R)→ R, f 7→ α([f − f(x)]x) (11.5)

To see that ϑ(α) is a derivation, we check its linearity

ϑ(α)(λf + µg) = α([λ(f − f(x)) + µ(g − g(x))]x) = α(λ[f − f(x)]x + µ[g − g(x)]x)

= λα([f − f(x)]x) + µα([g − g(x)]x) = λϑ(α)(f) + µϑ(α)(g) (11.6)

and product rule

ϑ(α)(fg) = α([fg−f(x)g(x)]x) = α([(f−f(x))(g−g(x))+f(x)(g−g(x))+(f−f(x))g(x)]x)

= f(x)α([g − g(x)]x) + α([f − f(x)]x)g(x) = f(x)ϑ(α)(g) + ϑ(α)(f)g(x) . (11.7)
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We finally need to check that the functions θ and ϑ defined above are inverses of each other.
We first check that

θ(ϑ(α))([f ]x) = ϑ(α)(f) = α([f − f(x)︸︷︷︸
=0

]x) = α([f ]x) (11.8)

for α ∈ (T ∗xM)∗ and f ∈ Ix. Conversely, for v ∈ TxM and f ∈ C∞(M,R) we have

ϑ(θ(v))(f) = θ(v)([f − f(x)]x) = v(f − f(x)) . (11.9)

To see that the latter equals v(f), we need to show that a derivation v vanishes on a
constant function c. This follows from the linearity of v together with the product rule,
since

v(c)f = v(cf)− cv(f) = cv(f)− cv(f) = 0 (11.10)

for all f ∈ C∞(M,R). We have thus shown that θ and ϑ are indeed inverses of each
other, so that TxM ∼= (T ∗xM)∗. Since T ∗xM is a finite-dimensional real vector space of
dimension dimM , which we have shown using Hadamard’s lemma, it follows that also
(T ∗xM)∗ and thus TxM are real vector spaces of dimension dimM . Finally, since the
double dual V ∗∗ of a finite-dimensional vector space V is again isomorphic to V , it follows
that also T ∗xM ∼= (TxM)∗.

This rather lengthy proof was necessary since we provided an own definition for both
tangent and cotangent spaces. In the literature one often finds another approach, which
simply defines the cotangent space as the dual of the tangent space. This approach is of
course valid. However, the approach we used here gave as a deeper understanding of the
structure of these spaces and an interpretation for their elements in terms of functions on
the manifold, which will be useful during the remainder of the lecture course. Instead of
explicitly writing the isomorphisms θ and ϑ constructed above, we will simply write

〈v, p〉 = θ(v)(p) (11.11)

for the canonical pairing between v ∈ TxM and p ∈ T ∗xM , and also

〈X,ω〉(x) = 〈X(x), ω(x)〉 (11.12)

for X ∈ Γ(TM) and ω ∈ Γ(T ∗M). To clarify this notation, we make use of it now for
showing that also the coordinate bases (∂a) and (dxa) are related.

Theorem 11.2. Given coordinates (xa) on a manifold M , the coordinate basis (∂a) of
TxM and (dxa) of T ∗xM are dual bases, i.e., 〈∂a, dxb〉 = δba.

Proof. Recall that we defined the coordinate basis of TxM such that for a tangent vector
v ∈ TxM and a function f ∈ C∞(M,R) holds v(f) = va∂af , while we expressed a cotangent
vector [f ]x ∈ T ∗xM as ∂afdxa. It thus follows directly that

va∂bf〈∂a, dxb〉 = 〈va∂a, ∂bfdxb〉 = 〈v, [f ]x〉 = v(f) = va∂af = va∂bfδ
b
a , (11.13)

so that 〈∂a, dxb〉 = δba.
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12 Tensor bundles

The tangent and cotangent bundles we introduced so far are the building blocks of another
structure, called tensor bundles, which we will frequently encounter during the remainder of
the course and extensively use in physics. In fact, physical quantities are usually modeled
by tensor fields on a spacetime manifold, i.e., sections of a tensor bundle. In this section
we will explain this notion. But before we arrive at this notion, we will slightly generalize
the “duality” between the tangent and cotangent bundles from the last section to general
vector bundles, and then discuss their role as building blocks of a tensor bundle.

Definition 12.1 (Dual bundle). Let M be a manifold and E a vector bundle over M
of rank k. Its dual bundle E∗ is the union

E∗ =
⋃
x∈M

E∗x , (12.1)

where E∗x is the dual vector space of the fiber Ex.

Our previous experience with vector bundles allows us to guess that the following will hold.

Theorem 12.1. The dual bundle E∗ as defined above is a vector bundle of rank k over M .

Proof. Instead of giving a full proof, it should suffice to just sketch the basic ideas. Re-
call that in the definition of a vector bundle we encounter at some point a vector space
isomorphism θx : Ex → Rk for each x ∈ M . From this we derive another vector space
isomorphism ϑx : R→ E∗x by defining

ϑx(a)(v) = a · θx(v) (12.2)

for a ∈ Rk and v ∈ Ex, where · is the Euclidean scalar product of Rk. Its inverse ϑ−1x takes
the same role in showing that E∗ is a vector bundle of rank k as θx takes in the context of
E.

It should not be surprising that the tangent and cotangent bundles are a typical example,
which we state as follows.

Theorem 12.2. The cotangent bundle T ∗M of a manifold M is the dual bundle of the
tangent bundle TM (and vice versa).

We will not prove this here. Instead, we will continue by introducing another concept,
which allows us to put different vector bundles together and will finally lead us to tensors.

Definition 12.2 (Tensor product bundle). Let M be a manifold and E and F vector
bundles over M of rank kE and kF , respectively. Their tensor product bundle E⊗F is
the union

E ⊗ F =
⋃
x∈M

Ex ⊗ Fx , (12.3)

where Ex ⊗ Fx is the tensor product space of the fibers Ex and Fx over x ∈M .
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We briefly review the tensor product of vector spaces. If ei, i = 1, . . . , kE and fj , j =
1, . . . , kF are bases of Ex and Fx, then ei ⊗ fj is a basis of Ex ⊗ Fx. It is a vector space of
dimension kEkF , which leads us to another educated guess.

Theorem 12.3. The tensor product bundle E ⊗ F as defined above is a vector bundle of
rank kEkF over M .

Again we will omit the proof here. The most important vector bundles we have encountered
so far are the tangent and cotangent bundles. We thus use them as factors for a particular
class of tensor product bundles, which we define as follows.

Definition 12.3 (Tensor bundle). Let M be a manifold. The tensor bundle of type
(r, s) for r, s ∈ N is the tensor product bundle

T r
sM = TM ⊗ . . .⊗ TM︸ ︷︷ ︸

r times

⊗T ∗M ⊗ . . .⊗ T ∗M︸ ︷︷ ︸
s times

. (12.4)

The following fact about the tensor bundle now directly follows from our more general
theorem on tensor product bundles.

Theorem 12.4. The tensor bundle T r
sM as defined above is a vector bundle of rank

(dimM)r+s over M .

To illustrate the definition, we introduce coordinates (xa) on M . For any point x ∈ M
we then have the coordinate bases (∂a) of TxM and (dxa) of T ∗xM . The corresponding
coordinate basis of T r

s xM is then given by the elements

∂a1 ⊗ . . .⊗ ∂ar ⊗ dxb1 ⊗ . . .⊗ dxbs , (12.5)

where each index runs from 1 to dimM , so that the basis has (dimM)r+s elements. Any
element V ∈ T r

s xM takes the form

V = V a1···ar
b1···bs∂a1 ⊗ . . .⊗ ∂ar ⊗ dxb1 ⊗ . . .⊗ dxbs , (12.6)

with r upper and s lower indices.
One can see from the definition that we already encountered two examples of tensor bundles,
namely the tangent bundle TM = T 1

0M and the cotangent bundle T ∗M = T 0
1M . Another

bundle, which we have not yet encountered directly, is the trivial line bundleM×R = T 0
0M .

To see that we have encountered it indirectly, we need to discuss sections of tensor bundles.

Definition 12.4 (Tensor field). A tensor field of type (r, s) on a manifold M is a
section of the tensor bundle T r

sM . The set of all tensor fields of type (r, s) on M is
denoted Γ(T r

sM).

Now it is clear that vector fields are tensor fields of type (1, 0), while covector fields are
tensor fields of type (0, 1). But what about real functions? Recall that a real function
f ∈ C∞(M,R) is a smooth map f : M → R. However, each real function uniquely
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determines a smooth section of the trivial line bundle M × R = T 0
0M . In other words,

there is a canonical isomorphism such that C∞(M,R) ∼= Γ(T 0
0M). We can thus interpret

a real function as a tensor field of type (0, 0) (and see further examples in the future why
this makes sense). In physics, a tensor field of type (0, 0) is also called a scalar field.
Using coordinates (xa) on M , we can write any tensor fields T ∈ Γ(T r

sM) in the form

T (x) = T a1···ar
b1···bs(x)∂a1 ⊗ . . .⊗ ∂ar ⊗ dxb1 ⊗ . . .⊗ dxbs , (12.7)

where the components T a1···ar
b1···bs(x) are smooth functions of x.

There are different ways to obtain tensor fields from simpler ones. A rather simple con-
struction works as follows.

Definition 12.5 (Tensor field product). Let M be a manifold and T ∈ Γ(T r
sM) and

U ∈ Γ(T t
uM) be tensor fields. Their tensor product is a tensor field T ⊗U ∈ Γ(T r+t

s+uM)
such that for each x ∈M ,

(T ⊗ U)(x) = T (x)⊗ U(x) . (12.8)

This definition can most easily be understood using coordinates (xa) on M . Let T ∈
Γ(T r

sM) and U ∈ Γ(T t
uM), and write V = T ⊗ U . The tensor product is given by

T ⊗ U =
(
T a1···ar

b1···bs∂a1 ⊗ . . .⊗ ∂ar ⊗ dxb1 ⊗ . . .⊗ dxbs
)

⊗
(
U c1···ct

d1···du∂c1 ⊗ . . .⊗ ∂ct ⊗ dxd1 ⊗ . . .⊗ dxdu
)

= T a1···ar
b1···bsU

c1···ct
d1···du

∂a1 ⊗ . . .⊗ ∂ar ⊗ dxb1 ⊗ . . .⊗ dxbs ⊗ ∂c1 ⊗ . . .⊗ ∂ct ⊗ dxd1 ⊗ . . .⊗ dxdu

(12.9)

and yields the components

V a1···ar
b1···bs

c1···ct
d1···du = T a1···ar

b1···bsU
c1···ct

d1···du . (12.10)

One might be worried that the basis elements ∂a and dxa appear now in “mixed order”,
in contrast to the definition of the tensor bundle. This is not a problem, since the tensor
product bundles TM⊗T ∗M and T ∗M⊗TM are canonically isomorphic, so one can simply
define a new tensor field Ṽ such that

Ṽ a1···arc1···ct
b1···bsd1···du = V a1···ar

b1···bs
c1···ct

d1···du . (12.11)

However, this does not mean that changing the order of indices does not change the tensor
field - V and Ṽ carry the same information, but encoded differently. As another simple
example, the tensor fields

Aabdx
a ⊗ dxb 6= Abadx

a ⊗ dxb = Aabdx
b ⊗ dxa (12.12)

are (for general Aab) not the same!
After showing a way how to construct higher tensor fields from simpler ones, we also show
a way how to obtain simpler tensor fields.
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Definition 12.6 (Tensor field contraction). Let M be a manifold and Γ(T r
sM) the

space of tensors of type (r, s) on M with r, s ≥ 1. The contraction of the k’th and l’th
tensor component, where 1 ≤ k ≤ r and 1 ≤ l ≤ s, is the unique linear function

trkl : Γ(T r
sM)→ Γ(T r−1

s−1M) , (12.13)

such that
trkl (A⊗B ⊗ C ⊗D ⊗ E ⊗ F ) = 〈B,E〉A⊗ C ⊗D ⊗ F (12.14)

for all A ∈ Γ(T k−1
0 M), B ∈ Γ(T 1

0M), C ∈ Γ(T r−k
0 M), D ∈ Γ(T 0

l−1M), E ∈ Γ(T 0
1M),

F ∈ Γ(T 0
s−lM).

Also this construction is most easily illustrated using coordinates. Let T ∈ Γ(T r
sM) a

tensor field of type (r, s) on M . Its contraction of the k’th and l’th component then simply
takes the form

trkl T = T a1···ar
b1···bs trkl

(
∂a1 ⊗ . . .⊗ ∂ar ⊗ dxb1 ⊗ . . .⊗ dxbs

)
= T a1···ar

b1···bs〈∂ak , dx
bl〉(

∂a1 ⊗ . . .⊗ ∂ak−1
⊗ ∂ak+1

⊗ . . .⊗ ∂ar ⊗ dxb1 ⊗ . . .⊗ dxbl−1 ⊗ dxbl+1 ⊗ . . .⊗ dxbs
)

= T a1···ak−1cak+1···ar
b1···bl−1cbl+1···bs(

∂a1 ⊗ . . .⊗ ∂ak−1
⊗ ∂ak+1

⊗ . . .⊗ ∂ar ⊗ dxb1 ⊗ . . .⊗ dxbl−1 ⊗ dxbl+1 ⊗ . . .⊗ dxbs
)
.

(12.15)

In other words, the components of trkl T are obtained simply by summation over the k’th
upper and l’th lower indices. To illustrate this with another example, we apply it to the
following theorem.

Theorem 12.5. Let M be a manifold, f ∈ C∞(M,R) a function on M and X ∈ Vect(M)
a vector field on M . Then Xf = tr11(X ⊗ df) = 〈X, df〉.

Proof. It is clear from the definition of a tensor contraction that tr11(X⊗df) = 〈X, df〉. To
see that this also equals Xf , recall that for every x ∈ M we obtain (Xf)(x) by applying
the derivation v = X(x) ∈ TxM to f . Further, df is defined for all x as the equivalence
class df(x) = [f − f(x)]x ∈ T ∗xM = Ix/I

2
x. Finally, the pairing 〈v, [f − f(x)]x〉 is given by

v(f), which completes the proof.

There is an even faster way to see this using coordinates, where one easily reads off

Xf = Xa∂af = 〈Xa∂a, ∂bf dx
b〉 = 〈X, df〉 . (12.16)
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A Dictionary

English Estonian
cotangent space
cotangent bundle
covector field

dual vector space kaasruum
dual vector bundle
tensor product

tensor product bundle
tensor bundle
tensor field

tensor contraction
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