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7 Curves and functions on a manifold

In this lecture we will come to more applied aspects of differential geometry. We start with
two very basic and often encountered objects.

Definition 7.1 (Curve). A (smooth) curve on a manifold M is a (smooth) map γ :
R→M .

If one fixes a chart (U, φ) of M with coordinates (xa), one usually denotes the components
of (φ ◦ γ)(t) by γa(t). We will also make use of this notation. Smoothness of the curve γ
then simply means that the components γa must be smooth functions.

Definition 7.2 (Real function). A (smooth) real function on a manifold M is a
(smooth) map f : M → R.

Given a chart (U, φ) with coordinates (xa) one often encounters a slightly dangerous abuse
of notation. Instead of f ◦ φ−1 for the coordinate expression of f one simply writes f .
However, this should not lead to confusion if the chart is clear from the context, so we will
use the same convention here. Also here it is now clear how the smoothness of f can be
understood.
If we denote the set of all smooth maps from a manifoldM to a manifold N by C∞(M,N),
then the set of smooth curves on M is given by C∞(R,M), while the set of smooth real
functions on M is given by C∞(M,R). Note that these sets are kind of dual to each other.

8 The tangent bundle

Every manifold is naturally equipped with a number of structures. One of the most basic
and important structures is the tangent bundle. Geometrically it can be seen as the space
of all vectors tangent to a manifold. In physics it appears most naturally in the context of
mechanics: if the space of all possible positions of a point mass is modeled as a manifold,
then its velocity is an element of the tangent bundle. The space of all tangent vectors at a
given point is called the tangent space, and in can be defined in a number of different, but
equivalent ways. Here we use a particularly simple definition in terms of derivations, and
provide its geometric interpretation a bit later.
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Definition 8.1 (Tangent space). Let M be a manifold and x ∈M . A derivation at x
is a linear function D : C∞(M,R)→ R such that

D(fg) = D(f)g(x) + f(x)D(g) (8.1)

for all f, g ∈ C∞(M,R). The set of all derivations at x is called the tangent space at
x and denoted TxM . It is a vector space, where addition and scalar multiplication are
defined as

(D1 +D2)(f) = D1(f) +D2(f) and (λD)(f) = λD(f) . (8.2)

Since this definition is rather abstract, we will illustrate it using local coordinates (xa),
where we make use of the conventions mentioned above and don’t explicitly write the
chart (U, φ). We can thus regard a function f ∈ C∞(M,R) as a function of n = dimM
coordinates with domain U ⊂ Rn. Every derivation D ∈ TxM in a point x0 ∈ U can be
uniquely written in the form

D : f 7→ D(f) =

dimM∑
a=1

va
∂

∂xa
f(x)

∣∣∣∣
x=x0

= va ∂af(x)|x=x0 (8.3)

with v ∈ Rn, and every v ∈ Rn conversely defines a derivation. While the latter is clear
and can be seen from a direct calculation, the former is less obvious and follows from
Hadamard’s lemma. We will not discuss this further here, and simply accept it as a fact
for now (it will be proven later). To summarize, the partial derivatives ∂a at x form a basis
of the tangent space TxM , called the coordinate basis of this choice of coordinates.
Here we have introduced two more useful and convenient notation conventions. For the
partial derivatives ∂/∂xa with respect to the coordinates xa we simply write ∂a. Note that
the upper index turns into a lower one here - we will discuss this further when we come to
tensor bundles. Further, if we have a term where the same index appears exactly once in
upper and in lower position, it implies that the sum over this index is taken, and that the
index runs over its complete range, in this case over all coordinates. Using these notations,
we can also write a tangent space element simply in the form va∂a. In other words, (∂a) is
a basis of the tangent space, called the coordinate basis corresponding to the coordinates
(xa).
So far we have discussed the tangent spaces at each point separately. We will now put
them together:

Definition 8.2 (Tangent bundle). The tangent bundle of a manifold M is the disjoint
union

TM =
⊎
x∈M

TxM . (8.4)

The canonical projection of the tangent bundle is the function π : TM →M such that
π(v) = x for v ∈ TxM .
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It is important to note that we take the disjoint union of all tangent spaces, i.e., we consider
elements of TM to be different if they are taken from the tangent spaces TxM and TyM at
different points x 6= y. For example, the function D : C∞(M,R)→ R, f 7→ 0 is obviously a
derivation both at x and y, and it would be contained only once in TM if we would naively
take the union of all tangent spaces as defined at the beginning of this section. However,
by taking the disjoint union, the elements of TM are actually pairs (x,D) of a point x ∈M
and a derivation D ∈ TxM , such that (x,D) 6= (y,D). The projection π is then simply the
function π : (x,D) 7→ x.
The name already suggests that the tangent bundle is a fiber bundle - and even more, a
vector bundle. We will show this in two steps.

Theorem 8.1. The tangent bundle TM of a manifold M of dimension n is a manifold of
dimension 2n.

Proof. We need to construct an atlas of TM . Let x ∈ M and (U, φ) ∈ A be a chart in an
atlas A ofM such that x ∈ U . Define Ũ = π−1(U) ⊂ TM and let φ̃ : Ũ → R2n the function
that assigns to (x,D) ∈ Ũ the pair consisting of φ(x) and v ∈ Rn such that D(f) = va∂af .
Apply this procedure to every chart in A. One easily checks that this yields an atlas Ã of
TM .

Theorem 8.2. The structure (TM,M, π) is a vector bundle of rank n = dimM .

Proof. For x ∈ M , let (U, φ) be a chart of M such that x ∈ U . Define a function φ̂ :
π−1(U) → U × Rn such that φ̂(x,D) = (x, v) and v ∈ Rn as in the previous proof. One
can easily show that φ̂ has the properties listed in the definition of a vector bundle.

We now come to more practical aspects of the tangent bundle, which are closer to physics.
One of the most important aspects is the tangent vector of a curve, which can be interpreted
as the velocity of a point mass along its trajectory and which is defined as follows.

Definition 8.3 (Tangent vector of a curve). Let γ ∈ C∞(R,M) be a curve on a
manifold M . Its tangent vector at t ∈ R is the derivation γ̇(t) ∈ Tγ(t)M defined by

γ̇(t)(f) = (f ◦ γ)′(t) (8.5)

for f ∈ C∞(M,R).

Also here we are interested in a coordinate description, so we will work in local coordinates
(xa). As mentioned before, we can use these coordinates to write a curve γ ∈ C∞(R,M)
using its components γa(t), and that a function f ∈ C∞(M,R) depends on the coordinates
xa. If we set these coordinates equal to γa(t), we obtain the composition f ◦ γ : R → R.
By the chain rule we then have

(f ◦ γ)′(t0) =
∂γa

∂t

∣∣∣∣
t=t0

∂f

∂xa

∣∣∣∣
xa=γa(t0)

= γ̇a(t0) ∂af |xa=γa(t0) , (8.6)

so that the coordinate expression of the tangent vector γ̇(t0) ∈ Tγ(t0)M is simply γ̇a(t0)∂a.

3



9 Vector fields

If we consider a fluid instead of a point mass, we have a velocity at each point of the fluid,
so we need to assign a tangent space element to every point. We already encountered this
type of assignment and called it a section. Sections of the tangent bundle are so important
that they deserve their own name.

Definition 9.1 (Vector field). A vector field on a manifoldM is a section of the tangent
bundle TM . The space of all vector fields on M is denoted Γ(TM) or Vect(M).

Let X ∈ Vect(M). If we use local coordinates (xa), we can write X(x) for x ∈M using the
coordinate basis of TxM as Xa(x)∂a, and the whole vector field X as Xa∂a. The condition
that X is a section, and thus a smooth map, then simply means that the component
functions Xa must be smooth.
Since a vector field assigns to any point of a manifold a derivation at that point, we can
define the following construction.

Definition 9.2 (Action of a vector field on a function). Let M be a manifold, X ∈
Vect(M) a vector field on M and f ∈ C∞(M,R) a real function on M . For each
x ∈ M , the vector field X defines a derivation X(x) ∈ TxM . Via these derivations X
acts on f , i.e., it defines a real function Xf ∈ C∞(M,R) given by

(Xf)(x) = X(x)(f) (9.1)

for all x ∈M .

To see that Xf is indeed a smooth function, one can evaluate it using local coordinates
(xa). In these coordinates the vector field X takes the form Xa∂a, and Xf = Xa∂af ,
which should be read in the obvious way:

(Xf)(x) = Xa(x)∂af(x) = Xa(x)
∂f

∂xa
(x) . (9.2)

Some more properties follow from the definition:

• Xf is R-linear in the first argument:

(λX + µY )f = λ(Xf) + µ(Y f) for λ, µ ∈ R . (9.3)

• Xf is R-linear in the second argument:

X(λf + µg) = λ(Xf) + µ(Xg) for λ, µ ∈ R . (9.4)

• Xf satisfies the Leibniz rule for the second argument:

X(fg) = (Xf)g + f(Xg) . (9.5)

This action allows us to give a bit more structure to the set Vect(M) as follows.
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Definition 9.3 (Commutator of vector fields). Let M be a manifold and X,Y ∈
Vect(M) vector fields. Their commutator is the unique vector field [X,Y ] ∈ Vect(M)
such that for all f ∈ C∞(M,R),

[X,Y ]f = X(Y f)− Y (Xf) . (9.6)

Of course one must check that such a unique vector field [X,Y ] really exists, i.e., that
the definition above assigns to each point x ∈ M a derivation at x. It is clear from the
definition above that [X,Y ](x) : C∞(M,R) → R is a linear function. To see that it is a
derivation, one calculates

[X,Y ](fg) = X(Y (fg))− Y (X(fg))

= X((Y f)g + f(Y g))− Y ((Xf)g − f(Xg))

= (X(Y f))g + (Y f)(Xg) + (Xf)(Y g) + f(X(Y g))

− (Y (Xf))g − (Xf)(Y g)− (Y f)(Xg)− f(Y (Xg))

= ([X,Y ]f)g + f([X,Y ]g) .

(9.7)

If we express the vector fields X = Xa∂a and Y = Y a∂a in a coordinate basis, we see that

[X,Y ]f = Xa∂a(Y
b∂bf)− Y a∂a(X

b∂bf) = (Xa∂aY
b − Y a∂aX

b)∂bf = [X,Y ]b∂bf . (9.8)

This gives us an explicit formula for the components [X,Y ]a in these coordinates. This
formula has the same form in all coordinate systems, since we have made no reference to
particular coordinates in the definition of [X,Y ]. Another property of the commutator is
now easy to show.

Theorem 9.1. The set Vect(M) of vector fields on a manifold M carries the structure of
a real Lie algebra, with the Lie bracket given by the commutator.

Proof. It follows from the linearity of Xf in the first argument that Vect(M) is a real
vector space. The same property implies that the commutator [X,Y ] is linear in both
arguments. Further, one can see immediately from the definition that it is antisymmetric.
Finally, we check the Jacobi identity

0
?
= [X, [Y, Z]]f + [Y, [Z,X]]f + [Z, [X,Y ]]f

= X(Y (Zf))−X(Z(Y f))− Y (Z(Xf)) + Z(Y (Xf)) + Y (Z(Xf))− Y (X(Zf))

− Z(X(Y f)) +X(Z(Y f)) + Z(X(Y f))− Z(Y (Xf))−X(Y (Zf)) + Y (X(Zf)) .

(9.9)
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A Dictionary

English Estonian
curve joon

real function reaalne funktsioon
derivation derivatsioon

tangent space puutujaruum
tangent bundle puutujakihtkond
tangent vector puutujavektor
vector field vektoriväli
commutator kommutaator
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