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4 Fiber bundles

In the last lecture we have introduced the direct product of manifolds. We now discuss
an important concept, called a fiber bundle, which can be viewed as a local version of a
product manifold. Recall that in the case of the direct product M × N of two manifolds
we have projections prM and prN onto each factor. One can show that the pre-image of
a point p ∈ M under prM is again a manifold which is diffeomorphic to N . We write:
pr−1M (p) ∼= N . Of course the construction of the direct product is symmetric in M and N ,
so that also pr−1N (q) ∼= M for q ∈ N .
For a fiber bundle, only one half of this is true. It consists of a manifold E called the total
space, another manifold B called the base space and a map π : E → B called the projection
or bundle map, such that for any p ∈ B the pre-image π−1(p) is diffeomorphic to a manifold
F called the fiber. In addition, we need a condition which guarantees that the total space
of the fiber bundle “locally looks like” a direct product. We define:

Definition 4.1 (Fiber bundle). A (smooth) fiber bundle (E,B, π, F ) consists of
(smooth) manifolds E,B, F and a (smooth) surjective map π, such that for any p ∈ B
there exists an open set U ⊂ B containing p and a diffeomorphism φ : π−1(U)→ U×F
such that the diagram

π−1(U)
φ
//

π

��

U × F

prU
yy

U

(4.1)

commutes. The pair (U, φ) is called a local trivialization.

It should be remarked that also here we have used only smooth objects (manifolds and
maps) in order to define a smooth fiber bundle. There exist also more general versions of
fiber bundles. However, the most common and useful ones in physics are smooth.
We do not need to explicitly demand that π−1(p) ∼= F for any p ∈ B, because this follows
from the definition given above. To see this, note that pr−1U (p) ∼= F , as for any direct
product. Since φ is a diffeomorphism, it follows that also π−1(p) = φ−1(pr−1U (p)) ∼= F .
Another common notation for a fiber bundle is the “function notation” π : E → B, when the
fiber manifold F is clear from the context. Sometimes, with a slight abuse of terminology,
also the total space E is simply called a fiber bundle, when the base manifold and the
projection are known.
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Example 4.1 (Trivial fiber bundle). The most simple class of fiber bundles are trivial fiber
bundles. Given manifolds M,N , one can construct two different trivial fiber bundles,
which are given by (M × N,M,prM , N) and (M × N,N,prN ,M). It is easy to check
that these are indeed fiber bundles.

Figure 1: Möbius strip

Example 4.2 (Möbius strip). Let Ũ1 = (0, 2π)× (−1, 1), Ũ2 = (−π, π)× (−1, 1) and the
functions

φ̃i : Ũi → R3

(t, s) 7→
((
R+Ws cos t

2

)
cos t,

(
R+Ws cos t

2

)
sin t,Ws sin t

2

) , (4.2)

i = 1, 2, with constants 0 < W < R. Let further M = φ̃1(Ũ1) ∪ φ̃2(Ũ2). It is easy to
show that M carries the structure of a two-dimensional manifold, and that an atlas is
given by the charts (Ui = φ̃i(Ũi), φi = φ̃−1i ). This manifold is called the Möbius strip.
Now consider the function

π̃ : {x ∈ R3|x21 + x22 > 0} → R2

(x1, x2, x3) 7→
(

x1√
x21+x

2
2

, x2√
x21+x

2
2

)
(4.3)

Looking at the compositions

π̃ ◦ φ̃i : Ũi → R2

(t, s) 7→ (cos t, sin t)
(4.4)

one can see that the restriction of π̃ to M defines a smooth map π : M → S1 = {x ∈
R2|x21 + x22 = 1} and that the pre-images π−1(p) are diffeomorphic to (−1, 1). One can
show that (M,S1, π, (−1, 1)) is a non-trivial fiber bundle.

5 Vector bundles

Often we encounter fiber bundles whose fibers are not just manifolds, but also carry addi-
tional structure. The most common structure is that of a (real or complex) vector space.

2



In this case the fiber bundle is called a vector bundle. To keep things simple for now, we
will restrict ourselves to real vector bundles, which are defined as follows.

Definition 5.1 (Vector bundle). A (real, smooth) vector bundle of rank k ∈ N is
a fiber bundle (E,B, π,Rk) such that for all p ∈ B the pre-image π−1(p) is a real
vector space of dimension k and such that the restrictions of the local trivializations
φ : π−1(U)→ U × Rk to a fiber π−1(p) for p ∈ U are vector space isomorphisms from
π−1(p) to {p} × Rk.

One may ask why we want the local trivializations to restrict to vector space isomorphisms.
This is a typical example for a very common situation that we have two different structures,
here that of a manifold and that of a vector space, which we want to be compatible. In
this case it guarantees that on every fiber π−1(p) for p ∈ B, which is both a manifold
diffeomorphic to Rk and a vector space isomorphic to Rk, both

• the scalar multiplication · : R× π−1(p)→ π−1(p)

• and the addition + : π−1(p)× π−1(p)→ π−1(p)

are smooth maps. Further, it guarantees that if p, p′ ∈ B are “close to each other”, then:

• The zero elements of the vector spaces π−1(p) and π−1(p′) are “close to each other”.

• If v ∈ π−1(p) and v′ ∈ π−1(p′) are “close to each other”, then also λv and λv′ are
“close to each other” for any λ ∈ R.

• If v ∈ π−1(p) is “close to” v′ ∈ π−1(p′) and w ∈ π−1(p) is “close to” w′ ∈ π−1(p′),
then also v + w and v′ + w′ are “close to each other”.

Of course, we need to define what we mean by being “close to each other”. This will be
made precise in the next section, when we discuss sections of fiber (and in particular vector)
bundles.

Example 5.1 (Möbius strip as a vector bundle). In the last section we discussed the
Möbius strip as a fiber bundle (M,S1, π, (−1, 1)). However, the open interval (−1, 1)
and the real line R are diffeomorphic, one-dimensional manifolds, so that one can also
view the Möbius strip as a fiber bundle (M,S1, π,R), which one may call an “infinite
Möbius strip”. This can be seen most easily by changing the charts from our previous
definition such that Ũ1 = (0, 2π)× R, Ũ2 = (−π, π)× R and the functions

φ̃i : Ũi → R3

(t, s) 7→
((
R+ Ws√

1+s2
cos t

2

)
cos t,

(
R+ Ws√

1+s2
cos t

2

)
sin t, Ws√

1+s2
sin t

2

) .

(5.1)
On each fiber π−1(p) ∼= R one has the usual structure of the one-dimensional vector
space R.
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6 Sections

When dealing with fiber bundles we often work with maps f : B → E which assign to each
point p ∈ B on the base manifold a point f(p) ∈ π−1(p) ⊂ E on the fiber over p. These
maps are called sections, and are defined as follows.

Definition 6.1 (Section). A (smooth) section of a fiber bundle (E,B, π, F ) is a
(smooth) map f : B → E such that π ◦ f = idB.

What we have defined here is also called a global section, since its domain is the whole
base manifold B. Not every bundle admits global sections - there are bundles for which
no global sections exist. However, it is always possible to find local sections, i.e., maps
f : U → E defined on an open set U ⊂ B such that π ◦ f = idB.
The set of all sections of a fiber bundle is often denoted Γ(E,B, π, F ), or simply Γ(E) if it
is clear which are the other ingredients of the fiber bundle.
Vector bundles always admit global sections, the most simple one given in the following
example.

Example 6.1 (Zero section). Every vector bundle (E,B, π,Rk) has at least one section,
called the zero section, which assigns to each p ∈ B the zero element of the vector space
π−1(p).

It is not difficult to show that the zero section is indeed a section. We will prove a more
general statement here, from which also this property of the zero section follows.

Theorem 6.1. The set of all sections of a vector bundle is a vector space, where scalar
multiplication and addition are defined pointwise.

Proof. Let f, g be sections of a vector bundle (E,B, π,Rk) and λ, µ ∈ R. We have to check
that also the function h = λf + µg defined by

h : B → E
p 7→ h(p) = λf(p) + µg(p)

(6.1)

is a smooth section, i.e., a smooth map such that π ◦ h = idB. We first have to check that
this function is well-defined. Since both f and g are sections, they satisfy π◦f = π◦g = idB.
For any p ∈ B we thus have f(p) ∈ π−1(p) and g(p) ∈ π−1(p). Since π−1(p) carries the
structure of a vector space, there is a well-defined element λf(p) + µg(p) = h(p) ∈ π−1(p),
so that the function h is indeed well-defined. This also shows that π ◦ h = idB.
We finally show that h is a smooth map. To see this, let (U, φ) be a local trivialization
around some point p ∈ B. The functions φ ◦ f : U → U × Rk and φ ◦ g : U → U × Rk are
smooth maps, since φ is a diffeomorphism. Now U × Rk is a product manifold, so that its
elements are pairs (p, x) with p = prU (p, x) ∈ U and x = prRk(p, x) ∈ Rk. Since f and g
are sections, we have by definition for every p ∈ B:

(φ ◦ f)(p) = ((prU ◦ φ︸ ︷︷ ︸
=π

◦f)(p), (prRk ◦ φ ◦ f)(p)) = (p, (prRk ◦ φ ◦ f)(p)) ∈ {p} × Rk (6.2)
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and the same for g. The function prRk ◦φ◦f is a smooth map, since projections are smooth.
We define a function

h̃ : U → U × Rk, p 7→ (p, λ(prRk ◦ φ ◦ f)(p) + µ(prRk ◦ φ ◦ g)(p)) . (6.3)

This is a smooth map, since sums and multiples of smooth functions on Rk are smooth.
Using the fact that

(φ ◦ h)(p) = φ(λf(p) + µg(p)) = λφ(f(p)) + µφ(g(p)) ∈ {p} × Rk , (6.4)

since φ restricts to an isomorphism of vector spaces on every fiber, it is now easy to see
that h = φ−1 ◦ h̃ is smooth on U . Finally, we can find such a trivialization (U, φ) for all
p ∈ B, and thus h is a smooth map.

Now this is the precise notion of what we meant by being “close to each other” in the
previous section. It means that if f, g are smooth sections of a vector bundle (“f(p) is close
to f(p′)” if “p is close to p′” and the same for g), then also λf + µg is a smooth section
(“λf(p) + µg(p) is close to λf(p′) + µg(p′)”) for any λ, µ ∈ R.

A Dictionary

English Estonian
surjective map pealekujutus
injective map üksühene kujutus
fiber bundle kihtkond
total space kihtkonna ruum
base space kihtkonna baas

fiber kiht
local trivialization lokaalne trivialisatsioon

vector bundle vektorkihtkond
section lõige

Möbius strip Möbiuse leht
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