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1 Manifolds

The most important concept we will be dealing with in this lecture course is that of a
manifold. A manifold can be viewed as a set with an additional structure, called an atlas.
For our purposes it will be most useful to adopt the following definition of an atlas:

Definition 1.1 (Atlas). LetM be a set. An atlas A of dimension n onM is a collection
of pairs (Ui, φi), such that the following properties hold:

• Every pair (Ui, φi), called a chart, consists of a set Ui ⊂ M and an injective
function φi : Ui → Rn, such that the image φi(Ui) ⊂ Rn is open.

• The sets Ui cover M : ⋃
i

Ui = M . (1.1)

• Any two charts (Ui, φi) and (Uj , φj) are compatible in the sense that the transition
function

φij : φi(Ui ∩ Uj)→ φj(Ui ∩ Uj) (1.2)

defined by φij = φj ◦ φ−1i is smooth.

We need to make a few remarks on this definition. First, what we have defined is also
called a real atlas, since the target space of all functions φi is the real vector space Rn.
Second, we have defined a smooth or C∞-atlas by demanding that all transition functions
are smooth, i.e., that they are continuous and infinitely often continuously differentiable.
A less strict definition would have been that of a topological atlas, where the transition
functions only need to be continuous, or a Ck-atlas for k ∈ N, where they need to be k
times continuously differentiable. However, in physics it is often convenient to assume that
everything is smooth, and so we will stick to this assumption. We further define:

Definition 1.2 (Maximal atlas). An atlas A on a set M is called maximal if there
exists no further chart (U, φ) on M which is compatible with all charts in A and which
is not already contained in A.

Note that any atlas A defines a maximal atlas Ā, which contains all charts which are
compatible with all charts of A. Finally, we define:
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Definition 1.3 (Manifold). A manifold is a setM (its space) together with a maximal
atlas A on M .

Again, it should be remarked that what we have defined here is a real, smooth (or C∞)
manifold, and that any other kind of atlas can be used to define a different class of manifolds.
Instead of calling the pair (M,A) a manifold, it is also common to call M itself a manifold
and to take A as implicitly defined. We will make use of this convention and explicitly
write the atlas A only if it is needed.
One may ask why we want a maximal atlas in this definition. The answer becomes clear if
we ask the question when two manifolds are the same. There are actually two equivalent
ways to define this. We can say that two (non-maximal) atlases A,A′ define the same
manifold structure on M if they are compatible. We could thus define a manifold as a
set M together with an equivalence class of compatible atlases. However, two atlases are
compatible if and only if their completions to maximal atlases agree, Ā = Ā′. Therefore,
an equivalence class of compatible atlases is essentially the same as a maximal atlas.
A special role is given to charts in the application of differential geometry to physics. In
this context, a chart together with an assignment of names to the components of Rn is
also called a set of (local) coordinates, while a transition function is also called a change
of coordinates. There are different ways to label coordinates. One possibility is to give
an explicit name to each coordinate, such as (x, y, z) or (r, θ, ϕ) for a chart of a three-
dimensional manifold. Another common possibility is to write coordinates as indexed
quantities, such as (xa, a = 1, . . . , 3), where here the coordinates are named (x1, x2, x3).
It is conventional to use upper indices for coordinates - these must not be confused with
powers!
A similar notation is used for transition functions. Let the coordinates of the chart (Ui, φi)
be denoted by (xa) and those of (Uj , φj) by (x′a), where a = 1, . . . , n. The transition
function φij is then commonly written as x′(x), and specified in terms of the coordinate
functions

x′1(x1, . . . , xn), . . . , x′n(x1, . . . , xn) . (1.3)

The requirement that a transition function must be smooth is then expressed by the re-
quirement that all component functions must be continuous, that they must be infinitely
often partially differentiable and that all partial derivatives are continuous.
One should be careful here, because in the physics literature one often finds coordinates
corresponding to charts which cover almost, but not all ofM . An example is the description
of the two-dimensional sphere S2 by latitude −π/2 < θ < π/2 and longitude 0 < ϕ < 2π,
which does not include the poles and the zero meridian. It is also conventional to “cure” this
problem by redefining the coordinate range in the form −π/2 ≤ θ ≤ π/2 and 0 ≤ ϕ < 2π,
but this is not even a chart anymore, since it does not define a function onto an open subset
of R2! The missing / added points here are called “coordinate singularities”. One can work
with this description, but one must pay attention to all the possible illnesses that occur at
coordinate singularities and know how to deal with them (namely, by using proper charts).
The following example gives such charts for the sphere S2.

Example 1.1. Imagine a sphere S2 of radius 1 embedded in Euclidean space R3. Let
this sphere be intersected by a plane through its center. Call the intersection of the
plane and the sphere the equator, and define the two poles of the sphere in the usual
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geographical sense. Fix one of these poles p1 and pick a second, different point p on
the sphere. Connect these two points by straight line. The straight extension of this
line intersects the plane exactly once. Keeping the pole p1 fixed and moving the second
point p, we obtain a function that assigns to every point p ∈ S2 \ {p1} a point φ1(p)
of the plane. In the “usual” latitude / longitude description of the sphere this function
takes the form

φ1(θ, ϕ) =

(
cos θ cosϕ

1− sin θ
,
cos θ sinϕ

1− sin θ

)
. (1.4)

Do the same with the other pole p2 to construct a second function φ2 : S2 \ {p2} → R2.
This function can be written as

φ2(θ, ϕ) =

(
cos θ cosϕ

1 + sin θ
,
cos θ sinϕ

1 + sin θ

)
. (1.5)

It is now easy to check that we have constructed two charts of the sphere which constitute
a smooth atlas. Using Cartesian coordinates (x, y) for the first chart and (x′, y′) for the
second chart on R2, where we choose the origin of the plane to coincide with the center
of the sphere, we also have two sets of coordinates on (almost all of) the sphere. In these
coordinates we can write the transition function φ21 = φ2 ◦φ−11 : R2 \ {0} → R2 \ {0} as

x′ =
x

x2 + y2
, y′ =

y

x2 + y2
. (1.6)

Note that in each chart one point of the sphere is missing, so that one needs to take the
other chart to make statements regarding this point.

In this lecture course we will use coordinates whenever it is necessary, which is the case
for explicit calculations of examples (and which is also the most important application
of coordinates in physics). Sometimes we will introduce a particular set of coordinates,
sometimes we will simply assume that some set of coordinates is given, which we do not
specify any further. But most of the time, whenever it is possible, we will avoid the use of
coordinates.

2 Maps

The second very important we need is that of a map between manifolds. We define:

Definition 2.1 (Map). Let M,N be manifolds. A map from M to N is a function
f : M → N such that for each point p ∈ M exist charts (U, φ) of M and (V, χ) on N
such that:

• p ∈ U and f(p) ∈ V .

• The function χ ◦ f ◦ φ−1 : φ(U ∩ f−1(V ))→ χ(f(U) ∩ V ) is smooth.

Note that again we have restricted ourselves to the most useful case in physics, which is
that of a smooth map between smooth manifolds. We will not consider more general maps
between manifolds.
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Given coordinates (xa, a = 1, . . . ,m) on M and (yb, b = 1, . . . , n) on N , where m and n are
the respective dimensions of M and N , a map is often conventionally expressed as y(x),
which is to be interpreted in the same way as the transition functions discussed in the
previous section. Again, for a smooth map the component functions must be continuous,
infinitely often partially differentiable and all their partial derivatives must be continuous.
We finally introduce a particularly useful type of map:

Definition 2.2 (Diffeomorphism). A (smooth) map f : M → N which is bijective and
whose inverse f−1 : N → M is again a (smooth) map, is called a diffeomorphism. If
such a diffeomorphism exists, the manifolds M,N are called diffeomorphic.

Every manifoldM is equipped with at least one diffeomorphism, which is the identical map
idM : M → M,p 7→ p. In fact, there exist many more diffeomorphisms on a manifold, as
we will see later.

3 Product manifold and projections

Given manifolds M and N with atlases AM and AN , one can easily construct another
manifold as follows:

Definition 3.1 (Product manifold). Let M and N be manifolds of dimensions m and
n with atlases AM and AN . On the Cartesian productM ×N = {(p, q)|p ∈M, q ∈ N}
define an atlas AM×N of dimension m+ n with charts (Wij , ψij) as follows:

• The sets Wij are given by Wij = Ui × Vj .

• The functions ψij : Wij → Rm+n are given by ψij(p, q) = (φi(p), χj(q)).

The completion of this atlas to a maximal atlas then turns M × N into a manifold,
called the product manifold (or direct product).

One can easily check that this is indeed an atlas. The product manifold comes with a set
of useful maps:

Definition 3.2 (Projection map). Let M and N be manifolds and M ×N their direct
product. The maps prM : M ×N → M, (p, q) 7→ p and prN : M ×N → N, (p, q) 7→ q
are called the projections onto the first and second factor, respectively.

Again, it is easy to check that the projections are indeed smooth maps.
We also take a brief look at the coordinates one can use on a product manifold. Given
coordinates (xa) on M and (yb) on N , corresponding to charts (U, φ) and (V, χ), the
corresponding coordinates for the product chart (W,ψ) as constructed above are simply
(xa, yb).
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Example 3.1. Let M = R the line and N = S1 the circle. Their direct product is the
cylinder R× S1.

Example 3.2. Let Mi = S1, i = 1, . . . n. The direct product M1 × . . . × Mn is the
n-dimensional torus Tn.

A Dictionary

English Estonian
open set lahtine hulk
closed set kinnine hulk
subset alamhulk

vector space vektorruum
continuous function pidev funktsioon
differentiable function diferentseeruv funktsioon

smooth function sile funktsioon
(local) chart (lokaalne) kaart

transition function üleminekufunktsioon
atlas atlas

manifold muutkond
topological manifold topoloogiline muutkond
smooth manifold sile muutkond

change of coordinates koordinaatteisendus
map kujutus

diffeomorphism difeomorfism
diffeomorphic manifolds difeomorfsed muutkonnad

direct product otsekorrutis
projection projektsioon
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