Differential geometry for physicists - Assignment 16

Manuel Hohmann

26. May 2015

1. U(1) gauge theory

Let $\pi : P \to M$ be a principal *G*-bundle with G = U(1) the complex numbers with modulus 1 and $F = \mathbb{C}$ with the canonical left action $\rho(g, z) = gz$.

- (a) Show that given coordinates (x^{μ}) on a trivializing neighborhood $U \subset M$ and the canonical coordinates on U(1) and F, a gauge field $\Omega : M \to C$ can be expressed by the coordinate expression $A_{\mu}(x)dx^{\mu}$, while a matter field can be expressed by a complex function $\phi(x)$.
- (b) Show that in these coordinates the Koszul connection of the associated bundle connection on $P \times_{\rho} F$ is given by $\nabla \phi = (\partial_{\mu} \phi iA_{\mu} \phi) dx^{\mu}$.
- (c) Let $g \in T_2^0 M$ be a non-degenerate tensor field (a metric) and m > 0. Show that

$$\mathcal{L} = g^{\mu\nu} (\nabla_{\mu}\phi)^* (\nabla_{\nu}\phi) - m\phi^*\phi$$

is invariant under gauge transformations of the form

$$A'_{\mu}(x) = A_{\mu}(x) + \partial_{\mu}\Lambda(x), \quad \phi'(x) = \phi(x)e^{i\Lambda(x)}.$$