Differential geometry for physicists - Assignment 15

Manuel Hohmann

26. May 2015

1. Canonical flat connection

Consider the Cartesian product $P=M \times G$ of a manifold M and a Lie group G together with the right action $(x, g) \cdot h=(x, g h)$ and projection $\pi=\operatorname{pr}_{M}$ onto the first factor.
(a) Show that $\pi: P \rightarrow M$ is a principal fiber bundle.
(b) Show that the map

$$
\omega: \begin{array}{ccc}
P & \rightarrow & J^{1}(P) \\
(x, g) & \mapsto & j_{x}^{1} \sigma_{(x, g)}
\end{array},
$$

where the section $\sigma_{(x, g)}$ is given by

$$
\begin{aligned}
\sigma_{(x, g)}: & M
\end{aligned} \rightarrow \quad P
$$

is a principal Ehresmann connection.
(c) Calculate the connection form $\theta: T P \rightarrow V P$, horizontal distribution $H P$ and principal G-connection $\vartheta \in \Omega^{1}(P, \mathfrak{g})$.

2. Associated bundle connection

Let $\pi: P \rightarrow M$ be the principal bundle from the previous exercise, $F=\mathbb{R}^{n}$ and the left action $\rho: G \times F \rightarrow F$ be linear, i.e., $\rho(g, f)=\rho(g) f$, where $\rho(g) \in \mathrm{GL}(n)$.
(a) Show that the associated bundle $P \times{ }_{\rho} F$ is diffeomorphic to the Cartesian product $M \times F$.
(b) Calculate the associated bundle connection $\omega_{\rho}: P \times_{\rho} F \rightarrow J^{1}\left(P \times_{\rho} F\right)$ and the corresponding Koszul connection $\nabla^{\omega_{\rho}}$.

