Differential geometry for physicists - Assignment 15

Manuel Hohmann

26. May 2015

1. Canonical flat connection

Consider the Cartesian product $P = M \times G$ of a manifold M and a Lie group G together with the right action $(x,g) \cdot h = (x,gh)$ and projection $\pi = \operatorname{pr}_M$ onto the first factor.

- (a) Show that $\pi: P \to M$ is a principal fiber bundle.
- (b) Show that the map

$$\begin{array}{rcl} \omega & : & P & \to & J^1(P) \\ & & (x,g) & \mapsto & j^1_x \sigma_{(x,g)} \end{array},$$

where the section $\sigma_{(x,g)}$ is given by

$$\begin{array}{rccc} \sigma_{(x,g)} & \colon & M & \to & P \\ & & y & \mapsto & (y,g) \end{array},$$

is a principal Ehresmann connection.

(c) Calculate the connection form $\theta : TP \to VP$, horizontal distribution HP and principal G-connection $\vartheta \in \Omega^1(P, \mathfrak{g})$.

2. Associated bundle connection

Let $\pi: P \to M$ be the principal bundle from the previous exercise, $F = \mathbb{R}^n$ and the left action $\rho: G \times F \to F$ be linear, i.e., $\rho(g, f) = \rho(g)f$, where $\rho(g) \in GL(n)$.

- (a) Show that the associated bundle $P \times_{\rho} F$ is diffeomorphic to the Cartesian product $M \times F$.
- (b) Calculate the associated bundle connection $\omega_{\rho}: P \times_{\rho} F \to J^1(P \times_{\rho} F)$ and the corresponding Koszul connection $\nabla^{\omega_{\rho}}$.