Differential geometry for physicists - Assignment 14

Manuel Hohmann

19. May 2015

1. Cross product

Consider the Lie group $G=\mathrm{SO}(3)$ as given in the example in the lecture. Let $M=\mathbb{R}^{3} \times \mathbb{R}^{3}$ with left action $\rho_{M}(g,(x, y))=(g x, g y)$ and $N=\mathbb{R}^{3}$ with left action $\rho_{N}(g, x)=g x$, where $g x$ denotes the multiplication of a matrix and a vector. Prove that the cross product $\times: \mathbb{R}^{3} \times \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ is an equivariant map.

2. Hopf fibration

Consider the groups $G=\mathrm{SU}(2)$ and $H=\mathrm{SO}(2)$.
(a) Show that

$$
\mathrm{SU}(2)=\left\{\left.\left(\begin{array}{cc}
a & b \\
-\bar{b} & \bar{a}
\end{array}\right) \right\rvert\, a, b \in \mathbb{C}, a \bar{a}+b \bar{b}=1\right\} \cong S^{3} .
$$

(b) Show that

$$
\mathrm{SO}(2)=\left\{\left.\left(\begin{array}{cc}
c & d \\
-d & c
\end{array}\right) \right\rvert\, c, d \in \mathbb{R}, x^{2}+y^{2}=1\right\} \cong S^{1} .
$$

(c) Use the action $\rho: \mathrm{SU}(2) \times \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ defined by

$$
\rho(g, x)=x^{\prime}, \quad g\left(\begin{array}{cc}
i x_{1} & -x_{2}+i x_{3} \\
x_{2}+i x_{3} & -i x_{1}
\end{array}\right) g^{-1}=\left(\begin{array}{cc}
i x_{1}^{\prime} & -x_{2}^{\prime}+i x_{3}^{\prime} \\
x_{2}^{\prime}+i x_{3}^{\prime} & -i x_{1}^{\prime}
\end{array}\right)
$$

to show that $\mathrm{SU}(2) / \mathrm{SO}(2)$ is diffeomorphic to S^{2}.
(d) Calculate the fundamental vector field \tilde{X} of

$$
X=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right) \in \mathfrak{s o}(2)
$$

on $\operatorname{SU}(2)$.

3. Tangent bundle

Let M be a manifold of dimension $\operatorname{dim} M=n$ and $\operatorname{GL}(M)$ its general linear frame bundle. Consider the left action of $G=G L(n)$ on $F=\mathbb{R}^{n}$.
(a) Show that the associated bundle $\operatorname{GL}(M) \times_{\rho} \mathbb{R}^{n}$ is diffeomorphic to the tangent bundle $T M$.
(b) Show that there is a one-to-one correspondence between vector fields $X \in$ $\operatorname{Vect}(M)$ on M and equivariant maps $\phi \in C_{\mathrm{GL}(n)}^{\infty}\left(\mathrm{GL}(M), \mathbb{R}^{n}\right)$.

