Differential geometry for physicists - Assignment 13

Manuel Hohmann

12. May 2015

1. Rotational symmetry

Consider the trivial fiber bundle $\pi: M \times Q \to M$ with $M = \mathbb{R}$ and $Q = \mathbb{R}^k$ and a Lagrangian

$$L = \mathcal{L}(\delta_{ab}q^a q^b, \delta_{ab} \dot{q}^a \dot{q}^b) dt \in \Omega^{1,0}(J^{\infty}(E)),$$

which depends only on the squared distance $\delta_{ab}q^aq^b$ from the origin of \mathbb{R}^k and the square $\delta_{ab}\dot{q}^a\dot{q}^b$ of the velocity.

- (a) Calculate $d_V L$ and $\mathcal{E}L$.
- (b) Show that $\mathcal{E}L d_V L = d_H \eta$ is d_H -exact and determine η .
- (c) Calculate the prolongation pr X of the evolutionary vector field $X = \omega^a{}_b q^b \bar{\partial}_a$, where ω is a constant, antisymmetric matrix, $\delta_{ab} \omega^b{}_c + \delta_{cb} \omega^b{}_a = 0$.
- (d) Show that X is a symmetry of the Lagrangian.
- (e) Calculate the conserved current ψ corresponding to X.
- (f) Use the Euler-Lagrange equations to check that ψ is indeed conserved.