Differential geometry for physicists - Assignment 13

Manuel Hohmann

12. May 2015

1. Rotational symmetry

Consider the trivial fiber bundle $\pi: M \times Q \rightarrow M$ with $M=\mathbb{R}$ and $Q=\mathbb{R}^{k}$ and a Lagrangian

$$
L=\mathcal{L}\left(\delta_{a b} q^{a} q^{b}, \delta_{a b} \dot{q}^{a} \dot{q}^{b}\right) d t \in \Omega^{1,0}\left(J^{\infty}(E)\right),
$$

which depends only on the squared distance $\delta_{a b} q^{a} q^{b}$ from the origin of \mathbb{R}^{k} and the square $\delta_{a b} \dot{q}^{a} \dot{q}^{b}$ of the velocity.
(a) Calculate $d_{V} L$ and $\mathcal{E} L$.
(b) Show that $\mathcal{E} L-d_{V} L=d_{H} \eta$ is d_{H}-exact and determine η.
(c) Calculate the prolongation pr X of the evolutionary vector field $X=\omega^{a}{ }_{b} q^{b} \bar{\partial}_{a}$, where ω is a constant, antisymmetric matrix, $\delta_{a b} \omega^{b}{ }_{c}+\delta_{c b} \omega^{b}{ }_{a}=0$.
(d) Show that X is a symmetry of the Lagrangian.
(e) Calculate the conserved current ψ corresponding to X.
(f) Use the Euler-Lagrange equations to check that ψ is indeed conserved.

