Differential geometry for physicists - Assignment 12

Manuel Hohmann

12. May 2015

1. Commutator of Lie derivatives

Consider the commutator rule for Lie derivatives:

$$\mathcal{L}_{[X,Y]}T = \mathcal{L}_X \mathcal{L}_Y T - \mathcal{L}_Y \mathcal{L}_X T$$

- (a) Prove this rule in the cases that T is a real function $f \in C^{\infty}(M, \mathbb{R})$, a vector field $X \in \operatorname{Vect}(M)$ and a one-form $\omega \in \Omega^1(M)$. Perform these proofs both in coordinates (x^a) on M and without coordinates, using only the expressions for the Lie derivatives of functions, vector fields and differential forms given in the lecture.
- (b) Prove that if this rule holds for the Lie derivatives of tensor fields S and T, then it holds also for $S \otimes T$. Choose whether you use coordinates or not in this proof.
- (c) What can you conclude from the result of both proofs together?

2. Cartan's magic formula

Consider the Lie derivative of differential forms given by

$$\mathcal{L}_X \omega = \iota_X(d\omega) + d(\iota_X \omega) \,.$$

- (a) Prove this formula for one-forms ω .
- (b) Prove that if this formula holds for the Lie derivatives of differential forms ω and σ , then it holds also for $\omega \wedge \sigma$.
- (c) What can you conclude from the result of both proofs together?