Differential geometry for physicists - Assignment 11

Manuel Hohmann

5. May 2015

1. Double cover of the rotation group

Consider the special unitary group SU(2) of complex 2×2 matrices with determinant 1 such that $AA^{\dagger} = 1$.

(a) Show that every element $g \in SU(2)$ can uniquely be written in the form

$$g = \left(\begin{array}{cc} g_1 + ig_2 & g_3 + ig_4 \\ -g_3 + ig_4 & g_1 - ig_2 \end{array}\right)$$

with $g_i \in \mathbb{R}$ and $g_1^2 + g_2^2 + g_3^2 + g_4^2 = 1$, so that SU(2) is diffeomorphic to S^3 .

(b) Show that for $g \in SU(2)$ and $x \in \mathbb{R}^3$ there exists $x' \in \mathbb{R}^3$ such that

$$g\left(\begin{array}{cc} ix_1 & -x_2 + ix_3 \\ x_2 + ix_3 & -ix_1 \end{array}\right)g^{-1} = \left(\begin{array}{cc} ix'_1 & -x'_2 + ix'_3 \\ x'_2 + ix'_3 & -ix'_1 \end{array}\right).$$

(c) Determine the 3×3 matrix $\varphi(g)$ for which holds

$$\varphi(g) \left(\begin{array}{c} x_1 \\ x_2 \\ x_3 \end{array}\right) = \left(\begin{array}{c} x'_1 \\ x'_2 \\ x'_3 \end{array}\right) \,,$$

where g, x, x' are as in the previous part of this exercise.

- (d) Show that $\varphi(g) \in SO(3)$.
- (e) Show that $\varphi : SU(2) \to SO(3)$ is a Lie group homomorphism. What is $\varphi^{-1}(\mathbb{1}) \subset SU(2)$ (the *kernel* of φ)?

2. Orbit and stabilizer

Let $\phi: G \times M \to M$ be the left action of a Lie group G on a manifold M and $x, y \in M$ such that they have the same orbit $\mathcal{O}_x = \mathcal{O}_y$ under this action. Show that their stabilizers G_x and G_y are isomorphic and construct an isomorphism $\varphi: G_x \to G_y$.