Differential geometry for physicists - Assignment 11

Manuel Hohmann

5. May 2015

1. Double cover of the rotation group

Consider the special unitary group $\mathrm{SU}(2)$ of complex 2×2 matrices with determinant 1 such that $A A^{\dagger}=\mathbb{1}$.
(a) Show that every element $g \in \mathrm{SU}(2)$ can uniquely be written in the form

$$
g=\left(\begin{array}{cc}
g_{1}+i g_{2} & g_{3}+i g_{4} \\
-g_{3}+i g_{4} & g_{1}-i g_{2}
\end{array}\right)
$$

with $g_{i} \in \mathbb{R}$ and $g_{1}^{2}+g_{2}^{2}+g_{3}^{2}+g_{4}^{2}=1$, so that $\mathrm{SU}(2)$ is diffeomorphic to S^{3}.
(b) Show that for $g \in \operatorname{SU}(2)$ and $x \in \mathbb{R}^{3}$ there exists $x^{\prime} \in \mathbb{R}^{3}$ such that

$$
g\left(\begin{array}{cc}
i x_{1} & -x_{2}+i x_{3} \\
x_{2}+i x_{3} & -i x_{1}
\end{array}\right) g^{-1}=\left(\begin{array}{cc}
i x_{1}^{\prime} & -x_{2}^{\prime}+i x_{3}^{\prime} \\
x_{2}^{\prime}+i x_{3}^{\prime} & -i x_{1}^{\prime}
\end{array}\right) .
$$

(c) Determine the 3×3 matrix $\varphi(g)$ for which holds

$$
\varphi(g)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{l}
x_{1}^{\prime} \\
x_{2}^{\prime} \\
x_{3}^{\prime}
\end{array}\right),
$$

where g, x, x^{\prime} are as in the previous part of this exercise.
(d) Show that $\varphi(g) \in \operatorname{SO}(3)$.
(e) Show that $\varphi: \mathrm{SU}(2) \rightarrow \mathrm{SO}(3)$ is a Lie group homomorphism. What is $\varphi^{-1}(\mathbb{1}) \subset$ $\mathrm{SU}(2)$ (the kernel of φ)?
2. Orbit and stabilizer

Let $\phi: G \times M \rightarrow M$ be the left action of a Lie group G on a manifold M and $x, y \in M$ such that they have the same orbit $\mathcal{O}_{x}=\mathcal{O}_{y}$ under this action. Show that their stabilizers G_{x} and G_{y} are isomorphic and construct an isomorphism $\varphi: G_{x} \rightarrow G_{y}$.

