Differential geometry for physicists - Assignment 10

Manuel Hohmann

28. April 2015
29. First order Lagrangian of a point mass on a metric manifold with potential Consider the example given in the previous lecture. Let $M=\mathbb{R}$ and Q a manifold of dimension n. Let $E=\mathbb{R} \times Q$ be the trivial fiber bundle with projection π : $\mathbb{R} \times Q \rightarrow \mathbb{R}$ onto the first factor. Sections of this bundle are uniquely expressed by maps $\gamma \in C^{\infty}(\mathbb{R}, Q)$, i.e., by curves on Q. We use the one-dimensional Euclidean coordinate t on \mathbb{R} and arbitrary coordinates $\left(q^{a}\right)$ on Q, so that we have coordinates $\left(t, q^{a}\right)$ on $\mathbb{R} \times Q$. From these coordinates we derive the coordinates $\left(t, q_{(0)}^{a}, q_{(1)}^{a}, \ldots\right)$ on $J^{\infty}(E) \cong \mathbb{R} \times T Q$. For brevity, we write $q_{(0)}^{a}=q^{a}, q_{(1)}^{a}=\dot{q}^{a}, q_{(2)}^{a}=\ddot{q}^{a}$ etc.
Let further $g \in \Gamma\left(T_{2}^{0} Q\right)$ be a non-degenerate, positive definite, symmetric tensor field of type $(0,2)$ (the metric) and $V \in C^{\infty}(Q, \mathbb{R})$ (the potential). Consider the Lagrangian given by

$$
\begin{equation*}
L(t, q, \dot{q}, \ldots)=\left(\frac{1}{2} g_{a b}(q) \dot{q}^{a} \dot{q}^{b}-V(q)\right) d t \in \Omega^{1,0}\left(J^{\infty}(E)\right) . \tag{0.1}
\end{equation*}
$$

(a) Calculate the vertical derivative $d_{V} L$.
(b) Calculate the projection $\mathcal{E} L=\varrho\left(d_{V} L\right)$ onto $\mathcal{F}^{1}\left(J^{\infty}(E)\right)$.
(c) Show that $\mathcal{E} L$ is of the form $\omega_{a} \theta^{a} \wedge d t$, where $\theta^{a}=\theta_{(0)}^{a}$.
(d) Let $\gamma \in C^{\infty}(\mathbb{R}, Q)$ be a curve, which determines a section $\sigma=\left(\mathrm{id}_{\mathbb{R}}, \gamma\right): \mathbb{R} \rightarrow$ $\mathbb{R} \times Q$, and write it in coordinates in the form $t \mapsto q^{a}(t)$. Derive the EulerLagrange equations for such curves.

