Differential geometry for physicists - Assignment 9

Manuel Hohmann

21. April 2015

1. Contact forms

Let $M=\mathbb{R}$ with coordinate $x, E=\mathbb{R}^{2}$ with coordinates (x, y) and $\pi: E \rightarrow M$ the projection onto the first component. Denote the coordinates on the infinite jet space $J^{\infty}(E)$ by $\left(x, y_{(0)}, y_{(1)}, \ldots\right)$.
(a) Write out the formula for the contact forms $\theta_{(n)}$ depending on n using the coordinates above.
(b) Consider a section $\sigma: M \rightarrow E$ written in the form $x \mapsto y(x)$ and its ∞-jet prolongation $j^{\infty} \sigma$ written as $x \mapsto\left(y_{(0)}(x), y_{(1)}(x), \ldots\right)$. Write out a formula for the components $y_{(k)}(x)$.
(c) Calculate the pullback of the contact forms $\theta_{(n)}$ to M along $j^{\infty} \sigma$ given above. What do you see?

2. Differential operators

Consider the same bundle as above and let d_{H} and d_{V} be the horizontal and the vertical derivatives.
(a) Let $\omega\left(x, y_{(0)}, y_{(1)}, \ldots\right)=f\left(x, y_{(0)}, y_{(1)}\right) d x \in \Omega^{1,0}\left(J^{\infty}(E)\right)$, i.e., f should depend only on the coordinates $x, y_{(0)}, y_{(1)}$. Calculate $d_{H} \omega$ and $d_{V} \omega$.
(b) Consider a function $g\left(x, y_{(0)}, y_{(1)}\right) \in \Omega^{0,0}\left(J^{\infty}(E)\right)$. Calculate $d_{H} g$ and its pullback $\left(j^{\infty} \sigma\right)^{*}\left(d_{H} g\right)$ to M along the ∞-jet prolongation $j^{\infty} \sigma$ from the previous exercise. Show that there exists a function $\tilde{g} \in C^{\infty}(M, \mathbb{R})$ such that $\left(j^{\infty} \sigma\right)^{*}\left(d_{H} g\right)=d \tilde{g}$ and calculate \tilde{g}.

