# Differential geometry for physicists - Assignment 8 

Manuel Hohmann

14. April 2015

## 1. Coordinate transformation on jet manifolds

Let $M=\mathbb{R}$ with coordinate $x$ and $N=\mathbb{R}$ with coordinate $y$.
(a) Write out explicitly the coordinates $y_{\Lambda}$ for all relevant $\Lambda$ derived from $x$ and $y$ on $J_{0}^{2}(M, N)$. What is the dimension of this manifold?
(b) Let $h \in C^{\infty}(M, N)$ be a smooth map, given in coordinates as $y(x)$. What are the coordinates of $j_{0}^{2} h$ ?
(c) Let $\tilde{x}=f(x)$ and $\tilde{y}=g(y)$ new coordinates on $M$, which introduce new coordinates $\tilde{y}_{\tilde{\Lambda}}$ on $J_{0}^{2}(M, N)$. Rewrite $h$ using the new coordinates $\tilde{x}$ and $\tilde{y}$. What are the new coordinates of $j_{0}^{2} h$ ?
(d) Rewrite your result as a formula for the coordinates $y_{\Lambda}$ on $J_{0}^{2}(M, N)$ as functions of the coordinates $\tilde{y}_{\tilde{\Lambda}}$.

Hint: You should find the derivatives $d y / d x(0), d^{2} y / d x^{2}(0)$ of the coordinate expression $y(x)$ of $h$ somewhere, and the same for its coordinate expression $\tilde{y}(\tilde{x})$. How are they related?
2. Dimension of jet bundles

Let $\pi: T_{s}^{r} M \rightarrow M$ be the tensor bundle of type $(r, s)$ over a manifold $M$ of dimension $\operatorname{dim} M=n$. What is the dimension of the $k^{\prime}$ th order jet bundle $J^{k}\left(T_{s}^{r} M\right)$ ?

## 3. Classical mechanics?

Let $M=\mathbb{R}$ and $Q$ a manifold of dimension $n$. Let $E=\mathbb{R} \times Q$ be the trivial fiber bundle with projection $\pi: \mathbb{R} \times Q \rightarrow \mathbb{R}$ onto the first factor.
(a) Introduce suitable coordinates on $\mathbb{R}, Q$ and $\mathbb{R} \times Q$.
(b) Introduce coordinates on the first-order jet bundle $J^{1}(E)$.
(c) Consider a function $\mathcal{L} \in C^{\infty}\left(J^{1}(E), \mathbb{R}\right)$. Explain what this function looks like in the context of classical mechanics, and which objects in the construction above correspond to "time" and "space".

