Differential geometry for physicists - Assignment 7

Manuel Hohmann

7. April 2015

1. Integral over the sphere

Consider a chart of the sphere S^{2} corresponding to the usual latitude / longitude coordinates $\theta \in(-\pi / 2, \pi / 2)$ and $\phi \in(0,2 \pi)$. Use this chart to define the 2 -form $\omega=\sin \theta d \theta \wedge d \phi$.
(a) Show that ω is indeed a 2 -form, i.e., a smooth section of $\Lambda^{2} T^{*} M$. You may use the two charts given by stereographic projection we defined earlier for this purpose.
(b) Calculate the integral of ω over the 2-cube

$$
\begin{array}{lccc}
c: \quad[0,1]^{2} & \rightarrow & S^{2} \\
(x, y) & \mapsto & \left(\pi\left(x-\frac{1}{2}\right), 2 \pi y\right)
\end{array}
$$

2. Stokes in \mathbb{R}^{3}

Let $M=\mathbb{R}^{3}$ and $\omega=x d y \wedge d z \in \Omega^{2}(M)$. Consider the 3-cube

$$
\begin{array}{lccc}
c: & {[0,1]^{3}} & \rightarrow & M \\
& (x, y, z) & \mapsto & (x, y, z)
\end{array}
$$

(a) Determine the 2-chain ∂c (the boundary of c).
(b) Calculate $d \omega$.
(c) Calculate the integrals

$$
\int_{\partial c} \omega \text { and } \int_{c} d \omega
$$

