Differential geometry for physicists - Assignment 6

Manuel Hohmann

31. March 2015

1. Pullback to the sphere

Consider a chart of the sphere S^{2} corresponding to the usual latitude / longitude coordinates $\theta \in(-\pi / 2, \pi / 2)$ and $\phi \in(0,2 \pi)$. Use this chart to define the map

$$
\varphi: S^{2} \rightarrow \mathbb{R}^{3},(\theta, \phi) \mapsto(\cos \theta \cos \phi, \cos \theta \sin \phi, \sin \theta)
$$

(a) Let

$$
v=v^{\theta} \partial_{\theta}+v^{\phi} \partial_{\phi} \in T_{(\theta, \phi)} S^{2}
$$

be a tangent vector and

$$
w=w^{x} \partial_{x}+w^{y} \partial_{y}+w^{z} \partial_{z}=\varphi_{*}(v) \in T_{\varphi(\theta, \phi)} \mathbb{R}^{3} .
$$

Calculate the components of w as functions of the components of v.
(b) Calculate the pullback $\varphi^{*}(g)$ of the tensor field

$$
g=d x \otimes d x+d y \otimes d y+d z \otimes d z .
$$

(c) Calculate the pullback $\varphi^{*}(\omega)$ of the 1-form

$$
\omega=x d x+y d y+z d z .
$$

2. Pullback of functions and 1-forms

Let M and N be manifolds and $\varphi: M \rightarrow N$ a smooth map. Show (without using coordinates) that the pullback of a real function $f \in C^{\infty}(N, \mathbb{R})$ and its total derivative $d f \in \Omega^{1}(N)$ satisfy $\varphi^{*}(d f)=d\left(\varphi^{*}(f)\right)$. Use the fact that a function $g \in C^{\infty}(M, \mathbb{R})$ and a vector $v \in T_{x} M$ satisfy $v(g)=\langle v, d g(x)\rangle$.
3. Pullback of a volume form along a diffeomorphism

Let M and N be manifolds of dimension n and $\varphi: M \rightarrow N$ a diffeomorphism. Use coordinates $\left(x^{a}\right)$ on M and $\left(y^{a}\right)$ on N and let

$$
\omega=w d y^{1} \wedge \ldots \wedge d y^{n} \in \Omega^{n}(N)
$$

be a volume form on N. Show that

$$
\varphi^{*}(\omega)=w \operatorname{det}\left(\frac{\partial y^{a}}{\partial x^{b}}\right) d x^{1} \wedge \ldots \wedge d x^{n} \in \Omega^{n}(M) .
$$

