Differential geometry for physicists - Assignment 6

Manuel Hohmann

31. March 2015

1. Pullback to the sphere

Consider a chart of the sphere S^2 corresponding to the usual latitude / longitude coordinates $\theta \in (-\pi/2, \pi/2)$ and $\phi \in (0, 2\pi)$. Use this chart to define the map

$$\varphi: S^2 \to \mathbb{R}^3, (\theta, \phi) \mapsto (\cos \theta \cos \phi, \cos \theta \sin \phi, \sin \theta).$$

(a) Let

$$v=v^\theta\partial_\theta+v^\phi\partial_\phi\in T_{(\theta,\phi)}S^2$$

be a tangent vector and

$$w = w^x \partial_x + w^y \partial_y + w^z \partial_z = \varphi_*(v) \in T_{\varphi(\theta,\phi)} \mathbb{R}^3$$

Calculate the components of w as functions of the components of v.

(b) Calculate the pullback $\varphi^*(g)$ of the tensor field

$$g = dx \otimes dx + dy \otimes dy + dz \otimes dz.$$

(c) Calculate the pullback $\varphi^*(\omega)$ of the 1-form

$$\omega = x \, dx + y \, dy + z \, dz \, .$$

2. Pullback of functions and 1-forms

Let M and N be manifolds and $\varphi : M \to N$ a smooth map. Show (without using coordinates) that the pullback of a real function $f \in C^{\infty}(N, \mathbb{R})$ and its total derivative $df \in \Omega^1(N)$ satisfy $\varphi^*(df) = d(\varphi^*(f))$. Use the fact that a function $g \in C^{\infty}(M, \mathbb{R})$ and a vector $v \in T_x M$ satisfy $v(g) = \langle v, dg(x) \rangle$.

3. Pullback of a volume form along a diffeomorphism

Let M and N be manifolds of dimension n and $\varphi: M \to N$ a diffeomorphism. Use coordinates (x^a) on M and (y^a) on N and let

$$\omega = w \, dy^1 \wedge \ldots \wedge dy^n \in \Omega^n(N)$$

be a volume form on N. Show that

$$\varphi^*(\omega) = w \det\left(\frac{\partial y^a}{\partial x^b}\right) dx^1 \wedge \ldots \wedge dx^n \in \Omega^n(M).$$