Differential geometry for physicists - Assignment 5

Manuel Hohmann

24. March 2015

1. Differential forms on a sphere

Consider a chart of the sphere S^{2} corresponding to the usual latitude / longitude coordinates $\theta \in(-\pi / 2, \pi / 2)$ and $\varphi \in(0,2 \pi)$. Within this chart, we define the functions

$$
f(\theta, \varphi)=\sin \theta, \quad g(\theta, \varphi)=\cos \theta \cos \varphi, \quad h(\theta, \varphi)=\cos \theta \sin \varphi,
$$

which can be uniquely smoothly extended to the complete sphere.
(a) Calculate the 1 -forms $d f, d g$ and $d h$.
(b) Calculate the 2 -forms $d f \wedge d g, d g \wedge d h$ and $d h \wedge d f$.
(c) Show that there exists a 2 -form ω such that $d f \wedge d g=-h \omega, d g \wedge d h=-f \omega$ and $d h \wedge d f=-g \omega$, and write ω using the coordinates defined above.

2. Exterior derivative, interior product, Lie bracket

Let $\left(x^{a}\right)$ be coordinates on a manifold M. Consider a 1 -form $\omega=\omega_{a} d x^{a}$ and vector fields $X=X^{a} \partial_{a}$ and $Y=Y^{a} \partial_{a}$. Write the formula

$$
\iota_{Y} \iota_{X} d \omega=X\left(\iota_{Y} \omega\right)-Y\left(\iota_{X} \omega\right)-\iota_{[X, Y]} \omega
$$

using these coordinates. What do you see from this result?

