Differential geometry for physicists - Assignment 3

Manuel Hohmann

3. March 2015

1. Tangent bundle lift

Let M be a manifold and $\gamma \in C^{\infty}(\mathbb{R}, M)$ a curve on M. Define a curve $\dot{\gamma} : \mathbb{R} \to TM, t \mapsto \dot{\gamma}(t)$ (the tangent bundle lift of γ), which assigns to $t \in \mathbb{R}$ the tangent vector $\dot{\gamma}(t) \in T_{\gamma(t)}M$. Show that $\dot{\gamma} \in C^{\infty}(\mathbb{R}, TM)$, i.e., show that $\dot{\gamma}$ is a smooth curve on the tangent bundle.

2. Vector fields and functions on a sphere

Consider a chart of the sphere S^2 corresponding to the usual latitude / longitude coordinates $\theta \in (-\pi/2, \pi/2)$ and $\varphi \in (0, 2\pi)$. Within this chart, we define the function and vector fields

$$X(\theta,\varphi) = \cos\theta \sin\varphi \partial_{\varphi}, \quad Y(\theta,\varphi) = \cos\theta \cos\varphi \partial_{\theta}, \quad f(\theta,\varphi) = \cos\theta \cos\varphi,$$

which can be uniquely smoothly extended to the complete sphere.

- (a) Calculate the commutator [X, Y].
- (b) Calculate Xf, Yf and [X, Y]f.

3. Point on a rolling wheel

Consider the motion of a rolling wheel of radius R in \mathbb{R}^2 . The wheel is rotating with angular velocity ω , such that its center follows the curve given by $(x, y) = (R\omega t, 0)$. At t = 0, when the center of the wheel crosses the y-axis, mark a point along the y-axis with distance d over the center of the wheel, i.e., the point (x, y) = (0, d). Let this point be fixed to the wheel, so that it keeps its distance to the center of the wheel and follows its rotation.

- (a) Describe the motion of the point by a curve γ . Is this a smooth curve $\gamma \in C^{\infty}(\mathbb{R}, \mathbb{R}^2)$?
- (b) Calculate $\dot{\gamma}(t)$.
- (c) Are there values of t for which $\dot{\gamma}(t) = 0$? How does this depend on the values of d, R, ω ?

