Differential geometry for physicists - Assignment 1

Manuel Hohmann

10. February 2015

1. Know your coordinates

(a) Your best friend tells you: "Look! I take the sphere S^{2} with coordinates given by latitude $-\pi / 2 \leq \theta \leq \pi / 2$ and longitude $0 \leq \varphi<2 \pi$ and define the map $f: S^{2} \rightarrow \mathbb{R}$ as $f(\theta, \varphi)=\sin \varphi$. This is a smooth map from S^{2} to \mathbb{R}." Explain why he is doing something terribly wrong, and why f is not even a function on the sphere at all.
(b) Your best friend listens to your argument and continues: "But our physics teacher did just the same with the function $g(\theta, \varphi)=\cos \theta \sin \varphi$ and he said it's a smooth map!" Explain why the physics teacher is correct, so that g is indeed a smooth map.
(c) Write the map g using the two charts of the sphere given in the lecture.

2. Product manifold

Show that $\mathcal{A}_{M \times N}$ in the definition of a product manifold is an atlas and that the projections pr_{M} and pr_{N} are smooth maps.

3. Map composition

Let L, M, N be manifolds and $f: L \rightarrow M$ and $g: M \rightarrow N$ smooth maps.
(a) Show that the composition $g \circ f$ is a smooth map from L to N.
(b) If both f and g are diffeomorphisms, is $g \circ f$ also a diffeomorphism? Explain your answer.

