Selected Topics in the Theories of Gravity

Manuel Hohmann

20. February 2014

1 Tensor densities

We know that tensors are quantities A whose components change under a coordinate transformation $x^{\mu} \rightarrow x^{\mu}$ according to the transformation law

$$
\begin{equation*}
A^{\prime \mu_{1} \ldots \mu_{r}}{ }_{\nu_{1} \ldots \nu_{s}}=A_{\sigma_{1} \ldots \rho_{r} \ldots \sigma_{s}} \frac{\partial x^{\prime \mu_{1}}}{\partial x^{\rho_{1}}} \ldots \frac{\partial x^{\prime \mu_{r}}}{\partial x^{\rho_{r}}} \frac{\partial x^{\sigma_{1}}}{\partial x^{\prime \nu_{1}}} \ldots \frac{\partial x^{\sigma_{s}}}{\partial x^{\prime \nu_{s}}} . \tag{1.1}
\end{equation*}
$$

We further know that the covariant derivative

$$
\begin{align*}
\nabla_{\rho} A^{\mu_{1} \ldots \mu_{r}}{ }_{\nu 1} \ldots \nu_{s}= & \partial_{\rho} A^{\mu_{1} \ldots \mu_{r}}{ }_{\nu_{1} \ldots \nu_{s}} \\
& +\Gamma^{\mu_{1}}{ }_{\rho \sigma} A^{\sigma \ldots \mu_{r}}{ }_{\nu_{1} \ldots \nu_{s}}+\ldots+\Gamma^{\mu_{r}}{ }_{\rho \sigma} A^{\mu_{1} \ldots \sigma}{ }_{\nu_{1} \ldots \nu_{s}} \tag{1.2}\\
& -\Gamma^{\sigma}{ }_{\rho \nu_{1}} A^{\mu_{1} \ldots \mu_{r}}{ }_{\sigma \ldots \nu_{s}}-\ldots-\Gamma^{\sigma}{ }_{\rho \nu_{s}} A^{\mu_{1} \ldots \mu_{r}}{ }_{\nu_{1} \ldots \sigma}
\end{align*}
$$

of a tensor A is again a tensor, provided that the connection coefficients satisfy the transformation law

$$
\begin{equation*}
\Gamma^{\prime \mu}{ }_{\nu \sigma}=\Gamma_{\pi \tau}^{\rho} \frac{\partial x^{\prime \mu}}{\partial x^{\rho}} \frac{\partial x^{\pi}}{\partial x^{\prime \nu}} \frac{\partial x^{\tau}}{\partial x^{\prime \sigma}}+\frac{\partial x^{\prime \mu}}{\partial x^{\kappa}} \frac{\partial^{2} x^{\kappa}}{\partial x^{\prime \nu} \partial x^{\prime \sigma}} . \tag{1.3}
\end{equation*}
$$

However, sometimes we find quantities which are not tensors, but obey a different simple transformation law, such es $\sqrt{-g}$, which transforms according to

$$
\begin{equation*}
\sqrt{-g^{\prime}}=\sqrt{-\operatorname{det}\left(g^{\prime \mu \nu}\right)}=\sqrt{-\operatorname{det}\left(g^{\rho \sigma} \frac{\partial x^{\prime \mu}}{\partial x_{\rho}} \frac{\partial x^{\prime \nu}}{\partial x_{\sigma}}\right)}=\sqrt{-g}\left(\operatorname{det} \frac{\partial x}{\partial x^{\prime}}\right) . \tag{1.4}
\end{equation*}
$$

We thus generalize the concept of tensors to tensor densities. A tensor density \mathfrak{A} of weight $w \in \mathbb{R}$ is a quantity which transforms under coordinate changes according to

$$
\begin{equation*}
\mathfrak{A}^{\prime \mu_{1} \ldots \mu_{r}}{ }_{\nu_{1} \ldots \nu_{s}}=\mathfrak{A}^{\rho_{1} \ldots \rho_{r}}{ }_{\sigma_{1} \ldots \sigma_{s}} \frac{\partial x^{\prime \mu_{1}}}{\partial x^{\rho_{1}}} \ldots \frac{\partial x^{\prime \mu_{r}}}{\partial x^{\rho_{r}}} \frac{\partial x^{\sigma_{1}}}{\partial x^{\prime \nu_{1}}} \ldots \frac{\partial x^{\sigma_{s}}}{\partial x^{\nu_{s}}}\left(\operatorname{det} \frac{\partial x}{\partial x^{\prime}}\right)^{w} . \tag{1.5}
\end{equation*}
$$

The covariant derivative of a tensor density of weight w is again a tensor density of weight w if it is given by

$$
\begin{align*}
\nabla_{\rho} \mathfrak{A}^{\mu_{1} \ldots \mu_{r}}{ }_{\nu_{1} \ldots \nu_{s}}= & \partial_{\rho} \mathfrak{A}^{\mu_{1} \ldots \mu_{r}}{ }_{\nu_{1} \ldots \nu_{s}}-w \Gamma^{\sigma}{ }_{\sigma \rho} \mathfrak{A}^{\mu_{1} \ldots \mu_{r}}{ }_{\nu_{1} \ldots \nu_{s}} \\
& +\Gamma^{\mu_{1}}{ }_{\rho \rho} \mathfrak{A}^{\sigma \ldots \mu_{r}}{ }_{\nu_{1} \ldots \nu_{s}}+\ldots+\Gamma^{\mu_{r}}{ }_{\rho \sigma} \mathfrak{A}^{\mu_{1} \ldots \sigma}{ }_{\nu_{1} \ldots \nu_{s}} \tag{1.6}\\
& -\Gamma^{\sigma}{ }_{\rho \nu_{1}} \mathfrak{A}^{\mu_{1} \ldots \mu_{r}}{ }_{\sigma \ldots \nu_{s}}-\ldots-\Gamma^{\sigma}{ }_{\rho \nu_{s}} \mathfrak{A}^{\mu_{1} \ldots \mu_{r}}{ }_{\nu_{1} \ldots \sigma} .
\end{align*}
$$

Note that this holds for any covariant derivative, not only for the Levi-Civita connection. Some properties of tensor densities:

- A tensor density of weight 0 is a tensor.
- The product of two tensor densities $\mathfrak{A}, \mathfrak{B}$ of weights w and w^{\prime} is a tensor density of weight $w+w^{\prime}$.
- The Leibnitz rule $\nabla_{\mu}(\mathfrak{A} \mathfrak{B})=\left(\nabla_{\mu} \mathfrak{A}\right) \mathfrak{B}+\mathfrak{A}\left(\nabla_{\mu} \mathfrak{B}\right)$ holds also for tensor densities.

A useful example for a tensor density of weight 1 is $\sqrt{-g}$.

2 Palatini method of variation

In the first lecture we have seen how to derive the Einstein equations from the EinsteinHilbert action

$$
\begin{equation*}
S_{G}[g]=\frac{1}{16 \pi G} \int d^{4} x \sqrt{-g}(R[g]-2 \Lambda) \tag{2.1}
\end{equation*}
$$

by variation with respect to the metric. In this calculation we took $R[g]$ to be the Ricci tensor which is calculated from the Levi-Civita connection $\Gamma^{\mu}{ }_{\nu \sigma}$ of $g_{\mu \nu}$. We now follow a different approach, in which $\Gamma^{\mu}{ }_{\nu \sigma}$ is not given by the Levi-Civita connection, but an arbitrary torsion-free (i.e., symmetric in its lower indices) connection. The Riemann tensor

$$
\begin{equation*}
R^{\mu}{ }_{\nu \rho \sigma}[\Gamma]=\partial_{\rho} \Gamma^{\mu}{ }_{\nu \sigma}-\partial_{\sigma} \Gamma^{\mu}{ }_{\nu \rho}+\Gamma^{\mu}{ }_{\rho \tau} \Gamma^{\tau}{ }_{\nu \sigma}-\Gamma^{\mu}{ }_{\sigma \tau} \Gamma^{\tau}{ }_{\nu \rho} \tag{2.2}
\end{equation*}
$$

then depends only on the connection and not on the metric. The same holds for the Ricci tensor

$$
\begin{equation*}
R_{\mu \nu}[\Gamma]=R^{\rho}{ }_{\mu \rho \nu}[\Gamma] . \tag{2.3}
\end{equation*}
$$

We then write the Einstein-Hilbert action in the form

$$
\begin{equation*}
S_{G}[g, \Gamma]=\frac{1}{16 \pi G} \int d^{4} x \sqrt{-g}\left(g^{\mu \nu} R_{\mu \nu}[\Gamma]-2 \Lambda\right) \tag{2.4}
\end{equation*}
$$

with independent variables $g_{\mu \nu}$ and $\Gamma^{\mu}{ }_{\nu \sigma}$. Consequently we must vary this action with respect to both variables independently. We have already seen in the first lecture that variation of the terms $\sqrt{-g}$ and $g^{\mu \nu}$ yields the expression

$$
\begin{equation*}
\delta_{g} S_{G}=\frac{1}{16 \pi G} \int d^{4} x \sqrt{-g}\left[\frac{1}{2} g^{\mu \nu}\left(g^{\rho \sigma} R_{\rho \sigma}[\Gamma]-2 \Lambda\right)-g^{\mu \rho} g^{\nu \sigma} R_{\rho \sigma}[\Gamma]\right] \delta g_{\mu \nu} \tag{2.5}
\end{equation*}
$$

where we now simply replaced $R_{\mu \nu}[g]$ with $R_{\mu \nu}[\Gamma]$. From this expression, together with some matter action, we read off the Einstein equations

$$
\begin{equation*}
R_{\mu \nu}[\Gamma]-\frac{1}{2} g_{\mu \nu} g^{\rho \sigma} R_{\rho \sigma}[\Gamma]+\Lambda g_{\mu \nu}=8 \pi G T_{\mu \nu} . \tag{2.6}
\end{equation*}
$$

We now come to the variation of the action (2.4) with respect to the connection coefficients, which takes the form

$$
\begin{equation*}
\delta_{\Gamma} S_{G}=\frac{1}{16 \pi G} \int d^{4} x \sqrt{-g} g^{\mu \nu} \delta_{\Gamma} R_{\mu \nu}[\Gamma] . \tag{2.7}
\end{equation*}
$$

Recall also from the first lecture that the variation of the Ricci tensor with respect to the connection yields

$$
\begin{equation*}
\delta_{\Gamma} R_{\mu \nu}[\Gamma]=\nabla_{\rho} \delta \Gamma^{\rho}{ }_{\mu \nu}-\nabla_{\nu} \delta \Gamma^{\rho}{ }_{\mu \rho} . \tag{2.8}
\end{equation*}
$$

We further introduce the tensor density

$$
\begin{equation*}
\mathfrak{g}^{\mu \nu}=\sqrt{-g} g^{\mu \nu}, \tag{2.9}
\end{equation*}
$$

so that the variation of the action reads

$$
\begin{equation*}
\delta_{\Gamma} S_{G}=\frac{1}{16 \pi G} \int d^{4} x \mathfrak{g}^{\mu \nu}\left(\nabla_{\rho} \delta \Gamma^{\rho}{ }_{\mu \nu}-\nabla_{\nu} \delta \Gamma^{\rho}{ }_{\mu \rho}\right) . \tag{2.10}
\end{equation*}
$$

We now apply the Leibnitz rule for tensor densities and reorder indices to obtain

$$
\begin{equation*}
\delta_{\Gamma} S_{G}=\frac{1}{16 \pi G} \int d^{4} x\left[\nabla_{\rho}\left(\mathfrak{g}^{\mu \nu} \delta \Gamma^{\rho}{ }_{\mu \nu}-\mathfrak{g}^{\mu \rho} \delta \Gamma^{\nu}{ }_{\mu \nu}\right)-\left(\nabla_{\rho} \mathfrak{g}^{\mu \nu} \delta \Gamma^{\rho}{ }_{\mu \nu}-\nabla_{\nu} \mathfrak{g}^{\mu \nu} \delta \Gamma^{\rho}{ }_{\mu \rho}\right)\right] . \tag{2.11}
\end{equation*}
$$

Here the first term is the covariant divergence of a vector density \mathfrak{A}^{μ} of weight 1 . For this expression we find

$$
\begin{equation*}
\nabla_{\mu} \mathfrak{A}^{\mu}=\partial_{\mu} \mathfrak{A}^{\mu}-\Gamma^{\nu}{ }_{\nu \mu} \mathfrak{A}^{\mu}+\Gamma^{\mu}{ }_{\mu \nu} \mathfrak{A}^{\nu}=\partial_{\mu} \mathfrak{A}^{\mu} . \tag{2.12}
\end{equation*}
$$

Since this is only a partial derivative, this term does not contribute to the integral. The remaining terms take the form

$$
\begin{equation*}
\delta_{\Gamma} S_{G}=\frac{1}{16 \pi G} \int d^{4} x\left(\nabla_{\sigma} \mathfrak{g}^{\mu \sigma} \delta_{\rho}^{\nu}-\nabla_{\rho} \mathfrak{g}^{\mu \nu}\right) \delta \Gamma_{\mu \nu}^{\rho} \tag{2.13}
\end{equation*}
$$

This must vanish for arbitrary variations $\delta \Gamma^{\rho}{ }_{\mu \nu}$. Taking into account the symmetry in the lower two indices we can thus read off the equation

$$
\begin{equation*}
\frac{1}{2} \nabla_{\sigma} \mathfrak{g}^{\mu \sigma} \delta_{\rho}^{\nu}+\frac{1}{2} \nabla_{\sigma} \mathfrak{g}^{\nu \sigma} \delta_{\rho}^{\mu}-\nabla_{\rho} \mathfrak{g}^{\mu \nu}=0 \tag{2.14}
\end{equation*}
$$

By contracting the indices ρ and ν we obtain the equation

$$
\begin{equation*}
\nabla_{\nu} \mathfrak{g}^{\mu \nu}=0 \tag{2.15}
\end{equation*}
$$

Inserting this again we then find the equation

$$
\begin{equation*}
\nabla_{\rho} \mathfrak{g}^{\mu \nu}=0 \tag{2.16}
\end{equation*}
$$

This means that $\mathfrak{g}^{\mu \nu}$ must be covariantly constant. From this finally follows

$$
\begin{equation*}
\nabla_{\rho} g_{\mu \nu}=0 \tag{2.17}
\end{equation*}
$$

so that ∇ must indeed be the unique metric-compatible torsion-free connection, which is the Levi-Civita connection.

