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1 Tensor densities

We know that tensors are quantities A whose components change under a coordinate
transformation xµ → x′µ according to the transformation law

A′µ1...µr
ν1...νs = Aρ1...ρrσ1...σs

∂x′µ1

∂xρ1
. . .

∂x′µr

∂xρr
∂xσ1

∂x′ν1
. . .

∂xσs

∂x′νs
. (1.1)

We further know that the covariant derivative

∇ρAµ1...µrν1...νs = ∂ρA
µ1...µr

ν1...νs

+ Γµ1ρσA
σ...µr

ν1...νs + . . .+ ΓµrρσA
µ1...σ

ν1...νs

− Γσρν1A
µ1...µr

σ...νs − . . .− ΓσρνsA
µ1...µr

ν1...σ

(1.2)

of a tensor A is again a tensor, provided that the connection coefficients satisfy the trans-
formation law

Γ′µ
νσ = Γρπτ

∂x′µ

∂xρ
∂xπ

∂x′ν
∂xτ

∂x′σ
+
∂x′µ

∂xκ
∂2xκ

∂x′ν∂x′σ
. (1.3)

However, sometimes we find quantities which are not tensors, but obey a different simple
transformation law, such es

√
−g, which transforms according to√

−g′ =
√
−det (g′µν) =

√
−det

(
gρσ

∂x′µ

∂xρ

∂x′ν

∂xσ

)
=
√
−g
(

det
∂x

∂x′

)
. (1.4)

We thus generalize the concept of tensors to tensor densities. A tensor density A of weight
w ∈ R is a quantity which transforms under coordinate changes according to

A′µ1...µr
ν1...νs = Aρ1...ρrσ1...σs

∂x′µ1

∂xρ1
. . .

∂x′µr

∂xρr
∂xσ1

∂x′ν1
. . .

∂xσs

∂x′νs

(
det

∂x

∂x′

)w
. (1.5)

The covariant derivative of a tensor density of weight w is again a tensor density of weight
w if it is given by

∇ρAµ1...µrν1...νs = ∂ρA
µ1...µr

ν1...νs − wΓσσρA
µ1...µr

ν1...νs

+ Γµ1ρσA
σ...µr

ν1...νs + . . .+ ΓµrρσA
µ1...σ

ν1...νs

− Γσρν1A
µ1...µr

σ...νs − . . .− ΓσρνsA
µ1...µr

ν1...σ .

(1.6)

Note that this holds for any covariant derivative, not only for the Levi-Civita connection.
Some properties of tensor densities:

• A tensor density of weight 0 is a tensor.

• The product of two tensor densities A,B of weights w and w′ is a tensor density of
weight w + w′.

• The Leibnitz rule ∇µ(AB) = (∇µA)B + A(∇µB) holds also for tensor densities.

A useful example for a tensor density of weight 1 is
√
−g.
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2 Palatini method of variation

In the first lecture we have seen how to derive the Einstein equations from the Einstein-
Hilbert action

SG[g] =
1

16πG

∫
d4x
√
−g (R[g]− 2Λ) (2.1)

by variation with respect to the metric. In this calculation we took R[g] to be the Ricci
tensor which is calculated from the Levi-Civita connection Γµνσ of gµν . We now follow
a different approach, in which Γµνσ is not given by the Levi-Civita connection, but an
arbitrary torsion-free (i.e., symmetric in its lower indices) connection. The Riemann tensor

Rµνρσ[Γ] = ∂ρΓ
µ
νσ − ∂σΓµνρ + ΓµρτΓτ νσ − ΓµστΓτ νρ (2.2)

then depends only on the connection and not on the metric. The same holds for the Ricci
tensor

Rµν [Γ] = Rρµρν [Γ] . (2.3)

We then write the Einstein-Hilbert action in the form

SG[g,Γ] =
1

16πG

∫
d4x
√
−g (gµνRµν [Γ]− 2Λ) (2.4)

with independent variables gµν and Γµνσ. Consequently we must vary this action with
respect to both variables independently. We have already seen in the first lecture that
variation of the terms

√
−g and gµν yields the expression

δgSG =
1

16πG

∫
d4x
√
−g
[

1

2
gµν(gρσRρσ[Γ]− 2Λ)− gµρgνσRρσ[Γ]

]
δgµν , (2.5)

where we now simply replaced Rµν [g] with Rµν [Γ]. From this expression, together with
some matter action, we read off the Einstein equations

Rµν [Γ]− 1

2
gµνg

ρσRρσ[Γ] + Λgµν = 8πGTµν . (2.6)

We now come to the variation of the action (2.4) with respect to the connection coefficients,
which takes the form

δΓSG =
1

16πG

∫
d4x
√
−ggµνδΓRµν [Γ] . (2.7)

Recall also from the first lecture that the variation of the Ricci tensor with respect to the
connection yields

δΓRµν [Γ] = ∇ρδΓρµν −∇νδΓρµρ . (2.8)

We further introduce the tensor density

gµν =
√
−ggµν , (2.9)

so that the variation of the action reads

δΓSG =
1

16πG

∫
d4x gµν (∇ρδΓρµν −∇νδΓρµρ) . (2.10)

We now apply the Leibnitz rule for tensor densities and reorder indices to obtain

δΓSG =
1

16πG

∫
d4x [∇ρ (gµνδΓρµν − gµρδΓνµν)− (∇ρgµνδΓρµν −∇νgµνδΓρµρ)] . (2.11)
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Here the first term is the covariant divergence of a vector density Aµ of weight 1. For this
expression we find

∇µAµ = ∂µA
µ − ΓννµA

µ + ΓµµνA
ν = ∂µA

µ . (2.12)

Since this is only a partial derivative, this term does not contribute to the integral. The
remaining terms take the form

δΓSG =
1

16πG

∫
d4x

(
∇σgµσδνρ −∇ρgµν

)
δΓρµν . (2.13)

This must vanish for arbitrary variations δΓρµν . Taking into account the symmetry in the
lower two indices we can thus read off the equation

1

2
∇σgµσδνρ +

1

2
∇σgνσδµρ −∇ρgµν = 0 (2.14)

By contracting the indices ρ and ν we obtain the equation

∇νgµν = 0 . (2.15)

Inserting this again we then find the equation

∇ρgµν = 0 . (2.16)

This means that gµν must be covariantly constant. From this finally follows

∇ρgµν = 0 , (2.17)

so that ∇ must indeed be the unique metric-compatible torsion-free connection, which is
the Levi-Civita connection.
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