A geometric view on local Lorentz transformations in teleparallel gravity

Manuel Hohmann

Laboratory of Theoretical Physics - Institute of Physics - University of Tartu Center of Excellence "The Dark Side of the Universe"

DPG Spring Conference - 22. March 2023

- So far unexplained cosmological observations:
 - Accelerating expansion of the universe.
 - Homogeneity of cosmic microwave background.

- So far unexplained cosmological observations:
 - Accelerating expansion of the universe.
 - Homogeneity of cosmic microwave background.
- Models for explaining these observations:
 - ACDM model / dark energy.
 - Inflation.

- So far unexplained cosmological observations:
 - Accelerating expansion of the universe.
 - Homogeneity of cosmic microwave background.
- Models for explaining these observations:
 - ACDM model / dark energy.
 - Inflation.
- Physical mechanisms are not understood:
 - Unknown type of matter?
 - o Modification of the laws of gravity?
 - Scalar field in addition to metric mediating gravity?
 - Quantum gravity effects?

- So far unexplained cosmological observations:
 - Accelerating expansion of the universe.
 - Homogeneity of cosmic microwave background.
- Models for explaining these observations:
 - ACDM model / dark energy.
 - Inflation.
- Physical mechanisms are not understood:
 - Unknown type of matter?
 - Modification of the laws of gravity?
 - Scalar field in addition to metric mediating gravity?
 - Quantum gravity effects?
- Idea here: modification of the geometric structure of spacetime!
 - Study classical gravity theories based on modified geometry.
 - Consider geometries as effective models of quantum gravity.
 - Derive observable effects to test modified geometry.

Field variables in teleparallel gravity

- Metric teleparallelism conventionally formulated using:
 - Tetrad / coframe: $\theta^a = \theta^a{}_\mu dx^\mu$ with inverse $e_a = e_a{}^\mu \partial_\mu$.
 - Spin connection: $\omega^a{}_b = \omega^a{}_{b\mu}dx^{\mu}$.

Field variables in teleparallel gravity

- Metric teleparallelism conventionally formulated using:
 - Tetrad / coframe: $\theta^a = \theta^a{}_\mu dx^\mu$ with inverse $e_a = e_a{}^\mu \partial_\mu$.
 - Spin connection: $\omega^a{}_b = \omega^a{}_{b\mu}dx^{\mu}$.
- Induced metric-affine geometry:

• Metric:

$$g_{\mu\nu} = \eta_{ab} \theta^a{}_{\mu} \theta^b{}_{\nu} \,. \tag{1}$$

• Affine connection:

$$\Gamma^{\mu}{}_{\nu\rho} = \boldsymbol{e}_{\boldsymbol{a}}{}^{\mu} \left(\partial_{\rho} \theta^{\boldsymbol{a}}{}_{\nu} + \omega^{\boldsymbol{a}}{}_{\boldsymbol{b}\rho} \theta^{\boldsymbol{b}}{}_{\nu} \right) \,. \tag{2}$$

Field variables in teleparallel gravity

- Metric teleparallelism conventionally formulated using:
 - Tetrad / coframe: $\theta^a = \theta^a{}_\mu dx^\mu$ with inverse $e_a = e_a{}^\mu \partial_\mu$.
 - Spin connection: $\omega^a{}_b = \omega^a{}_{b\mu}dx^{\mu}$.
- Induced metric-affine geometry:

• Metric:

$$g_{\mu\nu} = \eta_{ab} \theta^a{}_{\mu} \theta^b{}_{\nu} \,. \tag{1}$$

• Affine connection:

$$\Gamma^{\mu}{}_{\nu\rho} = \boldsymbol{e}_{\boldsymbol{a}}{}^{\mu} \left(\partial_{\rho} \theta^{\boldsymbol{a}}{}_{\nu} + \omega^{\boldsymbol{a}}{}_{\boldsymbol{b}\rho} \theta^{\boldsymbol{b}}{}_{\nu} \right) \,. \tag{2}$$

- Conditions on the spin connection:
 - Flatness R = 0:

$$\partial_{\mu}\omega^{a}{}_{b\nu} - \partial_{\nu}\omega^{a}{}_{b\mu} + \omega^{a}{}_{c\mu}\omega^{c}{}_{b\nu} - \omega^{a}{}_{c\nu}\omega^{c}{}_{b\mu} = 0.$$
(3)

• Metric compatibility Q = 0:

$$\eta_{ac}\omega^{c}{}_{b\mu}+\eta_{bc}\omega^{c}{}_{a\mu}=0.$$
(4)

• Local Lorentz transformation of the tetrad only:

$$\theta^{a}{}_{\mu} \mapsto \theta^{\prime a}{}_{\mu} = \Lambda^{a}{}_{b} \theta^{b}{}_{\mu} \,. \tag{5}$$

- \checkmark Metric is invariant: $g'_{\mu\nu} = g_{\mu\nu}$.
- \oint Connection is not invariant: $\Gamma'^{\mu}{}_{\nu\rho} \neq \Gamma^{\mu}{}_{\nu\rho}$.

• Local Lorentz transformation of the tetrad only:

$$\theta^{a}{}_{\mu} \mapsto \theta^{\prime a}{}_{\mu} = \Lambda^{a}{}_{b}\theta^{b}{}_{\mu} \,. \tag{5}$$

- \checkmark Metric is invariant: $g'_{\mu\nu} = g_{\mu\nu}$.
- \oint Connection is not invariant: $\Gamma'^{\mu}{}_{\nu\rho} \neq \Gamma^{\mu}{}_{\nu\rho}$.
- Perform also transformation of the spin connection:

$$\omega^{a}{}_{b\mu} \mapsto \omega^{\prime a}{}_{b\mu} = \Lambda^{a}{}_{c}(\Lambda^{-1})^{d}{}_{b}\omega^{c}{}_{d\mu} + \Lambda^{a}{}_{c}\partial_{\mu}(\Lambda^{-1})^{c}{}_{b}.$$
 (6)

✓ Metric is invariant:
$$g'_{\mu\nu} = g_{\mu\nu}$$
.
✓ Connection is invariant: ${\Gamma'}^{\mu}{}_{\nu\rho} = {\Gamma}^{\mu}{}_{\nu\rho}$

Local Lorentz transformation of the tetrad only:

$$\theta^{a}{}_{\mu} \mapsto \theta^{\prime a}{}_{\mu} = \Lambda^{a}{}_{b}\theta^{b}{}_{\mu} \,. \tag{5}$$

- \checkmark Metric is invariant: $g'_{\mu\nu} = g_{\mu\nu}$.
- \oint Connection is not invariant: $\Gamma'^{\mu}{}_{\nu\rho} \neq \Gamma^{\mu}{}_{\nu\rho}$.
- Perform also transformation of the spin connection:

$$\omega^{a}{}_{b\mu} \mapsto \omega^{\prime a}{}_{b\mu} = \Lambda^{a}{}_{c}(\Lambda^{-1})^{d}{}_{b}\omega^{c}{}_{d\mu} + \Lambda^{a}{}_{c}\partial_{\mu}(\Lambda^{-1})^{c}{}_{b}.$$
 (6)

- \checkmark Metric is invariant: $g'_{\mu\nu} = g_{\mu\nu}$.
- ✓ Connection is invariant: $\Gamma'^{\mu}{}_{\nu\rho} = \Gamma^{\mu}{}_{\nu\rho}$.
- \Rightarrow Metric-affine geometry equivalently described by:
 - Metric $g_{\mu\nu}$ and affine connection $\Gamma^{\mu}{}_{\nu\rho}$.
 - Equivalence class of tetrad $\theta^a{}_\mu$ and spin connection $\omega^a{}_{b\mu}$.
 - Equivalence defined with respect to local Lorentz transformations.

• Local Lorentz transformation of the tetrad only:

$$\theta^{a}{}_{\mu} \mapsto \theta^{\prime a}{}_{\mu} = \Lambda^{a}{}_{b} \theta^{b}{}_{\mu} \,. \tag{5}$$

 \checkmark Metric is invariant: $g'_{\mu
u} = g_{\mu
u}$.

- \oint Connection is not invariant: $\Gamma'^{\mu}{}_{\nu\rho} \neq \Gamma^{\mu}{}_{\nu\rho}$.
- Perform also transformation of the spin connection:

$$\omega^{a}{}_{b\mu} \mapsto \omega^{\prime a}{}_{b\mu} = \Lambda^{a}{}_{c}(\Lambda^{-1})^{d}{}_{b}\omega^{c}{}_{d\mu} + \Lambda^{a}{}_{c}\partial_{\mu}(\Lambda^{-1})^{c}{}_{b}.$$
 (6)

- \checkmark Metric is invariant: $g'_{\mu\nu} = g_{\mu\nu}$.
- ✓ Connection is invariant: $\Gamma'^{\mu}_{\nu\rho} = \Gamma^{\mu}_{\nu\rho}$.
- \Rightarrow Metric-affine geometry equivalently described by:
 - Metric $g_{\mu\nu}$ and affine connection $\Gamma^{\mu}{}_{\nu\rho}$.
 - Equivalence class of tetrad $\theta^a_{\ \mu}$ and spin connection $\omega^a_{\ b\mu}$.
 - Equivalence defined with respect to local Lorentz transformations.
 - Is LLI broken if teleparallel gravity action depends on $\Gamma^{\mu}{}_{\nu\rho}$?

Intuitive conclusion: One can always use the Weitzenböck gauge.
 The spin connection is flat:

$$\partial_{\mu}\omega^{a}{}_{b\nu} - \partial_{\nu}\omega^{a}{}_{b\mu} + \omega^{a}{}_{c\mu}\omega^{c}{}_{b\nu} - \omega^{a}{}_{c\nu}\omega^{c}{}_{b\mu} \equiv 0.$$
(7)

 \Rightarrow The spin connection can always be written in the form

$$\omega^{a}{}_{b\mu} = \Lambda^{a}{}_{c}\partial_{\mu}(\Lambda^{-1})^{c}{}_{b}.$$
(8)

 \Rightarrow One can achieve the Weitzenböck gauge by $\theta^a{}_{\mu} = \Lambda^a{}_b \ddot{\theta}^b{}_{\mu}$.

Intuitive conclusion: One can always use the Weitzenböck gauge.
 The spin connection is flat:

$$\partial_{\mu}\omega^{a}{}_{b\nu} - \partial_{\nu}\omega^{a}{}_{b\mu} + \omega^{a}{}_{c\mu}\omega^{c}{}_{b\nu} - \omega^{a}{}_{c\nu}\omega^{c}{}_{b\mu} \equiv 0.$$
⁽⁷⁾

 \Rightarrow The spin connection can always be written in the form

$$\omega^{a}{}_{b\mu} = \Lambda^{a}{}_{c}\partial_{\mu}(\Lambda^{-1})^{c}{}_{b}.$$
(8)

⇒ One can achieve the Weitzenböck gauge by $\theta^{a}{}_{\mu} = \Lambda^{a}{}_{b}\theta^{b}{}_{\mu}$. • $\Lambda^{a}{}_{b}$ and $\theta^{w}{}_{\mu}{}_{\mu}$ defined only up to global transform

$$\Lambda^{a}{}_{b} \mapsto \Lambda^{\prime a}{}_{b} = \Lambda^{a}{}_{c}\Omega^{c}{}_{b}, \quad \overset{\text{wa}}{\theta}{}^{a}{}_{\mu} \mapsto \overset{\text{w}}{\theta}{}^{\prime a}{}_{\mu} = (\Omega^{-1})^{a}{}_{b}\overset{\text{wb}}{\theta}{}^{b}{}_{\mu}.$$
(9)

Intuitive conclusion: One can always use the Weitzenböck gauge.
 The spin connection is flat:

$$\partial_{\mu}\omega^{a}{}_{b\nu} - \partial_{\nu}\omega^{a}{}_{b\mu} + \omega^{a}{}_{c\mu}\omega^{c}{}_{b\nu} - \omega^{a}{}_{c\nu}\omega^{c}{}_{b\mu} \equiv 0.$$
(7)

 \Rightarrow The spin connection can always be written in the form

$$\omega^{a}{}_{b\mu} = \Lambda^{a}{}_{c}\partial_{\mu}(\Lambda^{-1})^{c}{}_{b}.$$
(8)

⇒ One can achieve the Weitzenböck gauge by $\theta^{a}{}_{\mu} = \Lambda^{a}{}_{b}\theta^{b}{}_{\mu}$. • $\Lambda^{a}{}_{b}$ and $\theta^{w}{}_{\mu}{}_{\mu}$ defined only up to global transform

$$\Lambda^{a}{}_{b} \mapsto \Lambda^{\prime a}{}_{b} = \Lambda^{a}{}_{c}\Omega^{c}{}_{b}, \quad \overset{\text{wa}}{\theta}{}^{a}{}_{\mu} \mapsto \overset{\text{w}}{\theta}{}^{\prime a}{}_{\mu} = (\Omega^{-1})^{a}{}_{b}\overset{\text{wb}}{\theta}{}^{b}{}_{\mu}.$$
(9)

- Questions posed by the adept of geometry:
 - 1. How can we determine the transformation $\Lambda^a{}_b$?

Intuitive conclusion: One can always use the Weitzenböck gauge.
 The spin connection is flat:

$$\partial_{\mu}\omega^{a}{}_{b\nu} - \partial_{\nu}\omega^{a}{}_{b\mu} + \omega^{a}{}_{c\mu}\omega^{c}{}_{b\nu} - \omega^{a}{}_{c\nu}\omega^{c}{}_{b\mu} \equiv 0.$$
(7)

⇒ The spin connection can always be written in the form

$$\omega^{a}{}_{b\mu} = \Lambda^{a}{}_{c}\partial_{\mu}(\Lambda^{-1})^{c}{}_{b}.$$
(8)

⇒ One can achieve the Weitzenböck gauge by $\theta^{a}_{\mu} = \Lambda^{a}_{b} \ddot{\theta}^{b}_{\mu}$. • Λ^{a}_{b} and $\ddot{\theta}^{a}_{\mu}$ defined only up to global transform

$$\Lambda^{a}{}_{b} \mapsto \Lambda^{\prime a}{}_{b} = \Lambda^{a}{}_{c}\Omega^{c}{}_{b}, \quad \overset{\text{wa}}{\theta}{}^{a}{}_{\mu} \mapsto \overset{\text{w}}{\theta}{}^{\prime a}{}_{\mu} = (\Omega^{-1})^{a}{}_{b}\overset{\text{wb}}{\theta}{}^{b}{}_{\mu}.$$
(9)

- Questions posed by the adept of geometry:
 - 1. How can we determine the transformation $\Lambda^a{}_b$?
 - 2. Is this even true?

Intuitive conclusion: One can always use the Weitzenböck gauge.
 The spin connection is flat:

$$\partial_{\mu}\omega^{a}{}_{b\nu} - \partial_{\nu}\omega^{a}{}_{b\mu} + \omega^{a}{}_{c\mu}\omega^{c}{}_{b\nu} - \omega^{a}{}_{c\nu}\omega^{c}{}_{b\mu} \equiv 0.$$
(7)

 \Rightarrow The spin connection can always be written in the form

$$\omega^{a}{}_{b\mu} = \Lambda^{a}{}_{c}\partial_{\mu}(\Lambda^{-1})^{c}{}_{b}.$$
(8)

⇒ One can achieve the Weitzenböck gauge by $\theta^a{}_{\mu} = \Lambda^a{}_b \ddot{\theta}^b{}_{\mu}$. • $\Lambda^a{}_b$ and $\ddot{\theta}^a{}_{\mu}$ defined only up to global transform

$$\Lambda^{a}{}_{b} \mapsto \Lambda^{\prime a}{}_{b} = \Lambda^{a}{}_{c}\Omega^{c}{}_{b}, \quad \overset{\text{wa}}{\theta}{}^{a}{}_{\mu} \mapsto \overset{\text{w}}{\theta}{}^{\prime a}{}_{\mu} = (\Omega^{-1})^{a}{}_{b}\overset{\text{w}}{\theta}{}^{b}{}_{\mu}.$$
(9)

- Questions posed by the adept of geometry:
 - 1. How can we determine the transformation $\Lambda^a{}_b$?
 - 2. Is this even true?
- Remark: this holds also in symmetric and general teleparallelism.

- Recall that we have gauge invariant quantities:
 - The metric $g_{\mu\nu} = \eta_{ab} \theta^a{}_{\mu} \theta^b{}_{\nu}$.
 - The teleparallel affine connection $\Gamma^{\mu}{}_{\nu\rho} = e_{a}{}^{\mu} \left(\partial_{\rho} \theta^{a}{}_{\nu} + \omega^{a}{}_{b\rho} \theta^{b}{}_{\nu} \right).$

- Recall that we have gauge invariant quantities:
 - The metric $g_{\mu\nu} = \eta_{ab} \theta^a{}_{\mu} \theta^b{}_{\nu}$.
 - The teleparallel affine connection $\Gamma^{\mu}{}_{\nu\rho} = e_{a}{}^{\mu} \left(\partial_{\rho} \theta^{a}{}_{\nu} + \omega^{a}{}_{b\rho} \theta^{b}{}_{\nu} \right).$
- The tetrad and connection satisfy the "tetrad postulate":

$$\partial_{\mu}\theta^{a}{}_{\nu} + \omega^{a}{}_{b\mu}\theta^{b}{}_{\nu} - \Gamma^{\rho}{}_{\nu\mu}\theta^{a}{}_{\rho} = 0.$$
 (10)

- Recall that we have gauge invariant quantities:
 - The metric $g_{\mu\nu} = \eta_{ab} \theta^a{}_{\mu} \theta^b{}_{\nu}$.
 - The teleparallel affine connection $\Gamma^{\mu}{}_{\nu\rho} = e_{a}{}^{\mu} \left(\partial_{\rho} \theta^{a}{}_{\nu} + \omega^{a}{}_{b\rho} \theta^{b}{}_{\nu} \right).$
- The tetrad and connection satisfy the "tetrad postulate":

$$\partial_{\mu} \overset{\mathsf{w}}{\theta}{}^{a}{}_{\nu} - \Gamma^{\rho}{}_{\nu\mu} \overset{\mathsf{w}}{\theta}{}^{a}{}_{\rho} = \mathbf{0} \,. \tag{10}$$

• The tetrad postulate also holds in the Weitzenböck gauge.

- Recall that we have gauge invariant quantities:
 - The metric $g_{\mu\nu} = \eta_{ab} \theta^a{}_{\mu} \theta^b{}_{\nu}$.
 - The teleparallel affine connection $\Gamma^{\mu}{}_{\nu\rho} = e_a{}^{\mu} \left(\partial_{\rho} \theta^a{}_{\nu} + \omega^a{}_{b\rho} \theta^b{}_{\nu} \right).$
- The tetrad and connection satisfy the "tetrad postulate":

$$\partial_{\mu} \overset{\mathsf{w}}{\theta}{}^{a}{}_{\nu} - \Gamma^{\rho}{}_{\nu\mu} \overset{\mathsf{w}}{\theta}{}^{a}{}_{\rho} = \mathbf{0} \,. \tag{10}$$

- The tetrad postulate also holds in the Weitzenböck gauge.
- \Rightarrow Each component $\ddot{\theta}^{a}_{\mu}dx^{\mu}$ is a covariantly constant covector field.

- Recall that we have gauge invariant quantities:
 - The metric $g_{\mu\nu} = \eta_{ab} \theta^a{}_{\mu} \theta^b{}_{\nu}$.
 - The teleparallel affine connection $\Gamma^{\mu}{}_{\nu\rho} = e_{a}{}^{\mu} \left(\partial_{\rho} \theta^{a}{}_{\nu} + \omega^{a}{}_{b\rho} \theta^{b}{}_{\nu} \right).$
- The tetrad and connection satisfy the "tetrad postulate":

$$\partial_{\mu} \ddot{\theta}^{a}{}_{\nu} - \Gamma^{\rho}{}_{\nu\mu} \ddot{\theta}^{a}{}_{\rho} = 0.$$
 (10)

- The tetrad postulate also holds in the Weitzenböck gauge.
- \Rightarrow Each component $\ddot{\theta}^{a}_{\mu} dx^{\mu}$ is a covariantly constant covector field.
- \Rightarrow Recipe for integrating the connection:
 - 1. Choose $\ddot{\theta}^{a}{}_{\mu}(x)$ at some $x \in M$ to fit with the metric.

- Recall that we have gauge invariant quantities:
 - The metric $g_{\mu\nu} = \eta_{ab} \theta^a{}_{\mu} \theta^b{}_{\nu}$.
 - The teleparallel affine connection $\Gamma^{\mu}{}_{\nu\rho} = e_{a}{}^{\mu} \left(\partial_{\rho} \theta^{a}{}_{\nu} + \omega^{a}{}_{b\rho} \theta^{b}{}_{\nu} \right).$
- The tetrad and connection satisfy the "tetrad postulate":

$$\partial_{\mu} \overset{\mathsf{w}}{\theta}{}^{a}{}_{\nu} - \Gamma^{\rho}{}_{\nu\mu} \overset{\mathsf{w}}{\theta}{}^{a}{}_{\rho} = \mathbf{0} \,. \tag{10}$$

- The tetrad postulate also holds in the Weitzenböck gauge.
- \Rightarrow Each component $\ddot{\theta}^{a}_{\mu} dx^{\mu}$ is a covariantly constant covector field.
- \Rightarrow Recipe for integrating the connection:
 - 1. Choose $\overset{\scriptscriptstyle{W}}{\theta}{}^{a}{}_{\mu}(x)$ at some $x \in M$ to fit with the metric.
 - 2. For any other $y \in M$, choose path $x \rightsquigarrow y$, and parallel transport.

- Recall that we have gauge invariant quantities:
 - The metric $g_{\mu\nu} = \eta_{ab} \theta^a{}_{\mu} \theta^b{}_{\nu}$.
 - The teleparallel affine connection $\Gamma^{\mu}{}_{\nu\rho} = e_{a}{}^{\mu} \left(\partial_{\rho} \theta^{a}{}_{\nu} + \omega^{a}{}_{b\rho} \theta^{b}{}_{\nu} \right).$
- The tetrad and connection satisfy the "tetrad postulate":

$$\partial_{\mu} \overset{\mathsf{w}}{\theta}{}^{a}{}_{\nu} - \Gamma^{\rho}{}_{\nu\mu} \overset{\mathsf{w}}{\theta}{}^{a}{}_{\rho} = \mathbf{0} \,. \tag{10}$$

- The tetrad postulate also holds in the Weitzenböck gauge.
- \Rightarrow Each component $\overset{\scriptscriptstyle W}{ heta}{}_{\mu} dx^{\mu}$ is a covariantly constant covector field.
- \Rightarrow Recipe for integrating the connection:
 - 1. Choose $\ddot{\theta}^{a}{}_{\mu}(x)$ at some $x \in M$ to fit with the metric.
 - 2. For any other $y \in M$, choose path $x \rightsquigarrow y$, and parallel transport.
 - Obtained tetrad satisfies required properties:

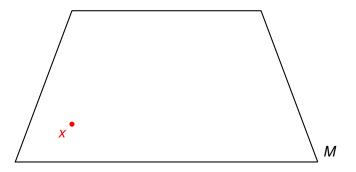
 $\checkmark \ \ddot{\theta}^{a}{}_{\mu}$ gives correct metric, since connection is metric-compatible.

- Recall that we have gauge invariant quantities:
 - The metric $g_{\mu\nu} = \eta_{ab} \theta^a{}_{\mu} \theta^b{}_{\nu}$.
 - The teleparallel affine connection $\Gamma^{\mu}{}_{\nu\rho} = e_{a}{}^{\mu} \left(\partial_{\rho} \theta^{a}{}_{\nu} + \omega^{a}{}_{b\rho} \theta^{b}{}_{\nu} \right).$
- The tetrad and connection satisfy the "tetrad postulate":

$$\partial_{\mu} \overset{\mathsf{w}}{\theta}{}^{a}{}_{\nu} - \Gamma^{\rho}{}_{\nu\mu} \overset{\mathsf{w}}{\theta}{}^{a}{}_{\rho} = \mathbf{0} \,. \tag{10}$$

- The tetrad postulate also holds in the Weitzenböck gauge.
- \Rightarrow Each component $\overset{w}{\theta}{}^{a}_{\mu}dx^{\mu}$ is a covariantly constant covector field.
- \Rightarrow Recipe for integrating the connection:
 - 1. Choose $\ddot{\theta}^{a}{}_{\mu}(x)$ at some $x \in M$ to fit with the metric.
 - 2. For any other $y \in M$, choose path $x \rightsquigarrow y$, and parallel transport.
- Obtained tetrad satisfies required properties:
 - $\checkmark \ \ddot{\theta}^{a}{}_{\mu}$ gives correct metric, since connection is metric-compatible.
 - \checkmark Global Lorentz invariance encoded in freedom of choice for $\check{\theta}^a{}_{\mu}(x)$.

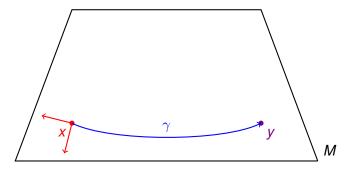
- Recipe for integrating the connection:
 - 1. At some $\mathbf{x} \in \mathbf{M}$,



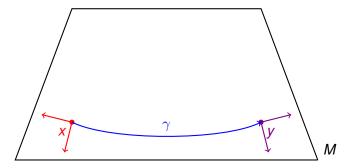
- Recipe for integrating the connection:
 - 1. At some $x \in M$, choose $\tilde{\theta}^{a}{}_{\mu}(x)$ to fit with the metric.

- Recipe for integrating the connection:
 - 1. At some $x \in M$, choose $\tilde{\theta}^{a}{}_{\mu}(x)$ to fit with the metric.
 - 2. For any other $y \in M$,

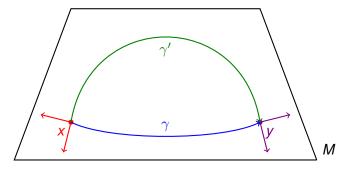
- Recipe for integrating the connection:
 - 1. At some $x \in M$, choose $\ddot{\theta}^a{}_{\mu}(x)$ to fit with the metric.
 - 2. For any other $y \in M$, choose path $x \stackrel{\gamma}{\leadsto} y$,



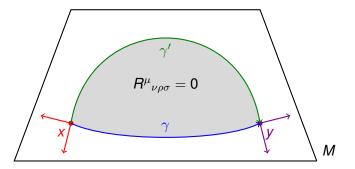
- Recipe for integrating the connection:
 - 1. At some $x \in M$, choose $\ddot{\theta}^a{}_{\mu}(x)$ to fit with the metric.
 - 2. For any other $y \in M$, choose path $x \stackrel{\gamma}{\rightarrow} y$, and parallel transport.



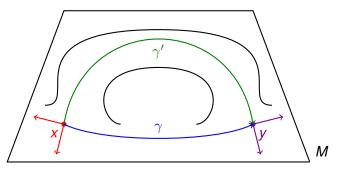
- Recipe for integrating the connection:
 - 1. At some $x \in M$, choose $\ddot{\theta}^a{}_{\mu}(x)$ to fit with the metric.
 - 2. For any other $y \in M$, choose path $x \stackrel{\gamma}{\rightarrow} y$, and parallel transport.
- What happens if we choose another path $x \stackrel{\gamma'}{\leadsto} y$?



- Recipe for integrating the connection:
 - 1. At some $x \in M$, choose $\ddot{\theta}^a{}_{\mu}(x)$ to fit with the metric.
 - 2. For any other $y \in M$, choose path $x \stackrel{\gamma}{\rightarrow} y$, and parallel transport.
- What happens if we choose another path $x \stackrel{\gamma'}{\leadsto} y$?
 - ✓ Vanishing curvature: parallel transport along both path agrees.



- Recipe for integrating the connection:
 - 1. At some $\mathbf{x} \in M$, choose $\ddot{\theta}^{a}{}_{\mu}(\mathbf{x})$ to fit with the metric.
 - 2. For any other $y \in M$, choose path $x \stackrel{\gamma}{\rightarrow} y$, and parallel transport.
- What happens if we choose another path $x \stackrel{\gamma'}{\leadsto} y$?
 - ✓ Vanishing curvature: parallel transport along both path agrees.
 - \oint But only if γ and γ' are homotopic paths!



Trouble with the tetrad?

- Starting from an arbitrary tetrad and flat spin connection:
 - One may always locally transform into Weitzenböck gauge.
 - One may not always globally transform into Weitzenböck gauge.

- Starting from an arbitrary tetrad and flat spin connection:
 - · One may always locally transform into Weitzenböck gauge.
 - One may not always globally transform into Weitzenböck gauge.
- Is there always some global tetrad and flat spin connection?

Trouble with the tetrad?

- Starting from an arbitrary tetrad and flat spin connection:
 - · One may always locally transform into Weitzenböck gauge.
 - One may not always globally transform into Weitzenböck gauge.
- Is there always some global tetrad and flat spin connection?
- The case of the tetrad:
 - We want to be able to describe spinor fields on spacetime.

Trouble with the tetrad?

- Starting from an arbitrary tetrad and flat spin connection:
 - · One may always locally transform into Weitzenböck gauge.
 - One may not always globally transform into Weitzenböck gauge.
- Is there always some global tetrad and flat spin connection?
- The case of the tetrad:
 - We want to be able to describe spinor fields on spacetime.
 - \Rightarrow Physical spacetime manifold must admit a spin structure.

- Starting from an arbitrary tetrad and flat spin connection:
 - One may always locally transform into Weitzenböck gauge.
 - One may not always globally transform into Weitzenböck gauge.
- Is there always some global tetrad and flat spin connection?
- The case of the tetrad:
 - $\circ~$ We want to be able to describe spinor fields on spacetime.
 - \Rightarrow Physical spacetime manifold must admit a spin structure.
 - \circ Spacetime admits a spin structure \Leftrightarrow it is parallelizable. [Geroch '68]

- Starting from an arbitrary tetrad and flat spin connection:
 - One may always locally transform into Weitzenböck gauge.
 - One may not always globally transform into Weitzenböck gauge.
- Is there always some global tetrad and flat spin connection?
- The case of the tetrad: \checkmark
 - $\circ~$ We want to be able to describe spinor fields on spacetime.
 - \Rightarrow Physical spacetime manifold must admit a spin structure.
 - \circ Spacetime admits a spin structure \Leftrightarrow it is parallelizable. [Geroch '68]
 - \Rightarrow Physical spacetime possesses global frame bundle sections.

- Starting from an arbitrary tetrad and flat spin connection:
 - One may always locally transform into Weitzenböck gauge.
 - One may not always globally transform into Weitzenböck gauge.
- Is there always some global tetrad and flat spin connection?
- The case of the tetrad: \checkmark
 - $\circ~$ We want to be able to describe spinor fields on spacetime.
 - \Rightarrow Physical spacetime manifold must admit a spin structure.
 - \circ Spacetime admits a spin structure \Leftrightarrow it is parallelizable. [Geroch '68]
 - \Rightarrow Physical spacetime possesses global frame bundle sections.
- The case of the spin connection:
 - $\circ~$ Parallelizable manifold always admits flat affine connection $\Gamma.$

- Starting from an arbitrary tetrad and flat spin connection:
 - One may always locally transform into Weitzenböck gauge.
 - One may not always globally transform into Weitzenböck gauge.
- Is there always some global tetrad and flat spin connection?
- The case of the tetrad: \checkmark
 - $\circ~$ We want to be able to describe spinor fields on spacetime.
 - \Rightarrow Physical spacetime manifold must admit a spin structure.
 - \circ Spacetime admits a spin structure \Leftrightarrow it is parallelizable. [Geroch '68]
 - \Rightarrow Physical spacetime possesses global frame bundle sections.
- The case of the spin connection: \checkmark
 - Parallelizable manifold always admits flat affine connection Γ.
 - \Rightarrow A spin connection can be constructed from the "tetrad postulate".

- Starting from an arbitrary tetrad and flat spin connection:
 - One may always locally transform into Weitzenböck gauge.
 - One may not always globally transform into Weitzenböck gauge.
- Is there always some global tetrad and flat spin connection?
- The case of the tetrad: \checkmark
 - $\circ~$ We want to be able to describe spinor fields on spacetime.
 - \Rightarrow Physical spacetime manifold must admit a spin structure.
 - \circ Spacetime admits a spin structure \Leftrightarrow it is parallelizable. [Geroch '68]
 - \Rightarrow Physical spacetime possesses global frame bundle sections.
- The case of the spin connection: \checkmark
 - Parallelizable manifold always admits flat affine connection Γ.
 - \Rightarrow A spin connection can be constructed from the "tetrad postulate".

 \Rightarrow Physical spacetime always has global tetrad and spin connection.

- Consider local Lorentz transformations $\Lambda: M \to O(1,3)$:
 - Simultaneous action on tetrad and spin connection:

$$(\theta,\omega)\mapsto (\Lambda\theta,\Lambda\omega\Lambda^{-1}+\Lambda d\Lambda^{-1}).$$
(11)

- (θ, ω) [∧] (θ', ω') if and only if $(g, \Gamma) = (g', \Gamma')$.
- \Rightarrow Orbits parametrized by metric and teleparallel affine connection.

- Consider local Lorentz transformations $\Lambda: M \to O(1,3)$:
 - Simultaneous action on tetrad and spin connection:

$$(\theta,\omega)\mapsto (\Lambda\theta,\Lambda\omega\Lambda^{-1}+\Lambda d\Lambda^{-1}).$$
(11)

- \circ (*θ*, *ω*)[∧](*θ'*, *ω'*) if and only if (*g*, Γ) = (*g'*, Γ').
- \Rightarrow Orbits parametrized by metric and teleparallel affine connection.
- Consider locally O(1,3)-invariant teleparallel gravity theory:
 - $\Lambda: M \to O(1,3)$ maps solutions to solutions.
 - \Rightarrow Only metric and affine connection become dynamical variables.

- Consider local Lorentz transformations $\Lambda: M \to O(1,3)$:
 - Simultaneous action on tetrad and spin connection:

$$(\theta,\omega)\mapsto (\Lambda\theta,\Lambda\omega\Lambda^{-1}+\Lambda d\Lambda^{-1}).$$
(11)

- $\circ \ (heta,\omega) \stackrel{\scriptscriptstyle\wedge}{\sim} (heta',\omega')$ if and only if $(g,\Gamma)=(g',\Gamma')$.
- \Rightarrow Orbits parametrized by metric and teleparallel affine connection.
- Consider locally O(1,3)-invariant teleparallel gravity theory:
 - $\Lambda: M \to O(1,3)$ maps solutions to solutions.
 - \Rightarrow Only metric and affine connection become dynamical variables.
- Decomposition of the Lorentz group:
 - $\circ~$ Proper Lorentz group $SO_0(1,3)\subset O(1,3),\,\mathfrak{T},\mathfrak{P}\in O(1,3).$
 - $\,\circ\,$ Standard model of particle physics only invariant under SO_0(1,3).
 - \Rightarrow Need orientation and time orientation in addition to g and Γ .
 - \Rightarrow Physical geometries parametrized by orbits of SO₀(1,3).

- Consider local Lorentz transformations $\Lambda: M \to O(1,3)$:
 - Simultaneous action on tetrad and spin connection:

$$(\theta,\omega)\mapsto (\Lambda\theta,\Lambda\omega\Lambda^{-1}+\Lambda d\Lambda^{-1}).$$
(11)

- $\circ (\theta, \omega) \stackrel{\wedge}{\sim} (\theta', \omega')$ if and only if $(g, \Gamma) = (g', \Gamma')$.
- \Rightarrow Orbits parametrized by metric and teleparallel affine connection.
- Consider locally O(1,3)-invariant teleparallel gravity theory:
 - $\Lambda: M \to O(1,3)$ maps solutions to solutions.
 - \Rightarrow Only metric and affine connection become dynamical variables.
- Decomposition of the Lorentz group:
 - $\circ~$ Proper Lorentz group $SO_0(1,3)\subset O(1,3),\,\mathfrak{T},\mathfrak{P}\in O(1,3).$
 - $\,\circ\,$ Standard model of particle physics only invariant under SO_0(1,3).
 - \Rightarrow Need orientation and time orientation in addition to g and Γ .
 - \Rightarrow Physical geometries parametrized by orbits of SO₀(1,3).
- Physical geometry: $SO_0(1,3)$ reduction of the frame bundle & Γ .

What are the dynamical field variables in teleparallel gravity?
 1. Only a tetrad.

- What are the dynamical field variables in teleparallel gravity?
 - 1. Only a tetrad.
 - 2. A tetrad and a flat, antisymmetric spin connection.
- Problems encountered with choice of variables:
 - 1. Does not reflect observed local Lorentz invariance.

- What are the dynamical field variables in teleparallel gravity?
 - 1. Only a tetrad.
 - 2. A tetrad and a flat, antisymmetric spin connection.
 - 3. A metric and a flat, metric-compatible affine connection.
- Problems encountered with choice of variables:
 - 1. Does not reflect observed local Lorentz invariance.
 - 2. Contains unphysical gauge degrees of freedom as variables.

- What are the dynamical field variables in teleparallel gravity?
 - 1. Only a tetrad.
 - 2. A tetrad and a flat, antisymmetric spin connection.
 - 3. A metric and a flat, metric-compatible affine connection.
 - 4. A flat connection on a $SO_0(1,3)$ -reduction of the frame bundle.
- Problems encountered with choice of variables:
 - 1. Does not reflect observed local Lorentz invariance.
 - 2. Contains unphysical gauge degrees of freedom as variables.
 - 3. Does not contain information on orientation and time orientation.

- What are the dynamical field variables in teleparallel gravity?
 - 1. Only a tetrad.
 - 2. A tetrad and a flat, antisymmetric spin connection.
 - 3. A metric and a flat, metric-compatible affine connection.
 - 4. A flat connection on a $SO_0(1,3)$ -reduction of the frame bundle.
- Problems encountered with choice of variables:
 - 1. Does not reflect observed local Lorentz invariance.
 - 2. Contains unphysical gauge degrees of freedom as variables.
 - 3. Does not contain information on orientation and time orientation.
- Can we still use any of the other field variables?
- 4 \rightarrow 3: If (time) orientation is fixed, metric and connection are sufficient.

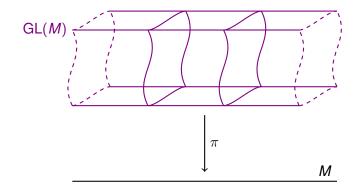
- What are the dynamical field variables in teleparallel gravity?
 - 1. Only a tetrad.
 - 2. A tetrad and a flat, antisymmetric spin connection.
 - 3. A metric and a flat, metric-compatible affine connection.
 - 4. A flat connection on a $SO_0(1,3)$ -reduction of the frame bundle.
- Problems encountered with choice of variables:
 - 1. Does not reflect observed local Lorentz invariance.
 - 2. Contains unphysical gauge degrees of freedom as variables.
 - 3. Does not contain information on orientation and time orientation.
- Can we still use any of the other field variables?
- $4 \rightarrow 3$: If (time) orientation is fixed, metric and connection are sufficient.
- $3 \rightarrow$ 2: Possible to choose tetrad and spin connection as representatives.

- What are the dynamical field variables in teleparallel gravity?
 - 1. Only a tetrad.
 - 2. A tetrad and a flat, antisymmetric spin connection.
 - 3. A metric and a flat, metric-compatible affine connection.
 - 4. A flat connection on a $SO_0(1,3)$ -reduction of the frame bundle.
- Problems encountered with choice of variables:
 - 1. Does not reflect observed local Lorentz invariance.
 - 2. Contains unphysical gauge degrees of freedom as variables.
 - 3. Does not contain information on orientation and time orientation.
- Can we still use any of the other field variables?
- $4 \rightarrow 3$: If (time) orientation is fixed, metric and connection are sufficient.
- $3 \rightarrow 2: \ \mbox{Possible}$ to choose tetrad and spin connection as representatives.
- $2 \rightarrow 1$: Locally possible to transform into Weitzenböck gauge.

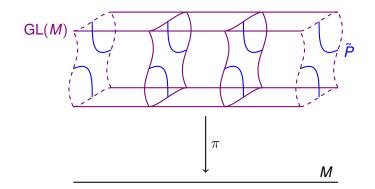
- What are the dynamical field variables in teleparallel gravity?
 - 1. Only a tetrad.
 - 2. A tetrad and a flat, antisymmetric spin connection.
 - 3. A metric and a flat, metric-compatible affine connection.
 - 4. A flat connection on a $SO_0(1,3)$ -reduction of the frame bundle.
- Problems encountered with choice of variables:
 - 1. Does not reflect observed local Lorentz invariance.
 - 2. Contains unphysical gauge degrees of freedom as variables.
 - 3. Does not contain information on orientation and time orientation.
- Can we still use any of the other field variables?
- 4 \rightarrow 3: If (time) orientation is fixed, metric and connection are sufficient.
- $3 \rightarrow$ 2: Possible to choose tetrad and spin connection as representatives.
- $2 \rightarrow 1$: Locally possible to transform into Weitzenböck gauge.

\Rightarrow Most fundamental variables found in geometric picture.

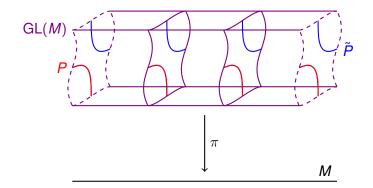
1. Start with the general linear frame bundle $\pi : GL(M) \rightarrow M$.



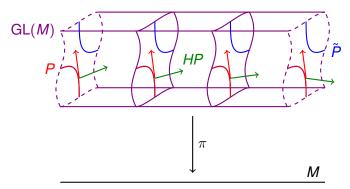
- 1. Start with the general linear frame bundle $\pi : GL(M) \rightarrow M$.
- 2. Metric reduces bundle to orthonormal frame bundle \tilde{P} .



- 1. Start with the general linear frame bundle $\pi : GL(M) \rightarrow M$.
- 2. Metric reduces bundle to orthonormal frame bundle \tilde{P} .
- 3. Orientation and time orientation select oriented frame bundle P.



- 1. Start with the general linear frame bundle $\pi : GL(M) \rightarrow M$.
- 2. Metric reduces bundle to orthonormal frame bundle \tilde{P} .
- 3. Orientation and time orientation select oriented frame bundle P.
- 4. Connection specifies horizontal directions $TP = VP \oplus HP$ in P.



Tetrads and spin structure

- How to obtain a spin structure from a tetrad $e: M \rightarrow P$?
 - 1. Spin structure obtained from trivial bundle $Q = M \times SL(2, \mathbb{C})$.
 - 2. Use covering map $\sigma : SL(2, \mathbb{C}) \rightarrow SO_0(1, 3)$.
 - 3. Define spin structure $\varphi : \mathbf{Q} \rightarrow \mathbf{P}$ as map

$$\varphi(\mathbf{x}, \mathbf{z}) = \mathbf{e}(\mathbf{x}) \cdot \sigma(\mathbf{z}) \,. \tag{12}$$

Tetrads and spin structure

- How to obtain a spin structure from a tetrad $e: M \rightarrow P$?
 - 1. Spin structure obtained from trivial bundle $Q = M \times SL(2, \mathbb{C})$.
 - 2. Use covering map $\sigma : SL(2, \mathbb{C}) \rightarrow SO_0(1, 3)$.
 - 3. Define spin structure $\varphi : \mathbf{Q} \rightarrow \mathbf{P}$ as map

$$\varphi(\mathbf{x}, \mathbf{z}) = \mathbf{e}(\mathbf{x}) \cdot \sigma(\mathbf{z}) \,. \tag{12}$$

- Do different tetrads e, e' define the same spin structure?
 - Consider non-simply connected manifold *M*.
 - Let $\gamma : [0, 1] \to M$ with $\gamma(0) = \gamma(1)$ non-contractible.
 - Let $\Lambda : M \to SO_0(1,3)$ such that $\Lambda \circ \gamma$ has odd winding.
 - Tetrads $e = e' \cdot \Lambda$ define spin structures φ, φ' .
 - Assume existence of bundle isomorphism $\mu : \mathbf{Q} \rightarrow \mathbf{Q}, \, \varphi = \varphi' \circ \mu$.
 - \Rightarrow Curve connects antipodes: $\mu(\gamma(1), \mathbb{1}) = -\mu(\gamma(0), \mathbb{1}).$
 - \notin Contradicts $\gamma(0) = \gamma(1)$.
 - \Rightarrow Spin structures φ, φ' are inequivalent.

- Clash of two notions of orthonormal frames:
 - 1. Tetrad $e: M \rightarrow P$ solving teleparallel field equation.
 - 2. Observer frame $\tilde{e} : \mathbb{R} \to \gamma^* P$ along trajectory γ .

- Clash of two notions of orthonormal frames:
 - 1. Tetrad $e: M \rightarrow P$ solving teleparallel field equation.
 - 2. Observer frame $\tilde{e} : \mathbb{R} \to \gamma^* P$ along trajectory γ .
- Parallel transport properties of frames:

$$\mathbf{0} = \dot{\gamma}^{\mu} (\partial_{\mu} \tilde{\boldsymbol{e}}_{\boldsymbol{a}}^{\nu} + \mathring{\Gamma}^{\nu}{}_{\rho\mu} \tilde{\boldsymbol{e}}_{\boldsymbol{a}}^{\rho}) = \dot{\gamma}^{\mu} (\partial_{\mu} \boldsymbol{e}_{\boldsymbol{a}}^{\nu} - \omega^{b}{}_{\boldsymbol{a}\mu} \boldsymbol{e}_{\boldsymbol{b}}^{\nu} + \Gamma^{\nu}{}_{\rho\mu} \boldsymbol{e}_{\boldsymbol{a}}^{\rho}).$$
(13)

- Clash of two notions of orthonormal frames:
 - 1. Tetrad $e: M \rightarrow P$ solving teleparallel field equation.
 - 2. Observer frame $\tilde{e} : \mathbb{R} \to \gamma^* P$ along trajectory γ .
- Parallel transport properties of frames in Weitzenböck gauge:

$$\mathbf{D} = \dot{\gamma}^{\mu} (\partial_{\mu} \tilde{\boldsymbol{e}}_{\boldsymbol{a}}^{\nu} + \mathring{\Gamma}^{\nu}{}_{\rho\mu} \tilde{\boldsymbol{e}}_{\boldsymbol{a}}^{\rho}) = \dot{\gamma}^{\mu} (\partial_{\mu} \boldsymbol{e}_{\boldsymbol{a}}^{\nu} + \Gamma^{\nu}{}_{\rho\mu} \boldsymbol{e}_{\boldsymbol{a}}^{\rho}).$$
(13)

- Possible to identify teleparallel as observer frames?
 - 1. e forms congruence, transported with flat connection.
 - 2. ē only defined on worldline, no congruences.

- Clash of two notions of orthonormal frames:
 - 1. Tetrad $e: M \rightarrow P$ solving teleparallel field equation.
 - 2. Observer frame $\tilde{e} : \mathbb{R} \to \gamma^* P$ along trajectory γ .
- Parallel transport properties of frames in Weitzenböck gauge:

$$\mathbf{0} = \dot{\gamma}^{\mu} (\partial_{\mu} \tilde{\boldsymbol{e}}_{\boldsymbol{a}}^{\nu} + \mathring{\Gamma}^{\nu}{}_{\rho\mu} \tilde{\boldsymbol{e}}_{\boldsymbol{a}}^{\rho}) = \dot{\gamma}^{\mu} (\partial_{\mu} \boldsymbol{e}_{\boldsymbol{a}}^{\nu} + \Gamma^{\nu}{}_{\rho\mu} \boldsymbol{e}_{\boldsymbol{a}}^{\rho}) \,. \tag{13}$$

- Possible to identify teleparallel as observer frames?
 - 1. e forms congruence, transported with flat connection.
 - 2. ē only defined on worldline, no congruences.
- e and \tilde{e} only agree up to local Lorentz transformation.

- Clash of two notions of orthonormal frames:
 - 1. Tetrad $e: M \rightarrow P$ solving teleparallel field equation.
 - 2. Observer frame $\tilde{e} : \mathbb{R} \to \gamma^* P$ along trajectory γ .
- Parallel transport properties of frames in Weitzenböck gauge:

$$\mathbf{D} = \dot{\gamma}^{\mu} (\partial_{\mu} \tilde{\boldsymbol{e}}_{\boldsymbol{a}}^{\nu} + \mathring{\Gamma}^{\nu}{}_{\rho\mu} \tilde{\boldsymbol{e}}_{\boldsymbol{a}}^{\rho}) = \dot{\gamma}^{\mu} (\partial_{\mu} \boldsymbol{e}_{\boldsymbol{a}}^{\nu} + \Gamma^{\nu}{}_{\rho\mu} \boldsymbol{e}_{\boldsymbol{a}}^{\rho}).$$
(13)

- Possible to identify teleparallel as observer frames?
 - 1. e forms congruence, transported with flat connection.
 - 2. *ẽ* only defined on worldline, no congruences.
- e and \tilde{e} only agree up to local Lorentz transformation.
- \Rightarrow Observer geometry defined by metric: LLI holds.

- 1. Physical observations single out frames which are:
 - Orthonormal by using clocks, measuring rods, simultaneity.
 - Oriented by using particles whose interaction violates parity.
 - Time oriented by using cosmic evolution as time arrow.

- 1. Physical observations single out frames which are:
 - Orthonormal by using clocks, measuring rods, simultaneity.
 - Oriented by using particles whose interaction violates parity.
 - $\circ~$ Time oriented by using cosmic evolution as time arrow.
- 2. Physically observable geometry to be determined by gravity.

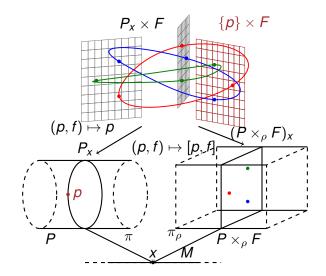
- 1. Physical observations single out frames which are:
 - Orthonormal by using clocks, measuring rods, simultaneity.
 - Oriented by using particles whose interaction violates parity.
 - $\circ~$ Time oriented by using cosmic evolution as time arrow.
- 2. Physically observable geometry to be determined by gravity.
- \Rightarrow Gravity theory based on SO₀(1,3)-reduction of frame bundle.

- 1. Physical observations single out frames which are:
 - Orthonormal by using clocks, measuring rods, simultaneity.
 - Oriented by using particles whose interaction violates parity.
 - $\circ~$ Time oriented by using cosmic evolution as time arrow.
- 2. Physically observable geometry to be determined by gravity.
- \Rightarrow Gravity theory based on SO₀(1,3)-reduction of frame bundle.
- 3. Teleparallel gravity: flat, affine connection as additional variable:
 - General teleparallel gravity: connection couples to metric.
 - $\circ~$ TEGR: connection \sim pure divergence in action \nrightarrow field equations.

- 1. Physical observations single out frames which are:
 - $\circ~$ Orthonormal by using clocks, measuring rods, simultaneity.
 - $\circ~$ Oriented by using particles whose interaction violates parity.
 - $\circ~$ Time oriented by using cosmic evolution as time arrow.
- 2. Physically observable geometry to be determined by gravity.
- \Rightarrow Gravity theory based on SO₀(1,3)-reduction of frame bundle.
- 3. Teleparallel gravity: flat, affine connection as additional variable:
 - General teleparallel gravity: connection couples to metric.
 - $\circ~$ TEGR: connection \sim pure divergence in action \nrightarrow field equations.
- 4. Other variables can be chosen for convenience:
 - Metric and affine connection if orientation is fixed.
 - Tetrad and spin connection as representatives.
 - Local Lorentz transformation for local Weitzenböck gauge.

- 1. Physical observations single out frames which are:
 - $\circ~$ Orthonormal by using clocks, measuring rods, simultaneity.
 - $\circ~$ Oriented by using particles whose interaction violates parity.
 - $\circ~$ Time oriented by using cosmic evolution as time arrow.
- 2. Physically observable geometry to be determined by gravity.
- \Rightarrow Gravity theory based on SO₀(1,3)-reduction of frame bundle.
- 3. Teleparallel gravity: flat, affine connection as additional variable:
 - General teleparallel gravity: connection couples to metric.
 - $\circ~$ TEGR: connection \sim pure divergence in action \nrightarrow field equations.
- 4. Other variables can be chosen for convenience:
 - Metric and affine connection if orientation is fixed.
 - Tetrad and spin connection as representatives.
 - Local Lorentz transformation for local Weitzenböck gauge.
- 5. Spin structure obtained from (equivalence class of) tetrad.

Extra: the associated bundle



Extra: the many faces of connections

