A geometric view on local Lorentz transformations in teleparallel gravity

Manuel Hohmann

Laboratory of Theoretical Physics - Institute of Physics - University of Tartu Center of Excellence "The Dark Side of the Universe"

DPG Spring Conference - 22. March 2023

Motivation: problems to solve

- So far unexplained cosmological observations:
- Accelerating expansion of the universe.
- Homogeneity of cosmic microwave background.

Motivation: problems to solve

- So far unexplained cosmological observations:
- Accelerating expansion of the universe.
- Homogeneity of cosmic microwave background.
- Models for explaining these observations:
- ^CDM model / dark energy.
- Inflation.

Motivation: problems to solve

- So far unexplained cosmological observations:
- Accelerating expansion of the universe.
- Homogeneity of cosmic microwave background.
- Models for explaining these observations:
- ^CDM model / dark energy.
- Inflation.
- Physical mechanisms are not understood:
- Unknown type of matter?
- Modification of the laws of gravity?
- Scalar field in addition to metric mediating gravity?
- Quantum gravity effects?

Motivation: problems to solve

- So far unexplained cosmological observations:
- Accelerating expansion of the universe.
- Homogeneity of cosmic microwave background.
- Models for explaining these observations:
- ^CDM model / dark energy.
- Inflation.
- Physical mechanisms are not understood:
- Unknown type of matter?
- Modification of the laws of gravity?
- Scalar field in addition to metric mediating gravity?
- Quantum gravity effects?
- Idea here: modification of the geometric structure of spacetime!
- Study classical gravity theories based on modified geometry.
- Consider geometries as effective models of quantum gravity.
- Derive observable effects to test modified geometry.

Field variables in teleparallel gravity

- Metric teleparallelism conventionally formulated using:
- Tetrad / coframe: $\theta^{a}=\theta^{a}{ }_{\mu} \mathrm{d} x^{\mu}$ with inverse $e_{a}=e_{a}{ }^{\mu} \partial_{\mu}$.
- Spin connection: $\omega^{a}{ }_{b}=\omega^{a}{ }_{b \mu} \mathrm{~d} x^{\mu}$.

Field variables in teleparallel gravity

- Metric teleparallelism conventionally formulated using:
- Tetrad / coframe: $\theta^{a}=\theta^{a}{ }_{\mu} \mathrm{d} x^{\mu}$ with inverse $e_{a}=e_{a}{ }^{\mu} \partial_{\mu}$.
- Spin connection: $\omega^{a}{ }_{b}=\omega^{a}{ }_{b \mu} \mathrm{~d} x^{\mu}$.
- Induced metric-affine geometry:
- Metric:

$$
\begin{equation*}
g_{\mu \nu}=\eta_{a b} \theta^{a}{ }_{\mu} \theta^{b}{ }_{\nu} . \tag{1}
\end{equation*}
$$

- Affine connection:

$$
\begin{equation*}
\Gamma^{\mu}{ }_{\nu \rho}=e_{a}{ }^{\mu}\left(\partial_{\rho} \theta^{a}{ }_{\nu}+\omega^{a}{ }_{b \rho} \theta^{b}{ }_{\nu}\right) . \tag{2}
\end{equation*}
$$

Field variables in teleparallel gravity

- Metric teleparallelism conventionally formulated using:
- Tetrad / coframe: $\theta^{a}=\theta^{a}{ }_{\mu} \mathrm{d} x^{\mu}$ with inverse $e_{a}=e_{a}{ }^{\mu} \partial_{\mu}$.
- Spin connection: $\omega^{a}{ }_{b}=\omega^{a}{ }_{b \mu} \mathrm{~d} x^{\mu}$.
- Induced metric-affine geometry:
- Metric:

$$
\begin{equation*}
g_{\mu \nu}=\eta_{a b} \theta^{a}{ }_{\mu} \theta^{b}{ }_{\nu} . \tag{1}
\end{equation*}
$$

- Affine connection:

$$
\begin{equation*}
\Gamma^{\mu}{ }_{\nu \rho}=e_{a}{ }^{\mu}\left(\partial_{\rho} \theta^{a}{ }_{\nu}+\omega^{a}{ }_{b \rho} \theta^{b}{ }_{\nu}\right) . \tag{2}
\end{equation*}
$$

- Conditions on the spin connection:
- Flatness $R=0$:

$$
\begin{equation*}
\partial_{\mu} \omega^{a}{ }_{b \nu}-\partial_{\nu} \omega^{a}{ }_{b \mu}+\omega^{a}{ }_{c \mu} \omega^{c}{ }_{b \nu}-\omega^{a}{ }_{c \nu} \omega^{c}{ }_{b \mu}=0 . \tag{3}
\end{equation*}
$$

- Metric compatibility $Q=0$:

$$
\begin{equation*}
\eta_{a c} \omega^{c}{ }_{b \mu}+\eta_{b c} \omega^{c}{ }_{a \mu}=0 . \tag{4}
\end{equation*}
$$

Local Lorentz transformations

- Local Lorentz transformation of the tetrad only:

$$
\begin{equation*}
\theta^{a}{ }_{\mu} \mapsto \theta^{\prime a}{ }_{\mu}=\Lambda^{a}{ }_{b} \theta^{b}{ }_{\mu} . \tag{5}
\end{equation*}
$$

\checkmark Metric is invariant: $g_{\mu \nu}^{\prime}=g_{\mu \nu}$.
\& Connection is not invariant: $\Gamma^{\mu}{ }_{\nu \rho} \neq \Gamma^{\mu}{ }_{\nu \rho}$.

Local Lorentz transformations

- Local Lorentz transformation of the tetrad only:

$$
\begin{equation*}
\theta^{a}{ }_{\mu} \mapsto \theta^{\prime a}{ }_{\mu}=\Lambda^{a}{ }_{b} \theta^{b}{ }_{\mu} \tag{5}
\end{equation*}
$$

\checkmark Metric is invariant: $g_{\mu \nu}^{\prime}=g_{\mu \nu}$.
文 Connection is not invariant: $\Gamma^{\prime \mu}{ }_{\nu \rho} \neq \Gamma^{\mu}{ }_{\nu \rho}$.

- Perform also transformation of the spin connection:

$$
\begin{equation*}
\omega_{b \mu}^{a} \mapsto \omega^{\prime a}{ }_{b \mu}=\Lambda_{c}^{a}\left(\Lambda^{-1}\right)^{d}{ }_{b} \omega^{c}{ }_{d \mu}+\Lambda_{c}^{a}{ }_{c} \partial_{\mu}\left(\Lambda^{-1}\right)^{c}{ }_{b} \tag{6}
\end{equation*}
$$

\checkmark Metric is invariant: $g_{\mu \nu}^{\prime}=g_{\mu \nu}$.
\checkmark Connection is invariant: $\Gamma^{\prime \mu}{ }_{\nu \rho}=\Gamma^{\mu}{ }_{\nu \rho}$.

Local Lorentz transformations

- Local Lorentz transformation of the tetrad only:

$$
\begin{equation*}
\theta^{a}{ }_{\mu} \mapsto \theta^{\prime a}{ }_{\mu}=\Lambda^{a}{ }_{b} \theta^{b}{ }_{\mu} \tag{5}
\end{equation*}
$$

\checkmark Metric is invariant: $g_{\mu \nu}^{\prime}=g_{\mu \nu}$.
\& Connection is not invariant: $\Gamma^{\mu}{ }_{\nu \rho} \neq \Gamma^{\mu}{ }_{\nu \rho}$.

- Perform also transformation of the spin connection:

$$
\begin{equation*}
\omega^{a}{ }_{b \mu} \mapsto \omega^{\prime a}{ }_{b \mu}=\Lambda_{c}^{a}\left(\Lambda^{-1}\right)^{d}{ }_{b} \omega^{c}{ }_{d \mu}+\Lambda^{a}{ }_{c} \partial_{\mu}\left(\Lambda^{-1}\right)^{c}{ }_{b} \tag{6}
\end{equation*}
$$

\checkmark Metric is invariant: $g_{\mu \nu}^{\prime}=g_{\mu \nu}$.
\checkmark Connection is invariant: $\Gamma^{\mu}{ }_{\nu \rho}=\Gamma^{\mu}{ }_{\nu \rho}$.
\Rightarrow Metric-affine geometry equivalently described by:

- Metric $g_{\mu \nu}$ and affine connection $\Gamma^{\mu}{ }_{\nu \rho}$.
- Equivalence class of tetrad $\theta^{a}{ }_{\mu}$ and spin connection $\omega^{a}{ }_{b \mu}$.
- Equivalence defined with respect to local Lorentz transformations.

Local Lorentz transformations

- Local Lorentz transformation of the tetrad only:

$$
\begin{equation*}
\theta_{\mu}^{a} \mapsto \theta_{\mu}^{\prime a}=\Lambda_{b}^{a} \theta_{\mu}^{b} \tag{5}
\end{equation*}
$$

\checkmark Metric is invariant: $g_{\mu \nu}^{\prime}=g_{\mu \nu}$.
\& Connection is not invariant: $\Gamma^{\mu}{ }_{\nu \rho} \neq \Gamma^{\mu}{ }_{\nu \rho}$.

- Perform also transformation of the spin connection:

$$
\begin{equation*}
\omega^{a}{ }_{b \mu} \mapsto \omega^{\prime a}{ }_{b \mu}=\Lambda_{c}^{a}\left(\Lambda^{-1}\right)^{d}{ }_{b} \omega^{c}{ }_{d \mu}+\Lambda^{a}{ }_{c} \partial_{\mu}\left(\Lambda^{-1}\right)^{c}{ }_{b} \tag{6}
\end{equation*}
$$

\checkmark Metric is invariant: $g_{\mu \nu}^{\prime}=g_{\mu \nu}$.
\checkmark Connection is invariant: $\Gamma^{\prime \mu}{ }_{\nu \rho}=\Gamma^{\mu}{ }_{\nu \rho}$.
\Rightarrow Metric-affine geometry equivalently described by:

- Metric $g_{\mu \nu}$ and affine connection $\Gamma^{\mu}{ }_{\nu \rho}$.
- Equivalence class of tetrad $\theta^{a}{ }_{\mu}$ and spin connection $\omega^{a}{ }_{b \mu}$.
- Equivalence defined with respect to local Lorentz transformations.
- Is LLI broken if teleparallel gravity action depends on $\Gamma^{\mu}{ }_{\nu \rho}$?

The Weitzenböck gauge

- Intuitive conclusion: One can always use the Weitzenböck gauge.
- The spin connection is flat:

$$
\begin{equation*}
\partial_{\mu} \omega^{a}{ }_{b \nu}-\partial_{\nu} \omega^{a}{ }_{b \mu}+\omega^{a}{ }_{c \mu} \omega^{c}{ }_{b \nu}-\omega^{a}{ }_{c \nu} \omega^{c}{ }_{b \mu} \equiv 0 . \tag{7}
\end{equation*}
$$

\Rightarrow The spin connection can always be written in the form

$$
\begin{equation*}
\omega^{a}{ }_{b \mu}=\Lambda^{a}{ }_{c} \partial_{\mu}\left(\Lambda^{-1}\right)^{c}{ }_{b} . \tag{8}
\end{equation*}
$$

\Rightarrow One can achieve the Weitzenböck gauge by $\theta^{a}{ }_{\mu}=\Lambda^{a}{ }_{b}{ }^{\omega}{ }^{b}{ }_{\mu}$.

The Weitzenböck gauge

- Intuitive conclusion: One can always use the Weitzenböck gauge.
- The spin connection is flat:

$$
\begin{equation*}
\partial_{\mu} \omega^{a}{ }_{b \nu}-\partial_{\nu} \omega^{a}{ }_{b \mu}+\omega^{a}{ }_{c \mu} \omega^{c}{ }_{b \nu}-\omega^{a}{ }_{c \nu} \omega^{c}{ }_{b \mu} \equiv 0 . \tag{7}
\end{equation*}
$$

\Rightarrow The spin connection can always be written in the form

$$
\begin{equation*}
\omega^{a}{ }_{b \mu}=\Lambda^{a}{ }_{c} \partial_{\mu}\left(\Lambda^{-1}\right)^{c}{ }_{b} . \tag{8}
\end{equation*}
$$

\Rightarrow One can achieve the Weitzenböck gauge by $\theta^{a}{ }_{\mu}=\Lambda^{a}{ }_{b}{ }^{\mu}{ }^{b}{ }_{\mu}$.

- $\Lambda^{a}{ }_{b}$ and ${ }^{w}{ }^{a}{ }_{\mu}$ defined only up to global transform

$$
\begin{equation*}
\Lambda_{b}^{a} \mapsto \Lambda^{\prime a}{ }_{b}=\Lambda_{c}^{a}{ }_{c} \Omega_{b}^{c}, \quad \stackrel{\omega}{\theta}^{a}{ }_{\mu} \mapsto \stackrel{\omega}{\theta}^{\prime}{ }_{\mu}=\left(\Omega^{-1}\right)^{a}{ }_{b} \stackrel{\omega}{\theta}^{b}{ }_{\mu} . \tag{9}
\end{equation*}
$$

The Weitzenböck gauge

- Intuitive conclusion: One can always use the Weitzenböck gauge.
- The spin connection is flat:

$$
\begin{equation*}
\partial_{\mu} \omega^{a}{ }_{b \nu}-\partial_{\nu} \omega^{a}{ }_{b \mu}+\omega^{a}{ }_{c \mu} \omega^{c}{ }_{b \nu}-\omega^{a}{ }_{c \nu} \omega^{c}{ }_{b \mu} \equiv 0 . \tag{7}
\end{equation*}
$$

\Rightarrow The spin connection can always be written in the form

$$
\begin{equation*}
\omega_{b \mu}^{a}=\Lambda_{c}^{a} \partial_{\mu}\left(\Lambda^{-1}\right)^{c}{ }_{b} \tag{8}
\end{equation*}
$$

\Rightarrow One can achieve the Weitzenböck gauge by $\theta^{a}{ }_{\mu}=\Lambda^{a}{ }_{b}{ }^{\mu}{ }^{b}{ }_{\mu}$.

- $\Lambda^{a}{ }_{b}$ and ${ }^{w}{ }^{a}{ }_{\mu}$ defined only up to global transform

$$
\begin{equation*}
\Lambda_{b}^{a} \mapsto \Lambda^{\prime a}{ }_{b}=\Lambda^{a}{ }_{c} \Omega^{c}{ }_{b}, \quad \stackrel{w}{\theta}^{a}{ }_{\mu} \mapsto \stackrel{w}{\theta}^{\prime a}{ }_{\mu}=\left(\Omega^{-1}\right)^{a}{ }_{b}{ }^{w}{ }^{b}{ }_{\mu} . \tag{9}
\end{equation*}
$$

- Questions posed by the adept of geometry:

1. How can we determine the transformation $\wedge^{a}{ }_{b}$?

The Weitzenböck gauge

- Intuitive conclusion: One can always use the Weitzenböck gauge.
- The spin connection is flat:

$$
\begin{equation*}
\partial_{\mu} \omega^{a}{ }_{b \nu}-\partial_{\nu} \omega^{a}{ }_{b \mu}+\omega^{a}{ }_{c \mu} \omega^{c}{ }_{b \nu}-\omega^{a}{ }_{c \nu} \omega^{c}{ }_{b \mu} \equiv 0 . \tag{7}
\end{equation*}
$$

\Rightarrow The spin connection can always be written in the form

$$
\begin{equation*}
\omega^{a}{ }_{b \mu}=\Lambda^{a}{ }_{c} \partial_{\mu}\left(\Lambda^{-1}\right)^{c}{ }_{b} . \tag{8}
\end{equation*}
$$

\Rightarrow One can achieve the Weitzenböck gauge by $\theta^{a}{ }_{\mu}=\Lambda^{a}{ }_{b}{ }^{\omega}{ }^{b}{ }_{\mu}$.

- $\Lambda^{a}{ }_{b}$ and $\stackrel{\omega}{\theta}^{a}{ }_{\mu}$ defined only up to global transform

$$
\begin{equation*}
\Lambda_{b}^{a} \mapsto \Lambda^{\prime a}{ }_{b}=\Lambda^{a}{ }_{c} \Omega^{c}{ }_{b}, \quad \stackrel{w}{\theta}^{a}{ }_{\mu} \mapsto \stackrel{w}{\theta}^{\prime a}{ }_{\mu}=\left(\Omega^{-1}\right)^{a}{ }_{b}{ }^{w}{ }^{b}{ }_{\mu} . \tag{9}
\end{equation*}
$$

- Questions posed by the adept of geometry:

1. How can we determine the transformation $\Lambda^{a}{ }_{b}$?
2. Is this even true?

The Weitzenböck gauge

- Intuitive conclusion: One can always use the Weitzenböck gauge.
- The spin connection is flat:

$$
\begin{equation*}
\partial_{\mu} \omega^{a}{ }_{b \nu}-\partial_{\nu} \omega^{a}{ }_{b \mu}+\omega^{a}{ }_{c \mu} \omega^{c}{ }_{b \nu}-\omega^{a}{ }_{c \nu} \omega^{c}{ }_{b \mu} \equiv 0 . \tag{7}
\end{equation*}
$$

\Rightarrow The spin connection can always be written in the form

$$
\begin{equation*}
\omega^{a}{ }_{b \mu}=\Lambda^{a}{ }_{c} \partial_{\mu}\left(\Lambda^{-1}\right)^{c}{ }_{b} . \tag{8}
\end{equation*}
$$

\Rightarrow One can achieve the Weitzenböck gauge by $\theta^{a}{ }_{\mu}=\Lambda^{a}{ }_{b}{ }^{\omega}{ }^{b}{ }_{\mu}$.

- $\Lambda^{a}{ }_{b}$ and $\stackrel{\omega}{\theta}^{a}{ }_{\mu}$ defined only up to global transform

$$
\begin{equation*}
\Lambda_{b}^{a} \mapsto \Lambda^{\prime a}{ }_{b}=\Lambda^{a}{ }_{c} \Omega^{c}{ }_{b}, \quad \stackrel{w}{\theta}^{a}{ }_{\mu} \mapsto \stackrel{w}{\theta}^{\prime a}{ }_{\mu}=\left(\Omega^{-1}\right)^{a}{ }_{b}{ }^{w}{ }^{b}{ }_{\mu} . \tag{9}
\end{equation*}
$$

- Questions posed by the adept of geometry:

1. How can we determine the transformation $\wedge^{a}{ }_{b}$?
2. Is this even true?

- Remark: this holds also in symmetric and general teleparallelism.

How to obtain the Weitzenböck gauge?

- Recall that we have gauge invariant quantities:
- The metric $g_{\mu \nu}=\eta_{a b} \theta^{a}{ }_{\mu} \theta^{b}{ }_{\nu}$.
- The teleparallel affine connection $\Gamma^{\mu}{ }_{\nu \rho}=e_{a}{ }^{\mu}\left(\partial_{\rho} \theta^{a}{ }_{\nu}+\omega^{a}{ }_{b \rho} \theta^{b}{ }_{\nu}\right)$.

How to obtain the Weitzenböck gauge?

- Recall that we have gauge invariant quantities:
- The metric $g_{\mu \nu}=\eta_{a b} \theta^{a}{ }_{\mu} \theta^{b}{ }_{\nu}$.
- The teleparallel affine connection $\Gamma^{\mu}{ }_{\nu \rho}=e_{a}{ }^{\mu}\left(\partial_{\rho} \theta^{a}{ }_{\nu}+\omega^{a}{ }_{b \rho} \theta^{b}{ }_{\nu}\right)$.
- The tetrad and connection satisfy the "tetrad postulate":

$$
\begin{equation*}
\partial_{\mu} \theta^{a}{ }_{\nu}+\omega^{a}{ }_{b \mu} \theta^{b}{ }_{\nu}-\Gamma^{\rho}{ }_{\nu \mu} \theta^{a}{ }_{\rho}=0 . \tag{10}
\end{equation*}
$$

How to obtain the Weitzenböck gauge?

- Recall that we have gauge invariant quantities:
- The metric $g_{\mu \nu}=\eta_{a b} \theta^{a}{ }_{\mu} \theta^{b}{ }_{\nu}$.
- The teleparallel affine connection $\Gamma^{\mu}{ }_{\nu \rho}=e_{a}{ }^{\mu}\left(\partial_{\rho} \theta^{a}{ }_{\nu}+\omega^{a}{ }_{b \rho} \theta^{b}{ }_{\nu}\right)$.
- The tetrad and connection satisfy the "tetrad postulate":

$$
\begin{equation*}
\partial_{\mu}{ }^{\omega}{ }^{a}{ }_{\nu}-\Gamma^{\rho}{ }_{\nu \mu}{ }^{\omega}{ }^{a}{ }_{\rho}=0 . \tag{10}
\end{equation*}
$$

- The tetrad postulate also holds in the Weitzenböck gauge.

How to obtain the Weitzenböck gauge?

- Recall that we have gauge invariant quantities:
- The metric $g_{\mu \nu}=\eta_{a b} \theta^{a}{ }_{\mu} \theta^{b}{ }_{\nu}$.
- The teleparallel affine connection $\Gamma^{\mu}{ }_{\nu \rho}=e_{a}{ }^{\mu}\left(\partial_{\rho} \theta^{a}{ }_{\nu}+\omega^{a}{ }_{b \rho} \theta^{b}{ }_{\nu}\right)$.
- The tetrad and connection satisfy the "tetrad postulate":

$$
\begin{equation*}
\partial_{\mu}{ }^{\omega}{ }^{a}{ }_{\nu}-\Gamma^{\rho}{ }_{\nu \mu}{ }^{\omega}{ }^{a}{ }_{\rho}=0 . \tag{10}
\end{equation*}
$$

- The tetrad postulate also holds in the Weitzenböck gauge.
\Rightarrow Each component ${ }_{\theta}{ }^{\omega}{ }_{\mu} \mathrm{d} x^{\mu}$ is a covariantly constant covector field.

How to obtain the Weitzenböck gauge?

- Recall that we have gauge invariant quantities:
- The metric $g_{\mu \nu}=\eta_{a b} \theta^{a}{ }_{\mu} \theta^{b}{ }_{\nu}$.
- The teleparallel affine connection $\Gamma^{\mu}{ }_{\nu \rho}=e_{a}{ }^{\mu}\left(\partial_{\rho} \theta^{a}{ }_{\nu}+\omega^{a}{ }_{b \rho} \theta^{b}{ }_{\nu}\right)$.
- The tetrad and connection satisfy the "tetrad postulate":

$$
\begin{equation*}
\partial_{\mu} \stackrel{w}{\theta}_{\nu}^{a}-\Gamma_{\nu \mu}^{\rho}{ }_{\nu}{ }^{\omega}{ }_{\rho}=0 \tag{10}
\end{equation*}
$$

- The tetrad postulate also holds in the Weitzenböck gauge.
\Rightarrow Each component ${ }_{\theta}{ }^{w}{ }_{\mu} \mathrm{d} x^{\mu}$ is a covariantly constant covector field.
\Rightarrow Recipe for integrating the connection:

1. Choose ${ }^{w}{ }^{a}{ }_{\mu}(x)$ at some $x \in M$ to fit with the metric.

How to obtain the Weitzenböck gauge?

- Recall that we have gauge invariant quantities:
- The metric $g_{\mu \nu}=\eta_{a b} \theta^{a}{ }_{\mu} \theta^{b}{ }_{\nu}$.
- The teleparallel affine connection $\Gamma^{\mu}{ }_{\nu \rho}=e_{a}{ }^{\mu}\left(\partial_{\rho} \theta^{a}{ }_{\nu}+\omega^{a}{ }_{b \rho} \theta^{b}{ }_{\nu}\right)$.
- The tetrad and connection satisfy the "tetrad postulate":

$$
\begin{equation*}
\partial_{\mu} \stackrel{w}{\theta}_{\nu}^{a}-\Gamma_{\nu \mu}^{\rho}{ }_{\nu}{ }^{\omega}{ }_{\rho}=0 \tag{10}
\end{equation*}
$$

- The tetrad postulate also holds in the Weitzenböck gauge.
\Rightarrow Each component ${ }_{\theta}{ }^{w}{ }_{\mu} \mathrm{d} x^{\mu}$ is a covariantly constant covector field.
\Rightarrow Recipe for integrating the connection:

1. Choose ${ }^{\prime \prime}{ }_{\mu}(x)$ at some $x \in M$ to fit with the metric.
2. For any other $y \in M$, choose path $x \rightsquigarrow y$, and parallel transport.

How to obtain the Weitzenböck gauge?

- Recall that we have gauge invariant quantities:
- The metric $g_{\mu \nu}=\eta_{a b} \theta^{a}{ }_{\mu} \theta^{b}{ }_{\nu}$.
- The teleparallel affine connection $\Gamma^{\mu}{ }_{\nu \rho}=e_{a}{ }^{\mu}\left(\partial_{\rho} \theta^{a}{ }_{\nu}+\omega^{a}{ }_{b \rho} \theta^{b}{ }_{\nu}\right)$.
- The tetrad and connection satisfy the "tetrad postulate":

$$
\begin{equation*}
\partial_{\mu}{ }^{w}{ }_{\nu}^{a}-\Gamma^{\rho}{ }_{\nu \mu}{ }^{w} \theta^{a}{ }_{\rho}=0 . \tag{10}
\end{equation*}
$$

- The tetrad postulate also holds in the Weitzenböck gauge.
\Rightarrow Each component ${ }_{\theta}{ }^{w}{ }_{\mu} \mathrm{d} x^{\mu}$ is a covariantly constant covector field.
\Rightarrow Recipe for integrating the connection:

1. Choose ${ }^{w}{ }_{\mu}{ }_{\mu}(x)$ at some $x \in M$ to fit with the metric.
2. For any other $y \in M$, choose path $x \rightsquigarrow y$, and parallel transport.

- Obtained tetrad satisfies required properties:
$\checkmark{ }^{\omega}{ }^{a}{ }_{\mu}$ gives correct metric, since connection is metric-compatible.

How to obtain the Weitzenböck gauge?

- Recall that we have gauge invariant quantities:
- The metric $g_{\mu \nu}=\eta_{a b} \theta^{a}{ }_{\mu} \theta^{b}{ }_{\nu}$.
- The teleparallel affine connection $\Gamma^{\mu}{ }_{\nu \rho}=e_{a}{ }^{\mu}\left(\partial_{\rho} \theta^{a}{ }_{\nu}+\omega^{a}{ }_{b \rho} \theta^{b}{ }_{\nu}\right)$.
- The tetrad and connection satisfy the "tetrad postulate":

$$
\begin{equation*}
\partial_{\mu}{ }^{w}{ }^{a}{ }_{\nu}-\Gamma^{\rho}{ }_{\nu \mu} \theta^{w}{ }_{\rho}{ }_{\rho}=0 . \tag{10}
\end{equation*}
$$

- The tetrad postulate also holds in the Weitzenböck gauge.
\Rightarrow Each component ${ }_{\theta}{ }^{w}{ }_{\mu} \mathrm{d} x^{\mu}$ is a covariantly constant covector field.
\Rightarrow Recipe for integrating the connection:

1. Choose ${ }^{w}{ }^{a}{ }_{\mu}(x)$ at some $x \in M$ to fit with the metric.
2. For any other $y \in M$, choose path $x \rightsquigarrow y$, and parallel transport.

- Obtained tetrad satisfies required properties:
$\checkmark{ }^{w}{ }^{2}{ }_{\mu}$ gives correct metric, since connection is metric-compatible.
\checkmark Global Lorentz invariance encoded in freedom of choice for ${ }^{⿲ ㇒}{ }^{\text {a }}{ }_{\mu}(x)$.

Can we always use the Weitzenböck gauge?

- Recipe for integrating the connection:

1. At some $x \in M$,

Can we always use the Weitzenböck gauge?

- Recipe for integrating the connection:

1. At some $x \in M$, choose ${ }^{\prime \prime}{ }_{\mu}{ }_{\mu}(x)$ to fit with the metric.

Can we always use the Weitzenböck gauge?

- Recipe for integrating the connection:

1. At some $x \in M$, choose ${ }^{\prime 2}{ }_{\mu}(x)$ to fit with the metric.
2. For any other $y \in M$,

Can we always use the Weitzenböck gauge?

- Recipe for integrating the connection:

1. At some $x \in M$, choose ${ }^{\omega}{ }^{a}{ }_{\mu}(x)$ to fit with the metric.
2. For any other $y \in M$, choose path $x \stackrel{\sim}{\sim} y$,

Can we always use the Weitzenböck gauge?

- Recipe for integrating the connection:

1. At some $x \in M$, choose $\theta^{\prime \prime}{ }_{\mu}(x)$ to fit with the metric.
2. For any other $y \in M$, choose path $x \stackrel{\gamma}{\sim} y$, and parallel transport.

Can we always use the Weitzenböck gauge?

- Recipe for integrating the connection:

1. At some $x \in M$, choose ${ }^{w}{ }^{a}{ }_{\mu}(x)$ to fit with the metric.
2. For any other $y \in M$, choose path $x \stackrel{\gamma}{\sim} y$, and parallel transport.

- What happens if we choose another path $x \stackrel{\gamma^{\prime}}{\sim} y$?

Can we always use the Weitzenböck gauge?

- Recipe for integrating the connection:

1. At some $x \in M$, choose ${ }^{w}{ }_{\mu}{ }_{\mu}(x)$ to fit with the metric.
2. For any other $y \in M$, choose path $x \stackrel{\gamma}{\sim} y$, and parallel transport.

- What happens if we choose another path $x \stackrel{\gamma^{\prime}}{\sim} y$?
\checkmark Vanishing curvature: parallel transport along both path agrees.

M

Can we always use the Weitzenböck gauge?

- Recipe for integrating the connection:

1. At some $x \in M$, choose ${ }^{w}{ }^{a}{ }_{\mu}(x)$ to fit with the metric.
2. For any other $y \in M$, choose path $x \stackrel{\gamma}{\sim} y$, and parallel transport.

- What happens if we choose another path $x \leadsto y$?
\checkmark Vanishing curvature: parallel transport along both path agrees.
$\&$ But only if γ and γ^{\prime} are homotopic paths!

M

Trouble with the tetrad?

- Starting from an arbitrary tetrad and flat spin connection:
- One may always locally transform into Weitzenböck gauge.
- One may not always globally transform into Weitzenböck gauge.

Trouble with the tetrad?

- Starting from an arbitrary tetrad and flat spin connection:
- One may always locally transform into Weitzenböck gauge.
- One may not always globally transform into Weitzenböck gauge.
- Is there always some global tetrad and flat spin connection?

Trouble with the tetrad?

- Starting from an arbitrary tetrad and flat spin connection:
- One may always locally transform into Weitzenböck gauge.
- One may not always globally transform into Weitzenböck gauge.
- Is there always some global tetrad and flat spin connection?
- The case of the tetrad:
- We want to be able to describe spinor fields on spacetime.

Trouble with the tetrad?

- Starting from an arbitrary tetrad and flat spin connection:
- One may always locally transform into Weitzenböck gauge.
- One may not always globally transform into Weitzenböck gauge.
- Is there always some global tetrad and flat spin connection?
- The case of the tetrad:
- We want to be able to describe spinor fields on spacetime.
\Rightarrow Physical spacetime manifold must admit a spin structure.

Trouble with the tetrad?

- Starting from an arbitrary tetrad and flat spin connection:
- One may always locally transform into Weitzenböck gauge.
- One may not always globally transform into Weitzenböck gauge.
- Is there always some global tetrad and flat spin connection?
- The case of the tetrad:
- We want to be able to describe spinor fields on spacetime.
\Rightarrow Physical spacetime manifold must admit a spin structure.
- Spacetime admits a spin structure \Leftrightarrow it is parallelizable. [Geroch '68]

Trouble with the tetrad?

- Starting from an arbitrary tetrad and flat spin connection:
- One may always locally transform into Weitzenböck gauge.
- One may not always globally transform into Weitzenböck gauge.
- Is there always some global tetrad and flat spin connection?
- The case of the tetrad: \checkmark
- We want to be able to describe spinor fields on spacetime.
\Rightarrow Physical spacetime manifold must admit a spin structure.
- Spacetime admits a spin structure \Leftrightarrow it is parallelizable. [Geroch '68]
\Rightarrow Physical spacetime possesses global frame bundle sections.

Trouble with the tetrad?

- Starting from an arbitrary tetrad and flat spin connection:
- One may always locally transform into Weitzenböck gauge.
- One may not always globally transform into Weitzenböck gauge.
- Is there always some global tetrad and flat spin connection?
- The case of the tetrad: \checkmark
- We want to be able to describe spinor fields on spacetime.
\Rightarrow Physical spacetime manifold must admit a spin structure.
- Spacetime admits a spin structure \Leftrightarrow it is parallelizable. [Geroch'68]
\Rightarrow Physical spacetime possesses global frame bundle sections.
- The case of the spin connection:
- Parallelizable manifold always admits flat affine connection 「.

Trouble with the tetrad?

- Starting from an arbitrary tetrad and flat spin connection:
- One may always locally transform into Weitzenböck gauge.
- One may not always globally transform into Weitzenböck gauge.
- Is there always some global tetrad and flat spin connection?
- The case of the tetrad: \checkmark
- We want to be able to describe spinor fields on spacetime.
\Rightarrow Physical spacetime manifold must admit a spin structure.
- Spacetime admits a spin structure \Leftrightarrow it is parallelizable. [Geroch'68]
\Rightarrow Physical spacetime possesses global frame bundle sections.
- The case of the spin connection:
- Parallelizable manifold always admits flat affine connection Г.
\Rightarrow A spin connection can be constructed from the "tetrad postulate".

Trouble with the tetrad?

- Starting from an arbitrary tetrad and flat spin connection:
- One may always locally transform into Weitzenböck gauge.
- One may not always globally transform into Weitzenböck gauge.
- Is there always some global tetrad and flat spin connection?
- The case of the tetrad: \checkmark
- We want to be able to describe spinor fields on spacetime.
\Rightarrow Physical spacetime manifold must admit a spin structure.
- Spacetime admits a spin structure \Leftrightarrow it is parallelizable. [Geroch'68]
\Rightarrow Physical spacetime possesses global frame bundle sections.
- The case of the spin connection:
- Parallelizable manifold always admits flat affine connection Г.
\Rightarrow A spin connection can be constructed from the "tetrad postulate".
\Rightarrow Physical spacetime always has global tetrad and spin connection.

Palatini and the space of orbits

- Consider local Lorentz transformations $\Lambda: M \rightarrow O(1,3)$:
- Simultaneous action on tetrad and spin connection:

$$
\begin{equation*}
(\theta, \omega) \mapsto\left(\Lambda \theta, \Lambda \omega \Lambda^{-1}+\Lambda \mathrm{d} \Lambda^{-1}\right) . \tag{11}
\end{equation*}
$$

- $(\theta, \omega) \hat{\sim}\left(\theta^{\prime}, \omega^{\prime}\right)$ if and only if $(g, \Gamma)=\left(g^{\prime}, \Gamma^{\prime}\right)$.
\Rightarrow Orbits parametrized by metric and teleparallel affine connection.

Palatini and the space of orbits

- Consider local Lorentz transformations $\Lambda: M \rightarrow \mathrm{O}(1,3)$:
- Simultaneous action on tetrad and spin connection:

$$
\begin{equation*}
(\theta, \omega) \mapsto\left(\Lambda \theta, \Lambda \omega \Lambda^{-1}+\Lambda \mathrm{d} \Lambda^{-1}\right) . \tag{11}
\end{equation*}
$$

- $(\theta, \omega) \wedge\left(\theta^{\prime}, \omega^{\prime}\right)$ if and only if $(g, \Gamma)=\left(g^{\prime}, \Gamma^{\prime}\right)$.
\Rightarrow Orbits parametrized by metric and teleparallel affine connection.
- Consider locally $\mathrm{O}(1,3)$-invariant teleparallel gravity theory:
- $\Lambda: M \rightarrow \mathrm{O}(1,3)$ maps solutions to solutions.
\Rightarrow Only metric and affine connection become dynamical variables.

Palatini and the space of orbits

- Consider local Lorentz transformations $\wedge: M \rightarrow \mathrm{O}(1,3)$:
- Simultaneous action on tetrad and spin connection:

$$
\begin{equation*}
(\theta, \omega) \mapsto\left(\Lambda \theta, \Lambda \omega \Lambda^{-1}+\Lambda \mathrm{d} \Lambda^{-1}\right) . \tag{11}
\end{equation*}
$$

- $(\theta, \omega) \wedge\left(\theta^{\prime}, \omega^{\prime}\right)$ if and only if $(g, \Gamma)=\left(g^{\prime}, \Gamma^{\prime}\right)$.
\Rightarrow Orbits parametrized by metric and teleparallel affine connection.
- Consider locally $\mathrm{O}(1,3)$-invariant teleparallel gravity theory:
- $\Lambda: M \rightarrow O(1,3)$ maps solutions to solutions.
\Rightarrow Only metric and affine connection become dynamical variables.
- Decomposition of the Lorentz group:
- Proper Lorentz group $\mathrm{SO}_{0}(1,3) \subset \mathrm{O}(1,3), \mathfrak{T}, \mathfrak{P} \in \mathrm{O}(1,3)$.
- Standard model of particle physics only invariant under $\mathrm{SO}_{0}(1,3)$.
\Rightarrow Need orientation and time orientation in addition to g and Γ.
\Rightarrow Physical geometries parametrized by orbits of $\mathrm{SO}_{0}(1,3)$.

Palatini and the space of orbits

- Consider local Lorentz transformations $\wedge: M \rightarrow \mathrm{O}(1,3)$:
- Simultaneous action on tetrad and spin connection:

$$
\begin{equation*}
(\theta, \omega) \mapsto\left(\Lambda \theta, \Lambda \omega \Lambda^{-1}+\Lambda \mathrm{d} \Lambda^{-1}\right) . \tag{11}
\end{equation*}
$$

- $(\theta, \omega) \wedge\left(\theta^{\prime}, \omega^{\prime}\right)$ if and only if $(g, \Gamma)=\left(g^{\prime}, \Gamma^{\prime}\right)$.
\Rightarrow Orbits parametrized by metric and teleparallel affine connection.
- Consider locally $\mathrm{O}(1,3)$-invariant teleparallel gravity theory:
- $\Lambda: M \rightarrow O(1,3)$ maps solutions to solutions.
\Rightarrow Only metric and affine connection become dynamical variables.
- Decomposition of the Lorentz group:
- Proper Lorentz group $\mathrm{SO}_{0}(1,3) \subset \mathrm{O}(1,3), \mathfrak{T}, \mathfrak{P} \in \mathrm{O}(1,3)$.
- Standard model of particle physics only invariant under $\mathrm{SO}_{0}(1,3)$.
\Rightarrow Need orientation and time orientation in addition to g and Γ.
\Rightarrow Physical geometries parametrized by orbits of $\mathrm{SO}_{0}(1,3)$.
- Physical geometry: $\mathrm{SO}_{0}(1,3)$ reduction of the frame bundle $\& \Gamma$.

Dynamical field variables in teleparallel gravity

-What are the dynamical field variables in teleparallel gravity?

1. Only a tetrad.

Dynamical field variables in teleparallel gravity

-What are the dynamical field variables in teleparallel gravity?

1. Only a tetrad.
2. A tetrad and a flat, antisymmetric spin connection.

- Problems encountered with choice of variables:

1. Does not reflect observed local Lorentz invariance.

Dynamical field variables in teleparallel gravity

- What are the dynamical field variables in teleparallel gravity?

1. Only a tetrad.
2. A tetrad and a flat, antisymmetric spin connection.
3. A metric and a flat, metric-compatible affine connection.

- Problems encountered with choice of variables:

1. Does not reflect observed local Lorentz invariance.
2. Contains unphysical gauge degrees of freedom as variables.

Dynamical field variables in teleparallel gravity

- What are the dynamical field variables in teleparallel gravity?

1. Only a tetrad.
2. A tetrad and a flat, antisymmetric spin connection.
3. A metric and a flat, metric-compatible affine connection.
4. A flat connection on a $\mathrm{SO}_{0}(1,3)$-reduction of the frame bundle.

- Problems encountered with choice of variables:

1. Does not reflect observed local Lorentz invariance.
2. Contains unphysical gauge degrees of freedom as variables.
3. Does not contain information on orientation and time orientation.

Dynamical field variables in teleparallel gravity

- What are the dynamical field variables in teleparallel gravity?

1. Only a tetrad.
2. A tetrad and a flat, antisymmetric spin connection.
3. A metric and a flat, metric-compatible affine connection.
4. A flat connection on a $\mathrm{SO}_{0}(1,3)$-reduction of the frame bundle.

- Problems encountered with choice of variables:

1. Does not reflect observed local Lorentz invariance.
2. Contains unphysical gauge degrees of freedom as variables.
3. Does not contain information on orientation and time orientation.

- Can we still use any of the other field variables?
$4 \rightarrow 3$: If (time) orientation is fixed, metric and connection are sufficient.

Dynamical field variables in teleparallel gravity

- What are the dynamical field variables in teleparallel gravity?

1. Only a tetrad.
2. A tetrad and a flat, antisymmetric spin connection.
3. A metric and a flat, metric-compatible affine connection.
4. A flat connection on a $\mathrm{SO}_{0}(1,3)$-reduction of the frame bundle.

- Problems encountered with choice of variables:

1. Does not reflect observed local Lorentz invariance.
2. Contains unphysical gauge degrees of freedom as variables.
3. Does not contain information on orientation and time orientation.

- Can we still use any of the other field variables?
$4 \rightarrow 3$: If (time) orientation is fixed, metric and connection are sufficient.
$3 \rightarrow 2$: Possible to choose tetrad and spin connection as representatives.

Dynamical field variables in teleparallel gravity

- What are the dynamical field variables in teleparallel gravity?

1. Only a tetrad.
2. A tetrad and a flat, antisymmetric spin connection.
3. A metric and a flat, metric-compatible affine connection.
4. A flat connection on a $\mathrm{SO}_{0}(1,3)$-reduction of the frame bundle.

- Problems encountered with choice of variables:

1. Does not reflect observed local Lorentz invariance.
2. Contains unphysical gauge degrees of freedom as variables.
3. Does not contain information on orientation and time orientation.

- Can we still use any of the other field variables?
$4 \rightarrow 3$: If (time) orientation is fixed, metric and connection are sufficient.
$3 \rightarrow 2$: Possible to choose tetrad and spin connection as representatives.
$2 \rightarrow 1$: Locally possible to transform into Weitzenböck gauge.

Dynamical field variables in teleparallel gravity

- What are the dynamical field variables in teleparallel gravity?

1. Only a tetrad.
2. A tetrad and a flat, antisymmetric spin connection.
3. A metric and a flat, metric-compatible affine connection.
4. A flat connection on a $\mathrm{SO}_{0}(1,3)$-reduction of the frame bundle.

- Problems encountered with choice of variables:

1. Does not reflect observed local Lorentz invariance.
2. Contains unphysical gauge degrees of freedom as variables.
3. Does not contain information on orientation and time orientation.

- Can we still use any of the other field variables?
$4 \rightarrow 3$: If (time) orientation is fixed, metric and connection are sufficient.
$3 \rightarrow 2$: Possible to choose tetrad and spin connection as representatives.
$2 \rightarrow 1$: Locally possible to transform into Weitzenböck gauge.
\Rightarrow Most fundamental variables found in geometric picture.

The geometric picture

1. Start with the general linear frame bundle $\pi: \mathrm{GL}(M) \rightarrow M$.

The geometric picture

1. Start with the general linear frame bundle $\pi: \mathrm{GL}(M) \rightarrow M$.
2. Metric reduces bundle to orthonormal frame bundle \tilde{P}.

The geometric picture

1. Start with the general linear frame bundle $\pi: \mathrm{GL}(M) \rightarrow M$.
2. Metric reduces bundle to orthonormal frame bundle \tilde{P}.
3. Orientation and time orientation select oriented frame bundle P.

The geometric picture

1. Start with the general linear frame bundle $\pi: \mathrm{GL}(M) \rightarrow M$.
2. Metric reduces bundle to orthonormal frame bundle \tilde{P}.
3. Orientation and time orientation select oriented frame bundle P.
4. Connection specifies horizontal directions $T P=V P \oplus H P$ in P.

π

Tetrads and spin structure

- How to obtain a spin structure from a tetrad $e: M \rightarrow P$?

1. Spin structure obtained from trivial bundle $Q=M \times \operatorname{SL}(2, \mathbb{C})$.
2. Use covering map $\sigma: \mathrm{SL}(2, \mathbb{C}) \rightarrow \mathrm{SO}_{0}(1,3)$.
3. Define spin structure $\varphi: Q \rightarrow P$ as map

$$
\begin{equation*}
\varphi(x, z)=e(x) \cdot \sigma(z) \tag{12}
\end{equation*}
$$

Tetrads and spin structure

- How to obtain a spin structure from a tetrad $e: M \rightarrow P$?

1. Spin structure obtained from trivial bundle $Q=M \times \operatorname{SL}(2, \mathbb{C})$.
2. Use covering map $\sigma: \mathrm{SL}(2, \mathbb{C}) \rightarrow \mathrm{SO}_{0}(1,3)$.
3. Define spin structure $\varphi: Q \rightarrow P$ as map

$$
\begin{equation*}
\varphi(x, z)=e(x) \cdot \sigma(z) \tag{12}
\end{equation*}
$$

- Do different tetrads e, e^{\prime} define the same spin structure?
- Consider non-simply connected manifold M.
- Let $\gamma:[0,1] \rightarrow M$ with $\gamma(0)=\gamma(1)$ non-contractible.
- Let $\Lambda: M \rightarrow \mathrm{SO}_{0}(1,3)$ such that $\Lambda \circ \gamma$ has odd winding.
- Tetrads $e=e^{\prime} \cdot \wedge$ define spin structures $\varphi, \varphi^{\prime}$.
- Assume existence of bundle isomorphism $\mu: Q \rightarrow Q, \varphi=\varphi^{\prime} \circ \mu$.
\Rightarrow Curve connects antipodes: $\mu(\gamma(1), \mathbb{1})=-\mu(\gamma(0), \mathbb{1})$.
\& Contradicts $\gamma(0)=\gamma(1)$.
\Rightarrow Spin structures $\varphi, \varphi^{\prime}$ are inequivalent.

Tetrads vs observers

- Clash of two notions of orthonormal frames:

1. Tetrad $e: M \rightarrow P$ solving teleparallel field equation.
2. Observer frame $\tilde{e}: \mathbb{R} \rightarrow \gamma^{*} P$ along trajectory γ.

Tetrads vs observers

- Clash of two notions of orthonormal frames:

1. Tetrad $e: M \rightarrow P$ solving teleparallel field equation.
2. Observer frame ẽ : $\mathbb{R} \rightarrow \gamma^{*} P$ along trajectory γ.

- Parallel transport properties of frames:

$$
\begin{equation*}
0=\dot{\gamma}^{\mu}\left(\partial_{\mu} \tilde{\boldsymbol{e}}_{a}^{\nu}+\dot{\Gamma}^{\nu}{ }_{\rho \mu} \tilde{\boldsymbol{e}}_{a}^{\rho}\right)=\dot{\gamma}^{\mu}\left(\partial_{\mu} \boldsymbol{e}_{a}^{\nu}-\omega^{b}{ }_{a \mu} \boldsymbol{e}_{b}^{\nu}+\Gamma^{\nu}{ }_{\rho \mu} \boldsymbol{e}_{a}{ }^{\rho}\right) \tag{13}
\end{equation*}
$$

Tetrads vs observers

- Clash of two notions of orthonormal frames:

1. Tetrad $e: M \rightarrow P$ solving teleparallel field equation.
2. Observer frame ẽ : $\mathbb{R} \rightarrow \gamma^{*} P$ along trajectory γ.

- Parallel transport properties of frames in Weitzenböck gauge:

$$
\begin{equation*}
0=\dot{\gamma}^{\mu}\left(\partial_{\mu} \tilde{e}_{a}^{\nu}+\dot{\Gamma}_{\rho \mu}^{\nu} \tilde{e}_{a}^{\rho}\right)=\dot{\gamma}^{\mu}\left(\partial_{\mu} \boldsymbol{e}_{a}^{\nu}+\Gamma^{\nu}{ }_{\rho \mu} \boldsymbol{e}_{a}^{\rho}\right) . \tag{13}
\end{equation*}
$$

- Possible to identify teleparallel as observer frames?

1. e forms congruence, transported with flat connection.
2. ẽ only defined on worldline, no congruences.

Tetrads vs observers

- Clash of two notions of orthonormal frames:

1. Tetrad $e: M \rightarrow P$ solving teleparallel field equation.
2. Observer frame ẽ : $\mathbb{R} \rightarrow \gamma^{*} P$ along trajectory γ.

- Parallel transport properties of frames in Weitzenböck gauge:

$$
\begin{equation*}
0=\dot{\gamma}^{\mu}\left(\partial_{\mu} \tilde{e}_{a}^{\nu}+\dot{\Gamma}^{\nu}{ }_{\rho \mu} \tilde{e}_{a}^{\rho}\right)=\dot{\gamma}^{\mu}\left(\partial_{\mu} \boldsymbol{e}_{a}^{\nu}+\Gamma^{\nu}{ }_{\rho \mu} \boldsymbol{e}_{a}^{\rho}\right) . \tag{13}
\end{equation*}
$$

- Possible to identify teleparallel as observer frames?

1. e forms congruence, transported with flat connection.
2. ẽ only defined on worldline, no congruences.

- e and ẽ only agree up to local Lorentz transformation.

Tetrads vs observers

- Clash of two notions of orthonormal frames:

1. Tetrad $e: M \rightarrow P$ solving teleparallel field equation.
2. Observer frame ẽ : $\mathbb{R} \rightarrow \gamma^{*} P$ along trajectory γ.

- Parallel transport properties of frames in Weitzenböck gauge:

$$
\begin{equation*}
0=\dot{\gamma}^{\mu}\left(\partial_{\mu} \tilde{e}_{a}^{\nu}+\dot{\Gamma}_{\rho \mu}^{\nu} \tilde{e}_{a}^{\rho}\right)=\dot{\gamma}^{\mu}\left(\partial_{\mu} \boldsymbol{e}_{a}^{\nu}+\Gamma^{\nu}{ }_{\rho \mu} \boldsymbol{e}_{a}^{\rho}\right) . \tag{13}
\end{equation*}
$$

- Possible to identify teleparallel as observer frames?

1. e forms congruence, transported with flat connection.
2. ẽ only defined on worldline, no congruences.

- e and ẽ only agree up to local Lorentz transformation.
\Rightarrow Observer geometry defined by metric: LLI holds.

Conclusion

1. Physical observations single out frames which are:

- Orthonormal - by using clocks, measuring rods, simultaneity.
- Oriented - by using particles whose interaction violates parity.
- Time oriented - by using cosmic evolution as time arrow.

Conclusion

1. Physical observations single out frames which are:

- Orthonormal - by using clocks, measuring rods, simultaneity.
- Oriented - by using particles whose interaction violates parity.
- Time oriented - by using cosmic evolution as time arrow.

2. Physically observable geometry to be determined by gravity.

Conclusion

1. Physical observations single out frames which are:

- Orthonormal - by using clocks, measuring rods, simultaneity.
- Oriented - by using particles whose interaction violates parity.
- Time oriented - by using cosmic evolution as time arrow.

2. Physically observable geometry to be determined by gravity.
\Rightarrow Gravity theory based on $\mathrm{SO}_{0}(1,3)$-reduction of frame bundle.

Conclusion

1. Physical observations single out frames which are:

- Orthonormal - by using clocks, measuring rods, simultaneity.
- Oriented - by using particles whose interaction violates parity.
- Time oriented - by using cosmic evolution as time arrow.

2. Physically observable geometry to be determined by gravity.
\Rightarrow Gravity theory based on $\mathrm{SO}_{0}(1,3)$-reduction of frame bundle.
3. Teleparallel gravity: flat, affine connection as additional variable:

- General teleparallel gravity: connection couples to metric.
- TEGR: connection \sim pure divergence in action \nrightarrow field equations.

Conclusion

1. Physical observations single out frames which are:

- Orthonormal - by using clocks, measuring rods, simultaneity.
- Oriented - by using particles whose interaction violates parity.
- Time oriented - by using cosmic evolution as time arrow.

2. Physically observable geometry to be determined by gravity.
\Rightarrow Gravity theory based on $\mathrm{SO}_{0}(1,3)$-reduction of frame bundle.
3. Teleparallel gravity: flat, affine connection as additional variable:

- General teleparallel gravity: connection couples to metric.
- TEGR: connection \sim pure divergence in action \nrightarrow field equations.

4. Other variables can be chosen for convenience:

- Metric and affine connection if orientation is fixed.
- Tetrad and spin connection as representatives.
- Local Lorentz transformation for local Weitzenböck gauge.

Conclusion

1. Physical observations single out frames which are:

- Orthonormal - by using clocks, measuring rods, simultaneity.
- Oriented - by using particles whose interaction violates parity.
- Time oriented - by using cosmic evolution as time arrow.

2. Physically observable geometry to be determined by gravity.
\Rightarrow Gravity theory based on $\mathrm{SO}_{0}(1,3)$-reduction of frame bundle.
3. Teleparallel gravity: flat, affine connection as additional variable:

- General teleparallel gravity: connection couples to metric.
- TEGR: connection \sim pure divergence in action \nrightarrow field equations.

4. Other variables can be chosen for convenience:

- Metric and affine connection if orientation is fixed.
- Tetrad and spin connection as representatives.
- Local Lorentz transformation for local Weitzenböck gauge.

5. Spin structure obtained from (equivalence class of) tetrad.

Extra: the associated bundle

Extra: the many faces of connections

