Classification of cosmological tetrads and teleparallel geometries

Manuel Hohmann

Laboratory of Theoretical Physics - Institute of Physics - University of Tartu Center of Excellence "The Dark Side of the Universe"

European Union European Regional Development Fund

Investing in your future

Teleparallel Gravity Workshop Tartu, 15. June 2020

Outline

- 1. Metric-affine and teleparallel geometry
- 2. Symmetries of metrics, tetrads and connections
- 3. Cosmological symmetry: state of the art
- 4. Three approaches to teleparallel cosmology
- 4.1 The tetrad & representation approach
- 4.2 The metric-affine approach
- 4.3 The torsion decomposition approach
- 5. Two branches of cosmological teleparallel geometries
- 5.1 The "vector" branch
- 5.2 The "axial" or "two-form" branch
- 6. Properties & applications
- 7. Conclusion

Outline

- 1. Metric-affine and teleparallel geometry
- 2. Symmetries of metrics, tetrads and connections
- 3. Cosmological symmetry: state of the art
- 4. Three approaches to teleparallel cosmology
- 4.1 The tetrad & representation approach
- 4.2 The metric-affine approach
- 4.3 The torsion decomposition approach

5. Two branches of cosmological teleparallel geometries

- 5.1 The "vector" branch
- 5.2 The "axial" or "two-form" branch

6. Properties & applications

7. Conclusion

Definition of metric-affine geometry

• Metric tensor $g_{\mu\nu}$:

- Defines length of and angle between tangent vectors.
- Defines length of curves and proper time.
- Defines causality (spacelike and timelike directions).

Definition of metric-affine geometry

- Metric tensor g_{µν}:
 - Defines length of and angle between tangent vectors.
 - Defines length of curves and proper time.
 - Defines causality (spacelike and timelike directions).
- Connection with coefficients $\Gamma^{\mu}{}_{\nu\rho}$:
 - Defines covariant derivative ∇_{μ} of tensor fields.
 - Defines parallel transport along arbitrary curves.
 - Defines autoparallel curves via parallel transport of tangent vector.

- Metric tensor g_{µν}:
 - Defines length of and angle between tangent vectors.
 - Defines length of curves and proper time.
 - Defines causality (spacelike and timelike directions).
- Connection with coefficients Γ^μ_{νρ}:
 - Defines covariant derivative ∇_{μ} of tensor fields.
 - Defines parallel transport along arbitrary curves.
 - Defines autoparallel curves via parallel transport of tangent vector.
- ! In general the connection is defined independently of the metric.

Properties of metric-affine geometry

- Three characteristic quantities:
 - Curvature:

$$\boldsymbol{R}^{\mu}{}_{\nu\rho\sigma} = \partial_{\rho}\boldsymbol{\Gamma}^{\mu}{}_{\nu\sigma} - \partial_{\sigma}\boldsymbol{\Gamma}^{\mu}{}_{\nu\rho} + \boldsymbol{\Gamma}^{\mu}{}_{\tau\rho}\boldsymbol{\Gamma}^{\tau}{}_{\nu\sigma} - \boldsymbol{\Gamma}^{\mu}{}_{\tau\sigma}\boldsymbol{\Gamma}^{\tau}{}_{\nu\rho} \,. \tag{1}$$

Torsion:

$$T^{\mu}{}_{\nu\rho} = \Gamma^{\mu}{}_{\rho\nu} - \Gamma^{\mu}{}_{\nu\rho} \,. \tag{2}$$

• Nonmetricity:

$$Q_{\mu\nu\rho} = \nabla_{\mu} g_{\nu\rho} = \partial_{\mu} g_{\nu\rho} - \Gamma^{\sigma}{}_{\nu\mu} g_{\sigma\rho} - \Gamma^{\sigma}{}_{\rho\mu} g_{\nu\sigma} \,. \tag{3}$$

Properties of metric-affine geometry

- Three characteristic quantities:
 - Curvature:

$$\boldsymbol{R}^{\mu}{}_{\nu\rho\sigma} = \partial_{\rho}\boldsymbol{\Gamma}^{\mu}{}_{\nu\sigma} - \partial_{\sigma}\boldsymbol{\Gamma}^{\mu}{}_{\nu\rho} + \boldsymbol{\Gamma}^{\mu}{}_{\tau\rho}\boldsymbol{\Gamma}^{\tau}{}_{\nu\sigma} - \boldsymbol{\Gamma}^{\mu}{}_{\tau\sigma}\boldsymbol{\Gamma}^{\tau}{}_{\nu\rho} \,. \tag{1}$$

Torsion:

$$T^{\mu}{}_{\nu\rho} = \Gamma^{\mu}{}_{\rho\nu} - \Gamma^{\mu}{}_{\nu\rho} \,. \tag{2}$$

• Nonmetricity:

$$Q_{\mu\nu\rho} = \nabla_{\mu} g_{\nu\rho} = \partial_{\mu} g_{\nu\rho} - \Gamma^{\sigma}{}_{\nu\mu} g_{\sigma\rho} - \Gamma^{\sigma}{}_{\rho\mu} g_{\nu\sigma} \,. \tag{3}$$

Some special classes of connections used in gravity theory:

- Levi-Civita connection: T = Q = 0.
- Metric teleparallelism: R = Q = 0.
- Symmetric teleparallelism: R = T = 0.

Decomposition of the connection

Affine connection can be decomposed:

$$\Gamma^{\mu}{}_{\nu\rho} = \mathring{\Gamma}^{\mu}{}_{\nu\rho} + K^{\mu}{}_{\nu\rho} + L^{\mu}{}_{\nu\rho} \,. \tag{4}$$

Decomposition of the connection

Affine connection can be decomposed:

$$\Gamma^{\mu}{}_{\nu\rho} = \mathring{\Gamma}^{\mu}{}_{\nu\rho} + K^{\mu}{}_{\nu\rho} + L^{\mu}{}_{\nu\rho} \,. \tag{4}$$

- Parts of the decomposition:
 - Levi-Civita connection of the metric:

$$\overset{\circ}{\Gamma}^{\mu}{}_{\nu\rho} = \frac{1}{2} g^{\mu\sigma} \left(\partial_{\nu} g_{\sigma\rho} + \partial_{\rho} g_{\nu\sigma} - \partial_{\sigma} g_{\nu\rho} \right) \,. \tag{5}$$

Contortion:

$$K^{\mu}{}_{\nu\rho} = \frac{1}{2} \left(T_{\nu}{}^{\mu}{}_{\rho} + T_{\rho}{}^{\mu}{}_{\nu} - T^{\mu}{}_{\nu\rho} \right) \,. \tag{6}$$

• Disformation:

$$L^{\mu}{}_{\nu\rho} = \frac{1}{2} \left(Q^{\mu}{}_{\nu\rho} - Q^{\mu}{}_{\rho} - Q^{\mu}{}_{\rho}{}_{\nu} \right) \,. \tag{7}$$

Decomposition of the connection

Affine connection can be decomposed:

$$\Gamma^{\mu}{}_{\nu\rho} = \mathring{\Gamma}^{\mu}{}_{\nu\rho} + K^{\mu}{}_{\nu\rho} + L^{\mu}{}_{\nu\rho} \,. \tag{4}$$

- Parts of the decomposition:
 - Levi-Civita connection of the metric:

$$\overset{\circ}{\Gamma}^{\mu}{}_{\nu\rho} = \frac{1}{2} g^{\mu\sigma} \left(\partial_{\nu} g_{\sigma\rho} + \partial_{\rho} g_{\nu\sigma} - \partial_{\sigma} g_{\nu\rho} \right) \,. \tag{5}$$

• Contortion:

$$K^{\mu}{}_{\nu\rho} = \frac{1}{2} \left(T_{\nu}{}^{\mu}{}_{\rho} + T_{\rho}{}^{\mu}{}_{\nu} - T^{\mu}{}_{\nu\rho} \right) \,. \tag{6}$$

Disformation:

$$L^{\mu}{}_{\nu\rho} = \frac{1}{2} \left(Q^{\mu}{}_{\nu\rho} - Q^{\mu}{}_{\rho} - Q^{\mu}{}_{\rho}{}_{\nu} \right) \,. \tag{7}$$

• All three components depend on the metric.

Tetrad and spin connection formulation

- Metric teleparallelism conventionally formulated using:
 - Tetrad / coframe: $\theta^a = \theta^a{}_\mu dx^\mu$ with inverse $e_a = e_a{}^\mu \partial_\mu$.
 - Spin connection: $\omega^a{}_b = \omega^a{}_{b\mu} dx^{\mu}$.

Tetrad and spin connection formulation

- Metric teleparallelism conventionally formulated using:
 - Tetrad / coframe: $\theta^a = \theta^a{}_\mu dx^\mu$ with inverse $e_a = e_a{}^\mu \partial_\mu$.
 - Spin connection: $\omega^a{}_b = \omega^a{}_{b\mu}dx^{\mu}$.
- Induced metric-affine geometry:

• Metric:

$$g_{\mu\nu} = \eta_{ab} \theta^a{}_{\mu} \theta^b{}_{\nu} \,. \tag{8}$$

• Affine connection:

$$\Gamma^{\mu}{}_{\nu\rho} = \boldsymbol{e}_{\boldsymbol{a}}{}^{\mu} \left(\partial_{\rho} \boldsymbol{\theta}^{\boldsymbol{a}}{}_{\nu} + \omega^{\boldsymbol{a}}{}_{\boldsymbol{b}\rho} \boldsymbol{\theta}^{\boldsymbol{b}}{}_{\nu} \right) \,. \tag{9}$$

Tetrad and spin connection formulation

- Metric teleparallelism conventionally formulated using:
 - Tetrad / coframe: $\theta^a = \theta^a{}_\mu dx^\mu$ with inverse $e_a = e_a{}^\mu \partial_\mu$.
 - Spin connection: $\omega^a{}_b = \omega^a{}_{b\mu}dx^{\mu}$.
- Induced metric-affine geometry:

• Metric:

$$g_{\mu\nu} = \eta_{ab} \theta^a{}_{\mu} \theta^b{}_{\nu} \,. \tag{8}$$

• Affine connection:

$$\Gamma^{\mu}{}_{\nu\rho} = \boldsymbol{e}_{\boldsymbol{a}}{}^{\mu} \left(\partial_{\rho} \boldsymbol{\theta}^{\boldsymbol{a}}{}_{\nu} + \omega^{\boldsymbol{a}}{}_{\boldsymbol{b}\rho} \boldsymbol{\theta}^{\boldsymbol{b}}{}_{\nu} \right) \,. \tag{9}$$

- Conditions on the spin connection:
 - Flatness R = 0:

$$\partial_{\mu}\omega^{a}{}_{b\nu} - \partial_{\nu}\omega^{a}{}_{b\mu} + \omega^{a}{}_{c\mu}\omega^{c}{}_{b\nu} - \omega^{a}{}_{c\nu}\omega^{c}{}_{b\mu} = 0.$$
 (10)

• Metric compatibility Q = 0:

$$\eta_{ac}\omega^{c}{}_{b\mu}+\eta_{bc}\omega^{c}{}_{a\mu}=0. \tag{11}$$

• Local Lorentz transformation of the tetrad only:

$$\theta^{a}{}_{\mu} \mapsto \theta^{\prime a}{}_{\mu} = \Lambda^{a}{}_{b}\theta^{b}{}_{\mu} \,. \tag{12}$$

✓ Metric is invariant:
$$g'_{\mu\nu} = g_{\mu\nu}$$
.

 \oint Connection is not invariant: $\Gamma'^{\mu}{}_{\nu\rho} \neq \Gamma^{\mu}{}_{\nu\rho}$.

Local Lorentz transformation of the tetrad only:

$$\theta^{a}{}_{\mu} \mapsto \theta^{\prime a}{}_{\mu} = \Lambda^{a}{}_{b}\theta^{b}{}_{\mu} \,. \tag{12}$$

- ✓ Metric is invariant: $g'_{\mu\nu} = g_{\mu\nu}$.
- Perform also transformation of the spin connection:

$$\omega^{a}{}_{b\mu} \mapsto \omega^{\prime a}{}_{b\mu} = \Lambda^{a}{}_{c} (\Lambda^{-1})^{d}{}_{b} \omega^{c}{}_{d\mu} + \Lambda^{a}{}_{c} \partial_{\mu} (\Lambda^{-1})^{c}{}_{b} .$$
(13)

✓ Metric is invariant:
$$g'_{\mu\nu} = g_{\mu\nu}$$
.
✓ Connection is invariant: ${\Gamma'}^{\mu}{}_{\nu\rho} = {\Gamma}^{\mu}{}_{\nu\rho}$

Local Lorentz transformation of the tetrad only:

$$\theta^{a}{}_{\mu} \mapsto \theta^{\prime a}{}_{\mu} = \Lambda^{a}{}_{b}\theta^{b}{}_{\mu} \,. \tag{12}$$

- ✓ Metric is invariant: $g'_{\mu\nu} = g_{\mu\nu}$.
- \oint Connection is not invariant: $\Gamma'^{\mu}{}_{\nu\rho} \neq \Gamma^{\mu}{}_{\nu\rho}$.
- Perform also transformation of the spin connection:

$$\omega^{a}{}_{b\mu} \mapsto \omega^{\prime a}{}_{b\mu} = \Lambda^{a}{}_{c} (\Lambda^{-1})^{d}{}_{b} \omega^{c}{}_{d\mu} + \Lambda^{a}{}_{c} \partial_{\mu} (\Lambda^{-1})^{c}{}_{b} .$$
(13)

- ✓ Metric is invariant: $g'_{\mu\nu} = g_{\mu\nu}$.
- ✓ Connection is invariant: $\Gamma'^{\mu}{}_{\nu\rho} = \Gamma^{\mu}{}_{\nu\rho}$.
- \Rightarrow Metric-affine geometry equivalently described by:
 - Metric $g_{\mu\nu}$ and affine connection $\Gamma^{\mu}{}_{\nu\rho}$.
 - Equivalence class of tetrad $\theta^a{}_\mu$ and spin connection $\omega^a{}_{b\mu}$.
 - Equivalence defined with respect to local Lorentz transformations.

• Local Lorentz transformation of the tetrad only:

$$\theta^{a}{}_{\mu} \mapsto \theta^{\prime a}{}_{\mu} = \Lambda^{a}{}_{b}\theta^{b}{}_{\mu} \,. \tag{12}$$

- ✓ Metric is invariant: $g'_{\mu\nu} = g_{\mu\nu}$.
- \oint Connection is not invariant: $\Gamma'^{\mu}{}_{\nu\rho} \neq \Gamma^{\mu}{}_{\nu\rho}$.
- Perform also transformation of the spin connection:

$$\omega^{a}{}_{b\mu} \mapsto \omega^{\prime a}{}_{b\mu} = \Lambda^{a}{}_{c} (\Lambda^{-1})^{d}{}_{b} \omega^{c}{}_{d\mu} + \Lambda^{a}{}_{c} \partial_{\mu} (\Lambda^{-1})^{c}{}_{b} .$$
(13)

- ✓ Metric is invariant: $g'_{\mu\nu} = g_{\mu\nu}$.
- ✓ Connection is invariant: Γ^{μ}_{νρ} = Γ^{μ}_{νρ}.
- \Rightarrow Metric-affine geometry equivalently described by:
 - Metric $g_{\mu\nu}$ and affine connection $\Gamma^{\mu}{}_{\nu\rho}$.
 - Equivalence class of tetrad $\theta^a_{\ \mu}$ and spin connection $\omega^a_{\ b\mu}$.
 - Equivalence defined with respect to local Lorentz transformations.
 - Teleparallel geometry admits Weitzenböck gauge: $\omega^a{}_{b\mu} \equiv 0$.

Outline

1. Metric-affine and teleparallel geometry

- 2. Symmetries of metrics, tetrads and connections
- 3. Cosmological symmetry: state of the art

4. Three approaches to teleparallel cosmology

- 4.1 The tetrad & representation approach
- 4.2 The metric-affine approach
- 4.3 The torsion decomposition approach

5. Two branches of cosmological teleparallel geometries

- 5.1 The "vector" branch
- 5.2 The "axial" or "two-form" branch

6. Properties & applications

7. Conclusion

Symmetry transformations of metric-affine geometry

- Finite spacetime transformation:
 - Action $\varphi : G \times M \to M$ of symmetry group G with $x' = \varphi_u(x)$.
 - Transformations of fundamental geometric objects:
 - ★ Metric:

$$(\varphi_{\nu}^{*}g)_{\mu\nu}(x) = g_{\tau\omega}(x')\frac{\partial x'^{\tau}}{\partial x^{\mu}}\frac{\partial x'^{\omega}}{\partial x^{\nu}}.$$
 (14)

Connection coefficients:

$$\left(\varphi_{u}^{*}\Gamma\right)^{\mu}{}_{\nu\rho}(x) = \Gamma^{\sigma}{}_{\tau\omega}(x')\frac{\partial x^{\mu}}{\partial x'^{\sigma}}\frac{\partial x'^{\tau}}{\partial x^{\nu}}\frac{\partial x'^{\omega}}{\partial x^{\rho}} + \frac{\partial x^{\mu}}{\partial x'^{\sigma}}\frac{\partial^{2} x'^{\sigma}}{\partial x^{\nu}\partial x^{\rho}}.$$
 (15)

Symmetry transformations of metric-affine geometry

- Finite spacetime transformation:
 - Action $\varphi : G \times M \to M$ of symmetry group G with $x' = \varphi_u(x)$.
 - Transformations of fundamental geometric objects:
 - ★ Metric:

$$(\varphi_u^* g)_{\mu\nu}(x) = g_{\tau\omega}(x') \frac{\partial x'^{\tau}}{\partial x^{\mu}} \frac{\partial x'^{\omega}}{\partial x^{\nu}}.$$
 (14)

Connection coefficients:

$$\left(\varphi_{u}^{*}\Gamma\right)^{\mu}{}_{\nu\rho}(x) = \Gamma^{\sigma}{}_{\tau\omega}(x')\frac{\partial x^{\mu}}{\partial x'^{\sigma}}\frac{\partial x'^{\tau}}{\partial x^{\nu}}\frac{\partial x'^{\omega}}{\partial x^{\rho}} + \frac{\partial x^{\mu}}{\partial x'^{\sigma}}\frac{\partial^{2} x'^{\sigma}}{\partial x^{\nu}\partial x^{\rho}}.$$
 (15)

- Infinitesimal spacetime transformation:
 - Generating vector fields X_{ξ} on M with $\xi \in \mathfrak{g}$.
 - Lie derivatives of fundamental geometric objects are tensor fields:
 - ★ Metric:

$$(\mathcal{L}_{X_{\xi}}g)_{\mu\nu} = X_{\xi}^{\rho}\partial_{\rho}g_{\mu\nu} + \partial_{\mu}X_{\xi}^{\rho}g_{\rho\nu} + \partial_{\nu}X_{\xi}^{\rho}g_{\mu\rho}.$$
(16)

Connection coefficients:

$$(\mathcal{L}_{X_{\xi}}\Gamma)^{\mu}{}_{\nu\rho} = X^{\sigma}_{\xi}\partial_{\sigma}\Gamma^{\mu}{}_{\nu\rho} - \partial_{\sigma}X^{\mu}_{\xi}\Gamma^{\sigma}{}_{\nu\rho} + \partial_{\nu}X^{\sigma}_{\xi}\Gamma^{\mu}{}_{\sigma\rho} + \partial_{\rho}X^{\sigma}_{\xi}\Gamma^{\mu}{}_{\nu\sigma} + \partial_{\nu}\partial_{\rho}X^{\mu}_{\xi} = \nabla_{\rho}\nabla_{\nu}X^{\mu}_{\xi} - X^{\sigma}_{\xi}R^{\mu}{}_{\nu\rho\sigma} - \nabla_{\rho}(X^{\sigma}_{\xi}T^{\mu}{}_{\nu\sigma}).$$

$$(17)$$

Symmetry transformations of metric-affine geometry

- Finite spacetime transformation is symmetry:
 - Action $\varphi : G \times M \to M$ of symmetry group *G* with $x' = \varphi_u(x)$.
 - Transformations of fundamental geometric objects:
 - Metric:

$$(\varphi_{u}^{*}g)_{\mu\nu}(x) = g_{\tau\omega}(x')\frac{\partial x'^{\tau}}{\partial x^{\mu}}\frac{\partial x'^{\omega}}{\partial x^{\nu}} = g_{\mu\nu}(x).$$
(14)

Connection coefficients:

$$(\varphi_{u}^{*}\Gamma)^{\mu}{}_{\nu\rho}(x) = \Gamma^{\sigma}{}_{\tau\omega}(x')\frac{\partial x^{\mu}}{\partial x'^{\sigma}}\frac{\partial x'^{\tau}}{\partial x^{\nu}}\frac{\partial x'^{\omega}}{\partial x^{\rho}} + \frac{\partial x^{\mu}}{\partial x'^{\sigma}}\frac{\partial^{2}x'^{\sigma}}{\partial x^{\nu}\partial x^{\rho}} = \Gamma^{\mu}{}_{\nu\rho}(x).$$
(15)

- Infinitesimal spacetime transformation is symmetry:
 - Generating vector fields X_{ξ} on M with $\xi \in \mathfrak{g}$.
 - Lie derivatives of fundamental geometric objects are tensor fields:
 Metric:

$$(\mathcal{L}_{X_{\xi}}g)_{\mu\nu} = X_{\xi}^{\rho}\partial_{\rho}g_{\mu\nu} + \partial_{\mu}X_{\xi}^{\rho}g_{\rho\nu} + \partial_{\nu}X_{\xi}^{\rho}g_{\mu\rho} = \mathbf{0}.$$
(16)

Connection coefficients:

$$(\mathcal{L}_{X_{\xi}}\Gamma)^{\mu}{}_{\nu\rho} = X_{\xi}^{\sigma}\partial_{\sigma}\Gamma^{\mu}{}_{\nu\rho} - \partial_{\sigma}X_{\xi}^{\mu}\Gamma^{\sigma}{}_{\nu\rho} + \partial_{\nu}X_{\xi}^{\sigma}\Gamma^{\mu}{}_{\sigma\rho} + \partial_{\rho}X_{\xi}^{\sigma}\Gamma^{\mu}{}_{\nu\sigma} + \partial_{\nu}\partial_{\rho}X_{\xi}^{\mu}$$

$$= \nabla_{\rho}\nabla_{\nu}X_{\xi}^{\mu} - X_{\xi}^{\sigma}R^{\mu}{}_{\nu\rho\sigma} - \nabla_{\rho}(X_{\xi}^{\sigma}T^{\mu}{}_{\nu\sigma}) = \mathbf{0}.$$

$$(17)$$

Symmetry of tetrad and spin connection

- Finite spacetime transformation:
 - Action $\varphi : G \times M \to M$ of symmetry group G with $x' = \varphi_u(x)$.
 - Transformations of fundamental geometric objects:
 - ⋆ Tetrad:

$$(\varphi_u^*\theta)^a{}_\mu(x) = \theta^a{}_\nu(x')\frac{\partial x'^\nu}{\partial x^\mu}.$$
 (18)

Spin connection:

$$\left(\varphi_{u}^{*}\omega\right)^{a}{}_{b\mu}(x) = \omega^{c}{}_{d\nu}(x')\frac{\partial x'^{\nu}}{\partial x^{\mu}}.$$
(19)

Symmetry of tetrad and spin connection

- Finite spacetime transformation:
 - Action $\varphi : G \times M \to M$ of symmetry group G with $x' = \varphi_u(x)$.
 - Transformations of fundamental geometric objects:
 - ⋆ Tetrad:

$$(\varphi_{\nu}^{*}\theta)^{a}{}_{\mu}(x) = \theta^{a}{}_{\nu}(x')\frac{\partial x'^{\nu}}{\partial x^{\mu}}.$$
(18)

Spin connection:

$$(\varphi_u^*\omega)^a{}_{b\mu}(x) = \omega^c{}_{d\nu}(x')\frac{\partial x'^\nu}{\partial x^\mu}.$$
(19)

- Infinitesimal spacetime transformation:
 - Generating vector fields X_{ξ} on M with $\xi \in \mathfrak{g}$.
 - Lie derivatives of fundamental geometric objects:
 - ★ Tetrad:

$$\left(\mathcal{L}_{X_{\xi}}\theta\right)^{a}{}_{\mu} = X^{\nu}_{\xi}\partial_{\nu}\theta^{a}{}_{\mu} + \partial_{\mu}X^{\nu}_{\xi}\theta^{a}{}_{\nu}.$$
⁽²⁰⁾

⋆ Spin connection:

$$\left(\mathcal{L}_{X_{\xi}}\omega\right)^{a}{}_{b\mu} = X^{\nu}_{\xi}\partial_{\nu}\omega^{a}{}_{b\mu} + \partial_{\mu}X^{\nu}_{\xi}\omega^{a}{}_{b\nu}.$$
(21)

Symmetry of tetrad and spin connection

- Finite spacetime transformation is symmetry:
 - Action $\varphi : G \times M \to M$ of symmetry group *G* with $x' = \varphi_u(x)$.
 - Transformations of fundamental geometric objects:

★ Tetrad:

$$(\varphi_u^*\theta)^a{}_\mu(x) = \theta^a{}_\nu(x')\frac{\partial x'^\nu}{\partial x^\mu} = (\Lambda_u^{-1})^a{}_b(x)\theta^b{}_\mu(x).$$
(18)

⋆ Spin connection:

$$(\varphi_{u}^{*}\omega)^{a}{}_{b\mu}(x) = \omega^{c}{}_{d\nu}(x')\frac{\partial x'^{\nu}}{\partial x^{\mu}} = (\Lambda_{u}^{-1})^{a}{}_{c}(x)\left[(\Lambda_{u})^{d}{}_{b}(x)\omega^{c}{}_{d\mu}(x) + \partial_{\mu}(\Lambda_{u})^{c}{}_{b}(x)\right].$$
(19)

- Infinitesimal spacetime transformation is symmetry:
 - Generating vector fields X_{ξ} on M with $\xi \in \mathfrak{g}$.
 - Lie derivatives of fundamental geometric objects:

★ Tetrad:

$$\left(\mathcal{L}_{X_{\xi}}\theta\right)^{a}{}_{\mu} = X^{\nu}_{\xi}\partial_{\nu}\theta^{a}{}_{\mu} + \partial_{\mu}X^{\nu}_{\xi}\theta^{a}{}_{\nu} = -\lambda^{a}_{\xi b}\theta^{b}{}_{\mu}.$$
 (20)

⋆ Spin connection:

$$\left(\mathcal{L}_{X_{\xi}}\omega\right)^{a}_{b\mu} = X^{\nu}_{\xi}\partial_{\nu}\omega^{a}_{b\mu} + \partial_{\mu}X^{\nu}_{\xi}\omega^{a}_{b\nu} = \partial_{\mu}\lambda^{a}_{\xi b} + \omega^{a}_{\ c\mu}\lambda^{c}_{\xi b} - \omega^{c}_{\ b\mu}\lambda^{a}_{\xi c} \,. \tag{21}$$

• Symmetry requires $\Lambda_u(x) \in SO(1,3)$ and $\lambda_{\xi}(x) \in \mathfrak{so}(1,3)$.

Manuel Hohmann (University of Tartu) Teleparallel gravity & cosmological symmetry

• Consider two elements $u, v \in G$ of the symmetry group.

- Consider two elements $u, v \in G$ of the symmetry group.
- Group action property: $\varphi_{uv} = \varphi_u \circ \varphi_v$.

- Consider two elements $u, v \in G$ of the symmetry group.
- Group action property: $\varphi_{uv} = \varphi_u \circ \varphi_v$.
- \Rightarrow Consistency condition if tetrad is symmetric w.r.t. *u* and *v*:

$$(\Lambda_{uv}^{-1})^{a}{}_{b}\theta^{b}{}_{\mu} = (\varphi_{uv}^{*}\theta)^{a}{}_{\mu} = (\varphi_{v}^{*}\varphi_{u}^{*}\theta)^{a}{}_{\mu} = (\Lambda_{v}^{-1})^{a}{}_{b}(\Lambda_{u}^{-1})^{b}{}_{c}\theta^{c}{}_{\mu} \quad (22)$$

- Consider two elements $u, v \in G$ of the symmetry group.
- Group action property: $\varphi_{uv} = \varphi_u \circ \varphi_v$.
- \Rightarrow Consistency condition if tetrad is symmetric w.r.t. *u* and *v*:

$$(\Lambda_{uv}^{-1})^{a}{}_{b}\theta^{b}{}_{\mu} = (\varphi_{uv}^{*}\theta)^{a}{}_{\mu} = (\varphi_{v}^{*}\varphi_{u}^{*}\theta)^{a}{}_{\mu} = (\Lambda_{v}^{-1})^{a}{}_{b}(\Lambda_{u}^{-1})^{b}{}_{c}\theta^{c}{}_{\mu} \quad (22)$$

 $\Rightarrow \Lambda$ must be local group homomorphism:

$$\Lambda_{UV} = \Lambda_U \Lambda_V \,. \tag{23}$$

- Consider two elements $u, v \in G$ of the symmetry group.
- Group action property: $\varphi_{uv} = \varphi_u \circ \varphi_v$.
- \Rightarrow Consistency condition if tetrad is symmetric w.r.t. *u* and *v*:

$$(\Lambda_{uv}^{-1})^{a}{}_{b}\theta^{b}{}_{\mu} = (\varphi_{uv}^{*}\theta)^{a}{}_{\mu} = (\varphi_{v}^{*}\varphi_{u}^{*}\theta)^{a}{}_{\mu} = (\Lambda_{v}^{-1})^{a}{}_{b}(\Lambda_{u}^{-1})^{b}{}_{c}\theta^{c}{}_{\mu} \quad (22)$$

 $\Rightarrow \Lambda$ must be local group homomorphism:

$$\Lambda_{uv} = \Lambda_u \Lambda_v \,. \tag{23}$$

 $\Rightarrow \lambda$ must be local Lie algebra homomorphism:

$$\boldsymbol{\lambda}_{[\xi,\zeta]} = [\boldsymbol{\lambda}_{\xi}, \boldsymbol{\lambda}_{\zeta}]. \tag{24}$$

• Recall Weitzenböck gauge in metric teleparallelism: $\omega^a{}_{b\mu} \equiv 0$.

• Recall Weitzenböck gauge in metric teleparallelism: $\omega^a{}_{b\mu} \equiv 0$. \Rightarrow Symmetry condition for finite transformations:

$$0 \equiv (\varphi_{u}^{*}\omega)^{a}{}_{b\mu}(x) = \omega^{c}{}_{d\nu}(x')\frac{\partial x'^{\nu}}{\partial x^{\mu}}$$

= $(\Lambda_{u}^{-1})^{a}{}_{c}(x)\left[(\Lambda_{u})^{d}{}_{b}(x)\omega^{c}{}_{d\mu}(x) + \partial_{\mu}(\Lambda_{u})^{c}{}_{b}(x)\right]$
$$\equiv (\Lambda_{u}^{-1})^{a}{}_{c}(x)\partial_{\mu}(\Lambda_{u})^{c}{}_{b}(x).$$
(25)

Recall Weitzenböck gauge in metric teleparallelism: ω^a_{bμ} ≡ 0.
 ⇒ Symmetry condition for finite transformations:

$$0 \equiv (\varphi_{u}^{*}\omega)^{a}{}_{b\mu}(x) = \omega^{c}{}_{d\nu}(x')\frac{\partial x'^{\nu}}{\partial x^{\mu}}$$

= $(\Lambda_{u}^{-1})^{a}{}_{c}(x)\left[(\Lambda_{u})^{d}{}_{b}(x)\omega^{c}{}_{d\mu}(x) + \partial_{\mu}(\Lambda_{u})^{c}{}_{b}(x)\right]$ (25)
$$\equiv (\Lambda_{u}^{-1})^{a}{}_{c}(x)\partial_{\mu}(\Lambda_{u})^{c}{}_{b}(x).$$

⇒ Symmetry condition for infinitesimal transformations:

$$0 \equiv (\mathcal{L}_{X_{\xi}}\omega)^{a}{}_{b\mu} = X^{\nu}_{\xi}\partial_{\nu}\omega^{a}{}_{b\mu} + \partial_{\mu}X^{\nu}_{\xi}\omega^{a}{}_{b\nu}$$
$$= \partial_{\mu}\lambda^{a}_{\xi b} + \omega^{a}{}_{c\mu}\lambda^{c}_{\xi b} - \omega^{c}{}_{b\mu}\lambda^{a}_{\xi c} \qquad (26)$$
$$\equiv \partial_{\mu}\lambda^{a}_{\xi b}.$$

Recall Weitzenböck gauge in metric teleparallelism: ω^a_{bμ} ≡ 0.
 ⇒ Symmetry condition for finite transformations:

$$0 \equiv (\varphi_{u}^{*}\omega)^{a}{}_{b\mu}(x) = \omega^{c}{}_{d\nu}(x')\frac{\partial x'^{\nu}}{\partial x^{\mu}}$$

= $(\Lambda_{u}^{-1})^{a}{}_{c}(x)\left[(\Lambda_{u})^{d}{}_{b}(x)\omega^{c}{}_{d\mu}(x) + \partial_{\mu}(\Lambda_{u})^{c}{}_{b}(x)\right]$
$$\equiv (\Lambda_{u}^{-1})^{a}{}_{c}(x)\partial_{\mu}(\Lambda_{u})^{c}{}_{b}(x).$$
(25)

⇒ Symmetry condition for infinitesimal transformations:

$$0 \equiv (\mathcal{L}_{X_{\xi}}\omega)^{a}{}_{b\mu} = X^{\nu}_{\xi}\partial_{\nu}\omega^{a}{}_{b\mu} + \partial_{\mu}X^{\nu}_{\xi}\omega^{a}{}_{b\nu}$$

= $\partial_{\mu}\lambda^{a}_{\xi b} + \omega^{a}{}_{c\mu}\lambda^{c}_{\xi b} - \omega^{c}{}_{b\mu}\lambda^{a}_{\xi c}$ (26)
 $\equiv \partial_{\mu}\lambda^{a}_{\xi b}$.

\Rightarrow Homomorphisms Λ and λ are constant in Weitzenböck gauge.

Outline

- 1. Metric-affine and teleparallel geometry
- 2. Symmetries of metrics, tetrads and connections
- 3. Cosmological symmetry: state of the art
- 4. Three approaches to teleparallel cosmology
- 4.1 The tetrad & representation approach
- 4.2 The metric-affine approach
- 4.3 The torsion decomposition approach

5. Two branches of cosmological teleparallel geometries

- 5.1 The "vector" branch
- 5.2 The "axial" or "two-form" branch

6. Properties & applications

7. Conclusion

Generators of cosmological symmetry

• Use spherical coordinates t, r, ϑ, φ .
Generators of cosmological symmetry

- Use spherical coordinates t, r, ϑ, φ .
- Generating vector fields:
 - Rotations:

$$R_1 = \sin \varphi \partial_\vartheta + \frac{\cos \varphi}{\tan \vartheta} \partial_\varphi \,, \tag{27a}$$

$$R_2 = -\cos\varphi \partial_\vartheta + \frac{\sin\varphi}{\tan\vartheta} \partial_\varphi , \qquad (27b)$$

$$R_3 = -\partial_{\varphi} \,,$$
 (27c)

Translations:

$$T_{1} = \chi \sin \vartheta \cos \varphi \partial_{r} + \frac{\chi}{r} \cos \vartheta \cos \varphi \partial_{\vartheta} - \frac{\chi \sin \varphi}{r \sin \vartheta} \partial_{\varphi}, \qquad (28a)$$

$$T_{2} = \chi \sin \vartheta \sin \varphi \partial_{r} + \frac{\chi}{r} \cos \vartheta \sin \varphi \partial_{\vartheta} + \frac{\chi \cos \varphi}{r \sin \vartheta} \partial_{\varphi}, \qquad (28b)$$

$$T_{3} = \chi \cos \vartheta \partial_{r} - \frac{\chi}{r} \sin \vartheta \partial_{\vartheta}. \qquad (28c)$$

Generators of cosmological symmetry

- Use spherical coordinates t, r, ϑ, φ .
- Generating vector fields:
 - Rotations:

$$R_1 = \sin \varphi \partial_\vartheta + \frac{\cos \varphi}{\tan \vartheta} \partial_\varphi , \qquad (27a)$$

$$R_2 = -\cos\varphi \partial_\vartheta + \frac{\sin\varphi}{\tan\vartheta} \partial_\varphi , \qquad (27b)$$

$$R_3 = -\partial_{\varphi} \,,$$
 (27c)

Translations:

$$T_{1} = \chi \sin \vartheta \cos \varphi \partial_{r} + \frac{\chi}{r} \cos \vartheta \cos \varphi \partial_{\vartheta} - \frac{\chi \sin \varphi}{r \sin \vartheta} \partial_{\varphi}, \qquad (28a)$$

$$T_{2} = \chi \sin \vartheta \sin \varphi \partial_{r} + \frac{\chi}{r} \cos \vartheta \sin \varphi \partial_{\vartheta} + \frac{\chi \cos \varphi}{r \sin \vartheta} \partial_{\varphi}, \qquad (28b)$$

$$T_{3} = \chi \cos \vartheta \partial_{r} - \frac{\chi}{r} \sin \vartheta \partial_{\vartheta}. \qquad (28c)$$

• Here $\chi = \sqrt{1 - (ur)^2}$, and *u* can be real or imaginary.

Symmetry group and algebra

Commutation relations of symmetry generators:

$$[\mathbf{R}_i, \mathbf{R}_j] = \epsilon_{ijk} \mathbf{R}_k \,, \tag{29a}$$

$$[T_i, T_j] = u^2 \epsilon_{ijk} R_k , \qquad (29b)$$

$$[T_i, R_j] = \epsilon_{ijk} T_k . \qquad (29c)$$

Symmetry group and algebra

Commutation relations of symmetry generators:

$$[R_i, R_j] = \epsilon_{ijk} R_k \,, \tag{29a}$$

$$[T_i, T_j] = u^2 \epsilon_{ijk} R_k , \qquad (29b)$$

$$[T_i, R_j] = \epsilon_{ijk} T_k \,. \tag{29c}$$

• Symmetry group depends on *u*:

- $u^2 > 0$: positive spatial curvature, symmetry group SO(4).
- $u^2 < 0$: negative spatial curvature, symmetry group SO₀(3, 1).
- $u^2 = 0$: vanishing spatial curvature, symmetry group ISO(3).

Symmetry group and algebra

Commutation relations of symmetry generators:

$$[R_i, R_j] = \epsilon_{ijk} R_k \,, \tag{29a}$$

$$[T_i, T_j] = u^2 \epsilon_{ijk} R_k , \qquad (29b)$$

$$[T_i, R_j] = \epsilon_{ijk} T_k \,. \tag{29c}$$

• Symmetry group depends on *u*:

- $u^2 > 0$: positive spatial curvature, symmetry group SO(4).
- $u^2 < 0$: negative spatial curvature, symmetry group SO₀(3, 1).
- $u^2 = 0$: vanishing spatial curvature, symmetry group ISO(3).
- Helpful to compare with Lorentz algebra:

$$[J_i, J_j] = \epsilon_{ijk} J_k \,, \tag{30a}$$

$$[K_i, K_j] = -\epsilon_{ijk} J_k , \qquad (30b)$$

$$[K_i, J_j] = \epsilon_{ijk} K_k \,. \tag{30c}$$

Cosmologically symmetric Riemannian geometry

Most general metric with cosmological symmetry:

$$g_{tt} = -\mathcal{N}^2, \quad g_{rr} = \frac{\mathcal{A}^2}{\chi^2}, \quad g_{\vartheta\vartheta} = \mathcal{A}^2 r^2, \quad g_{\varphi\varphi} = \mathcal{A}^2 r^2 \sin^2 \vartheta \quad (31)$$

Cosmologically symmetric Riemannian geometry

Most general metric with cosmological symmetry:

$$g_{tt} = -\mathcal{N}^2, \quad g_{rr} = \frac{\mathcal{A}^2}{\chi^2}, \quad g_{\vartheta\vartheta} = \mathcal{A}^2 r^2, \quad g_{\varphi\varphi} = \mathcal{A}^2 r^2 \sin^2 \vartheta \quad (31)$$

- Metric depends on two functions of time t:
 - Lapse function $\mathcal{N}(t)$.
 - Scale factor $\mathcal{A}(t)$.

Cosmologically symmetric Riemannian geometry

Most general metric with cosmological symmetry:

$$g_{tt} = -\mathcal{N}^2, \quad g_{rr} = \frac{\mathcal{A}^2}{\chi^2}, \quad g_{\vartheta\vartheta} = \mathcal{A}^2 r^2, \quad g_{\varphi\varphi} = \mathcal{A}^2 r^2 \sin^2 \vartheta \quad (31)$$

- Metric depends on two functions of time t:
 - Lapse function $\mathcal{N}(t)$.
 - Scale factor $\mathcal{A}(t)$.
- Totally antisymmetric tensor $\epsilon_{\mu\nu\rho\sigma}$:

$$\epsilon_{tr\vartheta\varphi} = \sqrt{-\det g} = \frac{\mathcal{N}\mathcal{A}^3 r^2 \sin\vartheta}{\chi} \,. \tag{32}$$

3 + 1 split of Riemannian geometry

- Canonical 3 + 1 split of the metric:
 - Unit normal (co-)vector field:

$$N = n^{\sharp} = \frac{1}{N} \partial_t, \quad n = N^{\flat} = -N \mathrm{d}t.$$
 (33)

• Spatial metric (gives projection onto spatial slices):

$$h = g + n \otimes n = \mathcal{A}^{2} \left[\frac{\mathrm{d} r \otimes \mathrm{d} r}{\chi^{2}} + r^{2} (\mathrm{d} \vartheta \otimes \mathrm{d} \vartheta + \sin^{2} \vartheta \mathrm{d} \varphi \otimes \mathrm{d} \varphi) \right].$$
(34)

3 + 1 split of Riemannian geometry

• Canonical 3 + 1 split of the metric:

• Unit normal (co-)vector field:

$$N = n^{\sharp} = \frac{1}{N} \partial_t, \quad n = N^{\flat} = -N \mathrm{d}t.$$
 (33)

• Spatial metric (gives projection onto spatial slices):

$$h = g + n \otimes n = \mathcal{A}^{2} \left[\frac{\mathrm{d} r \otimes \mathrm{d} r}{\chi^{2}} + r^{2} (\mathrm{d} \vartheta \otimes \mathrm{d} \vartheta + \sin^{2} \vartheta \mathrm{d} \varphi \otimes \mathrm{d} \varphi) \right].$$
(34)

Induced spatial volume form via

$$\varepsilon_{\mu\nu\rho} = \mathbf{n}^{\sigma} \epsilon_{\sigma\mu\nu\rho} , \quad \epsilon_{\mu\nu\rho\sigma} = \mathbf{4} \varepsilon_{[\mu\nu\rho} \mathbf{n}_{\sigma]} .$$
(35)

so that

$$\varepsilon_{r\vartheta\varphi} = \frac{\mathcal{A}^3 r^2 \sin \vartheta}{\chi}, \quad \varepsilon_{tij} = 0.$$
 (36)

• Riemann tensor:

$$\mathring{R}_{\mu\nu\rho\sigma} = 2\frac{\dot{\mathcal{A}}^2 + u^2\mathcal{N}^2}{\mathcal{A}^2\mathcal{N}^2}h_{\mu[\rho}h_{\sigma]\nu} + 4\frac{\ddot{\mathcal{A}}\mathcal{N} - \dot{\mathcal{A}}\dot{\mathcal{N}}}{\mathcal{A}\mathcal{N}^3}n_{[\mu}h_{\nu][\rho}n_{\sigma]}.$$
 (37)

Riemann tensor:

$$\overset{\circ}{R}_{\mu\nu\rho\sigma} = 2\frac{\dot{\mathcal{A}}^2 + u^2\mathcal{N}^2}{\mathcal{A}^2\mathcal{N}^2}h_{\mu[\rho}h_{\sigma]\nu} + 4\frac{\ddot{\mathcal{A}}\mathcal{N} - \dot{\mathcal{A}}\dot{\mathcal{N}}}{\mathcal{A}\mathcal{N}^3}n_{[\mu}h_{\nu][\rho}n_{\sigma]}.$$
 (37)

Ricci tensor:

$$\overset{\,\,{}_{\circ}}{R}_{\mu\nu} = 3 \frac{\dot{\mathcal{A}}\dot{\mathcal{N}} - \ddot{\mathcal{A}}\mathcal{N}}{\mathcal{A}\mathcal{N}^{3}} n_{\mu}n_{\nu} + \frac{2u^{2}\mathcal{N}^{3} + 2\dot{\mathcal{A}}^{2}\mathcal{N} - \mathcal{A}\dot{\mathcal{A}}\dot{\mathcal{N}} + \mathcal{A}\ddot{\mathcal{A}}\mathcal{N}}{\mathcal{A}^{2}\mathcal{N}^{3}} h_{\mu\nu} \,.$$
(38)

Riemann tensor:

$$\overset{\circ}{R}_{\mu\nu\rho\sigma} = 2\frac{\dot{\mathcal{A}}^2 + u^2\mathcal{N}^2}{\mathcal{A}^2\mathcal{N}^2}h_{\mu[\rho}h_{\sigma]\nu} + 4\frac{\ddot{\mathcal{A}}\mathcal{N} - \dot{\mathcal{A}}\dot{\mathcal{N}}}{\mathcal{A}\mathcal{N}^3}n_{[\mu}h_{\nu][\rho}n_{\sigma]}.$$
 (37)

Ricci tensor:

$$\overset{\,\,{}_{\circ}}{R}_{\mu\nu} = 3 \frac{\dot{\mathcal{A}}\dot{\mathcal{N}} - \ddot{\mathcal{A}}\mathcal{N}}{\mathcal{A}\mathcal{N}^3} n_{\mu}n_{\nu} + \frac{2u^2\mathcal{N}^3 + 2\dot{\mathcal{A}}^2\mathcal{N} - \mathcal{A}\dot{\mathcal{A}}\dot{\mathcal{N}} + \mathcal{A}\ddot{\mathcal{A}}\mathcal{N}}{\mathcal{A}^2\mathcal{N}^3} h_{\mu\nu} \,.$$
(38)

Ricci scalar:

$$\mathring{R} = 6 \frac{u^2 \mathcal{N}^3 + \dot{\mathcal{A}}^2 \mathcal{N} - \mathcal{A} \dot{\mathcal{A}} \dot{\mathcal{N}} + \mathcal{A} \ddot{\mathcal{A}} \mathcal{N}}{\mathcal{A}^2 \mathcal{N}^3} \,. \tag{39}$$

Riemann tensor:

$$\overset{\circ}{R}_{\mu\nu\rho\sigma} = 2\frac{\dot{\mathcal{A}}^2 + u^2\mathcal{N}^2}{\mathcal{A}^2\mathcal{N}^2}h_{\mu[\rho}h_{\sigma]\nu} + 4\frac{\ddot{\mathcal{A}}\mathcal{N} - \dot{\mathcal{A}}\dot{\mathcal{N}}}{\mathcal{A}\mathcal{N}^3}n_{[\mu}h_{\nu][\rho}n_{\sigma]}.$$
 (37)

Ricci tensor:

$$\mathring{R}_{\mu\nu} = 3 \frac{\dot{\mathcal{A}}\dot{\mathcal{N}} - \ddot{\mathcal{A}}\mathcal{N}}{\mathcal{A}\mathcal{N}^3} n_{\mu}n_{\nu} + \frac{2u^2\mathcal{N}^3 + 2\dot{\mathcal{A}}^2\mathcal{N} - \mathcal{A}\dot{\mathcal{A}}\dot{\mathcal{N}} + \mathcal{A}\ddot{\mathcal{A}}\mathcal{N}}{\mathcal{A}^2\mathcal{N}^3} h_{\mu\nu} \,.$$
(38)

Ricci scalar:

$$\mathring{R} = 6 \frac{u^2 \mathcal{N}^3 + \dot{\mathcal{A}}^2 \mathcal{N} - \mathcal{A} \dot{\mathcal{A}} \dot{\mathcal{N}} + \mathcal{A} \ddot{\mathcal{A}} \mathcal{N}}{\mathcal{A}^2 \mathcal{N}^3} \,. \tag{39}$$

 \Rightarrow Simple equations for cosmological dynamics and perturbations.

Riemann tensor:

$$\overset{\circ}{R}_{\mu\nu\rho\sigma} = 2\frac{\dot{\mathcal{A}}^2 + u^2\mathcal{N}^2}{\mathcal{A}^2\mathcal{N}^2}h_{\mu[\rho}h_{\sigma]\nu} + 4\frac{\ddot{\mathcal{A}}\mathcal{N} - \dot{\mathcal{A}}\dot{\mathcal{N}}}{\mathcal{A}\mathcal{N}^3}n_{[\mu}h_{\nu][\rho}n_{\sigma]}.$$
 (37)

Ricci tensor:

$$\mathring{R}_{\mu\nu} = 3 \frac{\dot{\mathcal{A}}\dot{\mathcal{N}} - \ddot{\mathcal{A}}\mathcal{N}}{\mathcal{A}\mathcal{N}^3} n_{\mu}n_{\nu} + \frac{2u^2\mathcal{N}^3 + 2\dot{\mathcal{A}}^2\mathcal{N} - \mathcal{A}\dot{\mathcal{A}}\dot{\mathcal{N}} + \mathcal{A}\ddot{\mathcal{A}}\mathcal{N}}{\mathcal{A}^2\mathcal{N}^3} h_{\mu\nu} \,.$$
(38)

Ricci scalar:

$$\mathring{R} = 6 \frac{u^2 \mathcal{N}^3 + \dot{\mathcal{A}}^2 \mathcal{N} - \mathcal{A} \dot{\mathcal{A}} \dot{\mathcal{N}} + \mathcal{A} \ddot{\mathcal{A}} \mathcal{N}}{\mathcal{A}^2 \mathcal{N}^3} \,. \tag{39}$$

- \Rightarrow Simple equations for cosmological dynamics and perturbations.
 - Similar expressions for relevant teleparallel quantities?

- What do we know so far?
 - Most general cosmologically symmetric metric.
 - Most general cosmologically symmetric, flat, metric connection.
 - Examples of tetrads and spin connections for $u^2 \in \{-1, 0, 1\}$.
 - Friedmann equations for those tetrads and several theories.

- What do we know so far?
 - Most general cosmologically symmetric metric.
 - Most general cosmologically symmetric, flat, metric connection.
 - Examples of tetrads and spin connections for $u^2 \in \{-1, 0, 1\}$.
 - Friedmann equations for those tetrads and several theories.
- What is commonly used and why?
 - Most often spatially flat (u = 0) tetrad in Weitzenböck gauge.
 - Symmetric tetrad is diagonal in Cartesian coordinates.
 - Easy to calculate, e.g., perturbations around this tetrad.
 - Tetrads with $u \neq 0$ given by cumbersome component expressions.

What do we know so far?

- Most general cosmologically symmetric metric.
- Most general cosmologically symmetric, flat, metric connection.
- Examples of tetrads and spin connections for $u^2 \in \{-1, 0, 1\}$.
- Friedmann equations for those tetrads and several theories.
- What is commonly used and why?
 - Most often spatially flat (u = 0) tetrad in Weitzenböck gauge.
 - Symmetric tetrad is diagonal in Cartesian coordinates.
 - Easy to calculate, e.g., perturbations around this tetrad.
 - Tetrads with $u \neq 0$ given by cumbersome component expressions.
- What are open questions?
 - Are there more tetrads with cosmological symmetry?
 - Can we characterize them as in Riemannian geometry?
 - How can we effectively work with $u \neq 0$ tetrads?

What do we know so far?

- Most general cosmologically symmetric metric.
- Most general cosmologically symmetric, flat, metric connection.
- Examples of tetrads and spin connections for $u^2 \in \{-1, 0, 1\}$.
- Friedmann equations for those tetrads and several theories.
- What is commonly used and why?
 - Most often spatially flat (u = 0) tetrad in Weitzenböck gauge.
 - Symmetric tetrad is diagonal in Cartesian coordinates.
 - Easy to calculate, e.g., perturbations around this tetrad.
 - Tetrads with $u \neq 0$ given by cumbersome component expressions.
- What are open questions?
 - Are there more tetrads with cosmological symmetry?
 - Can we characterize them as in Riemannian geometry?
 - How can we effectively work with $u \neq 0$ tetrads?
- We will now answer these questions.

Outline

- 1. Metric-affine and teleparallel geometry
- 2. Symmetries of metrics, tetrads and connections
- 3. Cosmological symmetry: state of the art
- 4. Three approaches to teleparallel cosmology
- 4.1 The tetrad & representation approach
- 4.2 The metric-affine approach
- 4.3 The torsion decomposition approach

5. Two branches of cosmological teleparallel geometries

- 5.1 The "vector" branch
- 5.2 The "axial" or "two-form" branch
- 6. Properties & applications
- 7. Conclusion

Outline

- 1. Metric-affine and teleparallel geometry
- 2. Symmetries of metrics, tetrads and connections
- 3. Cosmological symmetry: state of the art

4. Three approaches to teleparallel cosmology

- 4.1 The tetrad & representation approach
- 4.2 The metric-affine approach
- 4.3 The torsion decomposition approach

5. Two branches of cosmological teleparallel geometries

- 5.1 The "vector" branch
- 5.2 The "axial" or "two-form" branch

6. Properties & applications

7. Conclusion

• Work in Weitzenböck gauge: $\omega^a{}_{b\mu} \equiv 0$.

- Work in Weitzenböck gauge: $\omega^a{}_{b\mu} \equiv 0.$
- \Rightarrow Need to find global group homomorphism $\Lambda : G \rightarrow SO(1,3)$.

- Work in Weitzenböck gauge: $\omega^a{}_{b\mu} \equiv 0$.
- \Rightarrow Need to find global group homomorphism $\Lambda: G \rightarrow SO(1,3)$.
- $\Rightarrow \Lambda$ is four-dimensional linear representation of *G*.

- Work in Weitzenböck gauge: $\omega^a{}_{b\mu} \equiv 0.$
- \Rightarrow Need to find global group homomorphism $\Lambda : G \rightarrow SO(1,3)$.
- $\Rightarrow \Lambda$ is four-dimensional linear representation of *G*.
- \rightarrow Determine all four-dimensional representations of G.

- Work in Weitzenböck gauge: $\omega^a{}_{b\mu} \equiv 0.$
- \Rightarrow Need to find global group homomorphism $\Lambda : G \rightarrow SO(1,3)$.
- $\Rightarrow \Lambda$ is four-dimensional linear representation of G.
- \rightarrow Determine all four-dimensional representations of G.
- → Check which representations preserve the Minkowski metric.

- Work in Weitzenböck gauge: $\omega^a{}_{b\mu} \equiv 0.$
- ⇒ Need to find global group homomorphism Λ : G → SO(1,3).
- $\Rightarrow \Lambda$ is four-dimensional linear representation of G.
- → Determine all four-dimensional representations of G.
- → Check which representations preserve the Minkowski metric.
 - Solve symmetry condition for Weitzenböck tetrad.

- Work in Weitzenböck gauge: $\omega^a{}_{b\mu} \equiv 0.$
- ⇒ Need to find global group homomorphism Λ : G → SO(1,3).
- $\Rightarrow \Lambda$ is four-dimensional linear representation of G.
- \rightarrow Determine all four-dimensional representations of G.
- → Check which representations preserve the Minkowski metric.
 - Solve symmetry condition for Weitzenböck tetrad.
 - Perform Lorentz transformation to diagonal gauge.

- Work in Weitzenböck gauge: $\omega^a{}_{b\mu} \equiv 0.$
- ⇒ Need to find global group homomorphism Λ : G → SO(1,3).
- $\Rightarrow \Lambda$ is four-dimensional linear representation of G.
- \rightarrow Determine all four-dimensional representations of G.
- → Check which representations preserve the Minkowski metric.
 - Solve symmetry condition for Weitzenböck tetrad.
 - Perform Lorentz transformation to diagonal gauge.
 - Read off spin connection in diagonal gauge.

Step 1: irreducible reps. of the symmetry group

- $u \neq 0$: use "unitary trick" and complexification.
 - Irreps labeled by (m, n) with $\{2m, 2n, m+n\} \subset \mathbb{N}$.
 - Dimension given by (2m+1)(2n+1).
 - Irreps with dimension at most 4:

$$(0,0), (0,1), (1,0), (\frac{1}{2},\frac{1}{2}).$$
 (40)

- $u \neq 0$: use "unitary trick" and complexification.
 - Irreps labeled by (m, n) with $\{2m, 2n, m+n\} \subset \mathbb{N}$.
 - Dimension given by (2m+1)(2n+1).
 - Irreps with dimension at most 4:

$$(0,0), (0,1), (1,0), (\frac{1}{2},\frac{1}{2}).$$
 (40)

- u = 0: use induced representations of Euclidean group.
 - Irreps induced by representations of SO(3).
 - Irreps labeled by spin $I \in \mathbb{N}$.
 - Dimension given by 2l + 1.
 - Irreps with dimension at most 4: $I \in \{0, 1\}$.

- $u \neq 0$: four inequivalent representations.
 - 1. Trivial representation: $(0,0) \oplus (0,0) \oplus (0,0) \oplus (0,0)$.
 - 2. Anti-self-dual two-form: $(0,0) \oplus (0,1)$.
 - 3. Self-dual two-form: $(0,0) \oplus (1,0)$.
 - 4. Vector representation: $(\frac{1}{2}, \frac{1}{2})$.

- $u \neq 0$: four inequivalent representations.
 - 1. Trivial representation: $(0,0) \oplus (0,0) \oplus (0,0) \oplus (0,0)$.
 - 2. Anti-self-dual two-form: $(0,0) \oplus (0,1)$.
 - 3. Self-dual two-form: $(0,0) \oplus (1,0)$.
 - 4. Vector representation: $(\frac{1}{2}, \frac{1}{2})$.
- u = 0: two inequivalent representations.
 - 1. Trivial representation: $\mathbf{0} \oplus \mathbf{0} \oplus \mathbf{0} \oplus \mathbf{0}$.
 - 2. Vector representation: $\mathbf{0} \oplus \mathbf{1}$.

- $u \neq 0$: four inequivalent representations.
 - 1. Trivial representation: $(0,0) \oplus (0,0) \oplus (0,0) \oplus (0,0)$.
 - 2. Anti-self-dual two-form: $(0,0) \oplus (0,1)$.
 - 3. Self-dual two-form: $(0,0) \oplus (1,0)$.
 - 4. Vector representation: $(\frac{1}{2}, \frac{1}{2})$.
- u = 0: two inequivalent representations.
 - 1. Trivial representation: $\mathbf{0} \oplus \mathbf{0} \oplus \mathbf{0} \oplus \mathbf{0}$.
 - 2. Vector representation: $\mathbf{0} \oplus \mathbf{1}$.
- \Rightarrow Obtain explicit representation matrices:

$$\frac{\Phi: G \to \mathsf{GL}(4)}{u \mapsto \Phi_u}.$$
(41)

- $u \neq 0$: four inequivalent representations.
 - 1. Trivial representation: $(0,0) \oplus (0,0) \oplus (0,0) \oplus (0,0)$.
 - 2. Anti-self-dual two-form: $(0,0) \oplus (0,1)$.
 - 3. Self-dual two-form: $(0,0) \oplus (1,0)$.
 - 4. Vector representation: $(\frac{1}{2}, \frac{1}{2})$.
- u = 0: two inequivalent representations.
 - 1. Trivial representation: $\mathbf{0} \oplus \mathbf{0} \oplus \mathbf{0} \oplus \mathbf{0}$.
 - 2. Vector representation: $\mathbf{0} \oplus \mathbf{1}$.
- \Rightarrow Obtain explicit representation matrices:

$$\Phi: G \to \operatorname{GL}(4) \\
u \mapsto \Phi_u$$
(41)

 \Rightarrow Easier to work with Lie algebra representation:

$$\frac{\phi:\mathfrak{g}\to\mathfrak{gl}(4)}{\xi\mapsto\phi_{\xi}}.$$
(42)

Step 3: preservation of the Minkowski metric

• Need to find basis transformation *P* such that for all $u \in G$:

$$\Lambda_u = P^{-1} \Phi_u P \in \mathrm{SO}(1,3) \,. \tag{43}$$
• Need to find basis transformation *P* such that for all $u \in G$:

$$\Lambda_u = P^{-1} \Phi_u P \in \mathrm{SO}(1,3) \,. \tag{43}$$

Consider Minkowski metric η = diag(-1, 1, 1, 1).

Need to find basis transformation *P* such that for all *u* ∈ *G*:

$$\Lambda_u = P^{-1} \Phi_u P \in \mathrm{SO}(1,3) \,. \tag{43}$$

• Consider Minkowski metric $\eta = diag(-1, 1, 1, 1)$.

⇒ Transformed representation matrices must satisfy

$$\eta = \Lambda_u^t \eta \Lambda_u = P^t \Phi_u^t P^{-1 t} \eta P^{-1} \Phi_u P.$$
(44)

• Need to find basis transformation *P* such that for all *u* ∈ *G*:

$$\Lambda_u = P^{-1} \Phi_u P \in \mathrm{SO}(1,3) \,. \tag{43}$$

• Consider Minkowski metric $\eta = diag(-1, 1, 1, 1)$.

⇒ Transformed representation matrices must satisfy

$$\eta = \Lambda_u^t \eta \Lambda_u = P^t \Phi_u^t P^{-1 t} \eta P^{-1} \Phi_u P.$$
(44)

 \Rightarrow Lie algebra representation matrices must satisfy

$$\mathbf{0} = \boldsymbol{\lambda}_{\xi}^{t} \boldsymbol{\eta} + \boldsymbol{\eta} \boldsymbol{\lambda}_{\xi} = \boldsymbol{P}^{t} \boldsymbol{\phi}_{\xi}^{t} \boldsymbol{P}^{-1} \, {}^{t} \boldsymbol{\eta} + \boldsymbol{\eta} \boldsymbol{P}^{-1} \boldsymbol{\phi}_{\xi} \boldsymbol{P} \,. \tag{45}$$

• Need to find basis transformation *P* such that for all $u \in G$:

$$\Lambda_u = P^{-1} \Phi_u P \in \mathrm{SO}(1,3) \,. \tag{43}$$

• Consider Minkowski metric $\eta = diag(-1, 1, 1, 1)$.

⇒ Transformed representation matrices must satisfy

$$\eta = \Lambda_u^t \eta \Lambda_u = P^t \Phi_u^t P^{-1 t} \eta P^{-1} \Phi_u P.$$
(44)

⇒ Lie algebra representation matrices must satisfy

$$0 = \lambda_{\xi}^{t} \eta + \eta \lambda_{\xi} = P^{t} \phi_{\xi}^{t} P^{-1 t} \eta + \eta P^{-1} \phi_{\xi} P.$$
(45)

→ Solve for transformations P satisfying

$$0 = P\eta P^t \phi_{\xi}^t + \phi_{\xi} P\eta P^t \,. \tag{46}$$

• Need to find basis transformation *P* such that for all $u \in G$:

$$\Lambda_u = P^{-1} \Phi_u P \in \mathrm{SO}(1,3) \,. \tag{43}$$

• Consider Minkowski metric $\eta = diag(-1, 1, 1, 1)$.

⇒ Transformed representation matrices must satisfy

$$\eta = \Lambda_u^t \eta \Lambda_u = P^t \Phi_u^t P^{-1 t} \eta P^{-1} \Phi_u P.$$
(44)

⇒ Lie algebra representation matrices must satisfy

$$0 = \lambda_{\xi}^{t} \eta + \eta \lambda_{\xi} = P^{t} \phi_{\xi}^{t} P^{-1 t} \eta + \eta P^{-1} \phi_{\xi} P.$$
(45)

→ Solve for transformations *P* satisfying

$$0 = P\eta P^t \phi_{\xi}^t + \phi_{\xi} P\eta P^t \,. \tag{46}$$

✓ Transformations exist for all four-dimensional representations.

- $u \neq 0$: four inequivalent homomorphisms.
 - 1. Trivial representation: $\lambda(R_i) = \lambda(T_i) = 0$.
 - 2. Anti-self-dual two-form: $\lambda(R_i) = J_i$, $\lambda(T_i) = uJ_i$.
 - 3. Self-dual two-form: $\lambda(R_i) = J_i$, $\lambda(T_i) = -uJ_i$.
 - 4. Vector representation: $\lambda(R_i) = J_i$, $\lambda(T_i) = \pm i u K_i$.

- $u \neq 0$: four inequivalent homomorphisms.
 - 1. Trivial representation: $\lambda(R_i) = \lambda(T_i) = 0$.
 - 2. Anti-self-dual two-form: $\lambda(R_i) = J_i$, $\lambda(T_i) = uJ_i$.
 - 3. Self-dual two-form: $\lambda(R_i) = J_i$, $\lambda(T_i) = -uJ_i$.
 - 4. Vector representation: $\lambda(R_i) = J_i$, $\lambda(T_i) = \pm i u K_i$.
- u = 0: two inequivalent homomorphisms.
 - 1. Trivial representation: $\lambda(R_i) = \lambda(T_i) = 0$.
 - 2. Vector representation: $\lambda(R_i) = J_i$, $\lambda(T_i) = 0$.

- $u \neq 0$: four inequivalent homomorphisms.
 - 1. Trivial representation: $\lambda(R_i) = \lambda(T_i) = 0$.
 - 2. Anti-self-dual two-form: $\lambda(R_i) = J_i$, $\lambda(T_i) = uJ_i$.
 - 3. Self-dual two-form: $\lambda(R_i) = J_i$, $\lambda(T_i) = -uJ_i$.
 - 4. Vector representation: $\lambda(R_i) = J_i$, $\lambda(T_i) = \pm i u K_i$.
- u = 0: two inequivalent homomorphisms.
 - 1. Trivial representation: $\lambda(R_i) = \lambda(T_i) = 0$.
 - 2. Vector representation: $\lambda(R_i) = J_i$, $\lambda(T_i) = 0$.
- Observations:
 - Homomorphisms determined only up to Lorentz transformation.

- $u \neq 0$: four inequivalent homomorphisms.
 - 1. Trivial representation: $\lambda(R_i) = \lambda(T_i) = 0$.
 - 2. Anti-self-dual two-form: $\lambda(R_i) = J_i$, $\lambda(T_i) = uJ_i$.
 - 3. Self-dual two-form: $\lambda(R_i) = J_i$, $\lambda(T_i) = -uJ_i$.
 - 4. Vector representation: $\lambda(R_i) = J_i$, $\lambda(T_i) = \pm i u K_i$.
- *u* = 0: two inequivalent homomorphisms.
 - 1. Trivial representation: $\lambda(R_i) = \lambda(T_i) = 0$.
 - 2. Vector representation: $\lambda(R_i) = J_i$, $\lambda(T_i) = 0$.
- Observations:
 - Homomorphisms determined only up to Lorentz transformation.
 - Smooth limit $u \rightarrow 0$ connects different homomorphisms.

- $u \neq 0$: four inequivalent homomorphisms.
 - 1. Trivial representation: $\lambda(R_i) = \lambda(T_i) = 0$.
 - 2. Anti-self-dual two-form: $\lambda(R_i) = J_i$, $\lambda(T_i) = uJ_i$.
 - 3. Self-dual two-form: $\lambda(R_i) = J_i$, $\lambda(T_i) = -uJ_i$.
 - 4. Vector representation: $\lambda(R_i) = J_i$, $\lambda(T_i) = \pm i u K_i$.
- u = 0: two inequivalent homomorphisms.
 - 1. Trivial representation: $\lambda(R_i) = \lambda(T_i) = 0$.
 - 2. Vector representation: $\lambda(R_i) = J_i$, $\lambda(T_i) = 0$.
- Observations:
 - Homomorphisms determined only up to Lorentz transformation.
 - Smooth limit $u \rightarrow 0$ connects different homomorphisms.
 - Two-form case: $u \mapsto -u$ not equivalent, since $\lambda(T_i) = \pm u\lambda(R_i)$.

- $u \neq 0$: four inequivalent homomorphisms.
 - 1. Trivial representation: $\lambda(R_i) = \lambda(T_i) = 0$.
 - 2. Anti-self-dual two-form: $\lambda(R_i) = J_i$, $\lambda(T_i) = uJ_i$.
 - 3. Self-dual two-form: $\lambda(R_i) = J_i$, $\lambda(T_i) = -uJ_i$.
 - 4. Vector representation: $\lambda(R_i) = J_i$, $\lambda(T_i) = \pm i u K_i$.
- u = 0: two inequivalent homomorphisms.
 - 1. Trivial representation: $\lambda(R_i) = \lambda(T_i) = 0$.
 - 2. Vector representation: $\lambda(R_i) = J_i$, $\lambda(T_i) = 0$.
- Observations:
 - Homomorphisms determined only up to Lorentz transformation.
 - Smooth limit $u \rightarrow 0$ connects different homomorphisms.
 - Two-form case: $u \mapsto -u$ not equivalent, since $\lambda(T_i) = \pm u\lambda(R_i)$.
 - Vector case: $u \mapsto -u$ equivalent via time reflection $K_i \mapsto -K_i$.

- $u \neq 0$: four inequivalent homomorphisms.
 - 1. Trivial representation: $\lambda(R_i) = \lambda(T_i) = 0$.
 - 2. Anti-self-dual two-form: $\lambda(R_i) = J_i$, $\lambda(T_i) = uJ_i$.
 - 3. Self-dual two-form: $\lambda(R_i) = J_i$, $\lambda(T_i) = -uJ_i$.
 - 4. Vector representation: $\lambda(R_i) = J_i$, $\lambda(T_i) = \pm i u K_i$.
- u = 0: two inequivalent homomorphisms.
 - 1. Trivial representation: $\lambda(R_i) = \lambda(T_i) = 0$.
 - 2. Vector representation: $\lambda(R_i) = J_i$, $\lambda(T_i) = 0$.
- Observations:
 - Homomorphisms determined only up to Lorentz transformation.
 - Smooth limit $u \rightarrow 0$ connects different homomorphisms.
 - Two-form case: $u \mapsto -u$ not equivalent, since $\lambda(T_i) = \pm u\lambda(R_i)$.
 - Vector case: $u \mapsto -u$ equivalent via time reflection $K_i \mapsto -K_i$.
 - \oint Some homomorphisms become complex depending on sign of u^2 .

- Solve symmetry conditions in Weitzenböck gauge:
 - Solve three conditions for R_i to get spherical symmetry:
 - \oint Trivial case $\lambda(R_i) = 0$ has no solutions (topological obstruction).
 - ✓ Non-trivial case $\lambda(R_i) = J_i$ gives six-parameter family of solutions.

- Solve symmetry conditions in Weitzenböck gauge:
 - Solve three conditions for R_i to get spherical symmetry:
 - t Trivial case $\lambda(R_i) = 0$ has no solutions (topological obstruction).
 - ✓ Non-trivial case $\lambda(R_i) = J_i$ gives six-parameter family of solutions.
 - Solve remaining conditions for T_i to get cosmological symmetry:
 - ✓ Two-parameter families of solutions for remaining homomorphisms.
 - ★ Parameter functions $\mathcal{N}(t)$, $\mathcal{A}(t)$ are lapse and scale factor.

- Solve symmetry conditions in Weitzenböck gauge:
 - Solve three conditions for R_i to get spherical symmetry:
 - t Trivial case $\lambda(R_i) = 0$ has no solutions (topological obstruction).
 - ✓ Non-trivial case $\lambda(R_i) = J_i$ gives six-parameter family of solutions.
 - Solve remaining conditions for T_i to get cosmological symmetry:
 - ✓ Two-parameter families of solutions for remaining homomorphisms.
 - ★ Parameter functions $\mathcal{N}(t)$, $\mathcal{A}(t)$ are lapse and scale factor.
- Transformation to diagonal gauge:
 - Use diagonal tetrad

$$\theta'^{0} = \mathcal{N} dt, \quad \theta'^{1} = \frac{\mathcal{A}}{\chi} dr, \quad \theta'^{2} = \mathcal{A} r d\vartheta, \quad \theta'^{3} = \mathcal{A} r \sin \vartheta d\varphi.$$
 (47)

- Solve symmetry conditions in Weitzenböck gauge:
 - Solve three conditions for R_i to get spherical symmetry:
 - t Trivial case $\lambda(R_i) = 0$ has no solutions (topological obstruction).
 - ✓ Non-trivial case $\lambda(R_i) = J_i$ gives six-parameter family of solutions.
 - Solve remaining conditions for T_i to get cosmological symmetry:
 - ✓ Two-parameter families of solutions for remaining homomorphisms.
 - ★ Parameter functions $\mathcal{N}(t)$, $\mathcal{A}(t)$ are lapse and scale factor.
- Transformation to diagonal gauge:
 - Use diagonal tetrad

$$\theta'^{0} = \mathcal{N} dt, \quad \theta'^{1} = \frac{\mathcal{A}}{\chi} dr, \quad \theta'^{2} = \mathcal{A} r d\vartheta, \quad \theta'^{3} = \mathcal{A} r \sin \vartheta d\varphi.$$
 (47)

• Calculate Lorentz transformation such that $\theta'{}^a{}_{\mu} = \Lambda^a{}_b \theta^b{}_{\mu}$.

- Solve symmetry conditions in Weitzenböck gauge:
 - Solve three conditions for R_i to get spherical symmetry:
 - t Trivial case $\lambda(R_i) = 0$ has no solutions (topological obstruction).
 - ✓ Non-trivial case $\lambda(R_i) = J_i$ gives six-parameter family of solutions.
 - Solve remaining conditions for T_i to get cosmological symmetry:
 - ✓ Two-parameter families of solutions for remaining homomorphisms.
 - ★ Parameter functions $\mathcal{N}(t)$, $\mathcal{A}(t)$ are lapse and scale factor.
- Transformation to diagonal gauge:
 - Use diagonal tetrad

$$\theta'^{0} = \mathcal{N} dt, \quad \theta'^{1} = \frac{\mathcal{A}}{\chi} dr, \quad \theta'^{2} = \mathcal{A} r d\vartheta, \quad \theta'^{3} = \mathcal{A} r \sin \vartheta d\varphi.$$
 (47)

- Calculate Lorentz transformation such that $\theta^{\prime a}{}_{\mu} = \Lambda^{a}{}_{b}\theta^{b}{}_{\mu}$.
- Calculate spin connection: $\omega'^{a}_{b\mu} = \Lambda^{a}_{c} \partial_{\mu} (\Lambda^{-1})^{c}_{b}$.

Outline

- 1. Metric-affine and teleparallel geometry
- 2. Symmetries of metrics, tetrads and connections
- 3. Cosmological symmetry: state of the art
- 4. Three approaches to teleparallel cosmology
- 4.1 The tetrad & representation approach
- 4.2 The metric-affine approach
- 4.3 The torsion decomposition approach
- 5. Two branches of cosmological teleparallel geometries5.1 The "vector" branch5.2 The "axial" or "two-form" branch
- 6. Properties & applications
- 7. Conclusion

• Start from the most general metric and connection.

- Start from the most general metric and connection.
- Impose cosmological symmetry on metric and connection.

- Start from the most general metric and connection.
- Impose cosmological symmetry on metric and connection.
- Further restrict the connection:

- Start from the most general metric and connection.
- Impose cosmological symmetry on metric and connection.
- Further restrict the connection:
 - Impose compatibility with the cosmological (FLRW) metric.

- Start from the most general metric and connection.
- Impose cosmological symmetry on metric and connection.
- Further restrict the connection:
 - Impose compatibility with the cosmological (FLRW) metric.
 - Impose flatness (vanishing curvature).

- Start from the most general metric and connection.
- Impose cosmological symmetry on metric and connection.
- Further restrict the connection:
 - Impose compatibility with the cosmological (FLRW) metric.
 - Impose flatness (vanishing curvature).
- \Rightarrow Most general cosmological teleparallel spacetime.

- Start from the most general metric and connection.
- Impose cosmological symmetry on metric and connection.
- Further restrict the connection:
 - Impose compatibility with the cosmological (FLRW) metric.
 - Impose flatness (vanishing curvature).
- \Rightarrow Most general cosmological teleparallel spacetime.
 - Consider tetrad of the FLRW metric in diagonal gauge:

$$\theta'^{0} = \mathcal{N} dt, \quad \theta'^{1} = \frac{\mathcal{A}}{\chi} dr, \quad \theta'^{2} = \mathcal{A} r d\vartheta, \quad \theta'^{3} = \mathcal{A} r \sin \vartheta d\varphi.$$
 (48)

- Start from the most general metric and connection.
- Impose cosmological symmetry on metric and connection.
- Further restrict the connection:
 - Impose compatibility with the cosmological (FLRW) metric.
 - Impose flatness (vanishing curvature).
- \Rightarrow Most general cosmological teleparallel spacetime.
 - Consider tetrad of the FLRW metric in diagonal gauge:

$$\theta'^{0} = \mathcal{N} dt, \quad \theta'^{1} = \frac{\mathcal{A}}{\chi} dr, \quad \theta'^{2} = \mathcal{A} r d\vartheta, \quad \theta'^{3} = \mathcal{A} r \sin \vartheta d\varphi.$$
 (48)

Read off spin connection in diagonal gauge.

- Start from the most general metric and connection.
- Impose cosmological symmetry on metric and connection.
- Further restrict the connection:
 - Impose compatibility with the cosmological (FLRW) metric.
 - Impose flatness (vanishing curvature).
- \Rightarrow Most general cosmological teleparallel spacetime.
 - Consider tetrad of the FLRW metric in diagonal gauge:

$$\theta'^{0} = \mathcal{N} dt, \quad \theta'^{1} = \frac{\mathcal{A}}{\chi} dr, \quad \theta'^{2} = \mathcal{A} r d\vartheta, \quad \theta'^{3} = \mathcal{A} r \sin \vartheta d\varphi.$$
 (48)

- Read off spin connection in diagonal gauge.
- Find Lorentz transformation to Weitzenböck gauge.

Step 1: most general connection

Solve symmetry condition for cosmological generators:

$$0 = (\mathcal{L}_{X_{\xi}}\Gamma)^{\mu}{}_{\nu\rho} = \nabla_{\rho}\nabla_{\nu}X^{\mu}_{\xi} - X^{\sigma}_{\xi}R^{\mu}{}_{\nu\rho\sigma} - \nabla_{\rho}(X^{\sigma}_{\xi}T^{\mu}{}_{\nu\sigma}).$$
(49)

Step 1: most general connection

Solve symmetry condition for cosmological generators:

$$0 = (\mathcal{L}_{X_{\xi}} \Gamma)^{\mu}{}_{\nu\rho} = \nabla_{\rho} \nabla_{\nu} X^{\mu}_{\xi} - X^{\sigma}_{\xi} R^{\mu}{}_{\nu\rho\sigma} - \nabla_{\rho} (X^{\sigma}_{\xi} T^{\mu}{}_{\nu\sigma}).$$
(49)

 \Rightarrow Most general connection:

$$\Gamma^{t}_{tt} = \mathcal{K}_{1}, \quad \Gamma^{r}_{tr} = \Gamma^{\vartheta}_{t\vartheta} = \Gamma^{\varphi}_{t\varphi} = \mathcal{K}_{3}, \quad \Gamma^{r}_{rt} = \Gamma^{\vartheta}_{\vartheta t} = \Gamma^{\varphi}_{\varphi t} = \mathcal{K}_{4}, \\
\Gamma^{r}_{rr} = \frac{u^{2}r}{\chi^{2}}, \quad \Gamma^{t}_{rr} = \frac{\mathcal{K}_{2}}{\chi^{2}}, \quad \Gamma^{t}_{\vartheta \vartheta} = \mathcal{K}_{2}r^{2}, \quad \Gamma^{t}_{\varphi \varphi} = \mathcal{K}_{2}r^{2}\sin^{2}\vartheta, \\
\Gamma^{r}_{\varphi \vartheta} = -\Gamma^{r}_{\vartheta \varphi} = \mathcal{K}_{5}r^{2}\chi\sin\vartheta, \quad \Gamma^{\vartheta}_{r\varphi} = -\Gamma^{\vartheta}_{\varphi r} = \frac{\mathcal{K}_{5}\sin\vartheta}{\chi}, \\
\Gamma^{\varphi}_{r\vartheta} = -\Gamma^{\varphi}_{\vartheta r} = -\frac{\mathcal{K}_{5}}{\chi\sin\vartheta}, \quad \Gamma^{\vartheta}_{r\vartheta} = \Gamma^{\vartheta}_{\vartheta r} = \Gamma^{\varphi}_{r\varphi} = \Gamma^{\varphi}_{\varphi r} = \frac{1}{r}, \\
\Gamma^{\varphi}_{\vartheta \varphi} = \Gamma^{\varphi}_{\varphi \vartheta} = \cot\vartheta, \quad \Gamma^{\vartheta}_{\varphi \varphi} = -\sin\vartheta\cos\vartheta, \\
\Gamma^{r}_{\vartheta \vartheta} = -r\chi^{2}, \quad \Gamma^{r}_{\varphi \varphi} = -r\chi^{2}\sin^{2}\vartheta, \quad (50)$$

Step 1: most general connection

Solve symmetry condition for cosmological generators:

$$0 = (\mathcal{L}_{X_{\xi}} \Gamma)^{\mu}{}_{\nu\rho} = \nabla_{\rho} \nabla_{\nu} X^{\mu}_{\xi} - X^{\sigma}_{\xi} R^{\mu}{}_{\nu\rho\sigma} - \nabla_{\rho} (X^{\sigma}_{\xi} T^{\mu}{}_{\nu\sigma}).$$
(49)

 \Rightarrow Most general connection:

$$\Gamma^{t}_{tt} = \mathcal{K}_{1}, \quad \Gamma^{r}_{tr} = \Gamma^{\vartheta}_{t\vartheta} = \Gamma^{\varphi}_{t\varphi} = \mathcal{K}_{3}, \quad \Gamma^{r}_{rt} = \Gamma^{\vartheta}_{\vartheta t} = \Gamma^{\varphi}_{\varphi t} = \mathcal{K}_{4}, \\
\Gamma^{r}_{rr} = \frac{u^{2}r}{\chi^{2}}, \quad \Gamma^{t}_{rr} = \frac{\mathcal{K}_{2}}{\chi^{2}}, \quad \Gamma^{t}_{\vartheta\vartheta} = \mathcal{K}_{2}r^{2}, \quad \Gamma^{t}_{\varphi\varphi} = \mathcal{K}_{2}r^{2}\sin^{2}\vartheta, \\
\Gamma^{r}_{\varphi\vartheta} = -\Gamma^{r}_{\vartheta\varphi} = \mathcal{K}_{5}r^{2}\chi\sin\vartheta, \quad \Gamma^{\vartheta}_{r\varphi} = -\Gamma^{\vartheta}_{\varphi r} = \frac{\mathcal{K}_{5}\sin\vartheta}{\chi}, \\
\Gamma^{\varphi}_{r\vartheta} = -\Gamma^{\varphi}_{\vartheta r} = -\frac{\mathcal{K}_{5}}{\chi\sin\vartheta}, \quad \Gamma^{\vartheta}_{r\vartheta} = \Gamma^{\vartheta}_{\vartheta r} = \Gamma^{\varphi}_{r\varphi} = \Gamma^{\varphi}_{\varphi r} = \frac{1}{r}, \\
\Gamma^{\varphi}_{\vartheta\varphi} = \Gamma^{\varphi}_{\varphi\vartheta} = \cot\vartheta, \quad \Gamma^{\vartheta}_{\varphi\varphi} = -\sin\vartheta\cos\vartheta, \\
\Gamma^{r}_{\vartheta\vartheta} = -r\chi^{2}, \quad \Gamma^{r}_{\varphi\varphi} = -r\chi^{2}\sin^{2}\vartheta, \quad (50)$$

⇒ Depends on five free functions $\mathcal{K}_1(t), \ldots, \mathcal{K}_5(t)$ of time.

Step 2: impose metric compatibility

Calculate nonmetricity:

$$Q_{\rho\mu\nu} = 2Q_1 n_\rho n_\mu n_\nu + 2Q_2 n_\rho h_{\mu\nu} + 2Q_3 h_{\rho(\mu} n_{\nu)}, \qquad (51)$$

where

$$Q_{1} = \frac{\dot{\mathcal{N}}}{\mathcal{N}^{2}} - \frac{\mathcal{K}_{1}}{\mathcal{N}}, \quad Q_{2} = \frac{1}{\mathcal{N}} \left(\mathcal{K}_{4} - \frac{\dot{\mathcal{A}}}{\mathcal{A}} \right), \quad Q_{3} = \frac{\mathcal{K}_{3}}{\mathcal{N}} - \frac{\mathcal{K}_{2}\mathcal{N}}{\mathcal{A}^{2}}.$$
(52)

Step 2: impose metric compatibility

Calculate nonmetricity:

$$Q_{\rho\mu\nu} = 2Q_1 n_{\rho} n_{\mu} n_{\nu} + 2Q_2 n_{\rho} h_{\mu\nu} + 2Q_3 h_{\rho(\mu} n_{\nu)}, \qquad (51)$$

where

$$\mathcal{Q}_{1} = \frac{\dot{\mathcal{N}}}{\mathcal{N}^{2}} - \frac{\mathcal{K}_{1}}{\mathcal{N}}, \quad \mathcal{Q}_{2} = \frac{1}{\mathcal{N}} \left(\mathcal{K}_{4} - \frac{\dot{\mathcal{A}}}{\mathcal{A}} \right), \quad \mathcal{Q}_{3} = \frac{\mathcal{K}_{3}}{\mathcal{N}} - \frac{\mathcal{K}_{2}\mathcal{N}}{\mathcal{A}^{2}}.$$
(52)

 \Rightarrow Metric-affine geometry satisfies $Q_{
ho\mu
u}=$ 0 if and only if

$$\mathcal{K}_1 \mathcal{N} - \dot{\mathcal{N}} = \mathcal{K}_4 \mathcal{A} - \dot{\mathcal{A}} = \mathcal{K}_2 \mathcal{N}^2 - \mathcal{K}_3 \mathcal{A}^2 = 0.$$
 (53)

Step 2: impose metric compatibility

Calculate nonmetricity:

$$Q_{\rho\mu\nu} = 2Q_1 n_{\rho} n_{\mu} n_{\nu} + 2Q_2 n_{\rho} h_{\mu\nu} + 2Q_3 h_{\rho(\mu} n_{\nu)}, \qquad (51)$$

where

$$\mathcal{Q}_{1} = \frac{\dot{\mathcal{N}}}{\mathcal{N}^{2}} - \frac{\mathcal{K}_{1}}{\mathcal{N}}, \quad \mathcal{Q}_{2} = \frac{1}{\mathcal{N}} \left(\mathcal{K}_{4} - \frac{\dot{\mathcal{A}}}{\mathcal{A}} \right), \quad \mathcal{Q}_{3} = \frac{\mathcal{K}_{3}}{\mathcal{N}} - \frac{\mathcal{K}_{2}\mathcal{N}}{\mathcal{A}^{2}}.$$
(52)

 \Rightarrow Metric-affine geometry satisfies $Q_{
ho\mu
u} = 0$ if and only if

$$\mathcal{K}_1 \mathcal{N} - \dot{\mathcal{N}} = \mathcal{K}_4 \mathcal{A} - \dot{\mathcal{A}} = \mathcal{K}_2 \mathcal{N}^2 - \mathcal{K}_3 \mathcal{A}^2 = 0.$$
 (53)

 \Rightarrow Metricity determines \mathcal{K}_1 , \mathcal{K}_4 and ratio between \mathcal{K}_2 and \mathcal{K}_3 .

Step 3: impose flatness

• Calculate curvature of most general connection:

$$\begin{aligned} R_{\mu\nu\rho\sigma} &= 2 \frac{\mathcal{K}_{3}(\mathcal{K}_{4} - \mathcal{K}_{1}) + \dot{\mathcal{K}}_{3}}{\mathcal{N}^{2}} n_{\nu} n_{[\rho} h_{\sigma]\mu} - 2 \frac{\mathcal{K}_{3}\mathcal{K}_{5}}{\mathcal{N}\mathcal{A}} n_{\nu} \varepsilon_{\mu\rho\sigma} \\ &+ 2 \frac{\mathcal{K}_{2}(\mathcal{K}_{4} - \mathcal{K}_{1}) - \dot{\mathcal{K}}_{2}}{\mathcal{A}^{2}} n_{\mu} n_{[\rho} h_{\sigma]\nu} - 2 \frac{\dot{\mathcal{K}}_{5}}{\mathcal{N}\mathcal{A}} \varepsilon_{\mu\nu[\rho} n_{\sigma]} \\ &+ 2 \frac{\mathcal{K}_{2}\mathcal{K}_{5}\mathcal{N}}{\mathcal{A}^{3}} n_{\mu} \varepsilon_{\nu\rho\sigma} + 2 \frac{u^{2} + \mathcal{K}_{2}\mathcal{K}_{3} - \mathcal{K}_{5}^{2}}{\mathcal{A}^{2}} h_{\mu[\rho} h_{\sigma]\nu} \,. \end{aligned}$$
(54)

Step 3: impose flatness

• Calculate curvature of most general connection:

$$\begin{aligned} R_{\mu\nu\rho\sigma} &= 2 \frac{\mathcal{K}_{3}(\mathcal{K}_{4} - \mathcal{K}_{1}) + \dot{\mathcal{K}}_{3}}{\mathcal{N}^{2}} n_{\nu} n_{[\rho} h_{\sigma]\mu} - 2 \frac{\mathcal{K}_{3}\mathcal{K}_{5}}{\mathcal{N}\mathcal{A}} n_{\nu} \varepsilon_{\mu\rho\sigma} \\ &+ 2 \frac{\mathcal{K}_{2}(\mathcal{K}_{4} - \mathcal{K}_{1}) - \dot{\mathcal{K}}_{2}}{\mathcal{A}^{2}} n_{\mu} n_{[\rho} h_{\sigma]\nu} - 2 \frac{\dot{\mathcal{K}}_{5}}{\mathcal{N}\mathcal{A}} \varepsilon_{\mu\nu[\rho} n_{\sigma]} \\ &+ 2 \frac{\mathcal{K}_{2}\mathcal{K}_{5}\mathcal{N}}{\mathcal{A}^{3}} n_{\mu} \varepsilon_{\nu\rho\sigma} + 2 \frac{u^{2} + \mathcal{K}_{2}\mathcal{K}_{3} - \mathcal{K}_{5}^{2}}{\mathcal{A}^{2}} h_{\mu[\rho} h_{\sigma]\nu} \,. \end{aligned}$$
(54)

 \Rightarrow Connection is flat if and only if

$$0 = \dot{\mathcal{K}}_{5} = \mathcal{K}_{2}\mathcal{K}_{5} = \mathcal{K}_{3}\mathcal{K}_{5} = u^{2} + \mathcal{K}_{2}\mathcal{K}_{3} - \mathcal{K}_{5}^{2} = \mathcal{K}_{3}(\mathcal{K}_{4} - \mathcal{K}_{1}) + \dot{\mathcal{K}}_{3} = \mathcal{K}_{2}(\mathcal{K}_{4} - \mathcal{K}_{1}) - \dot{\mathcal{K}}_{2}.$$
(55)

Step 3: impose flatness

• Calculate curvature of most general connection:

$$\begin{aligned} R_{\mu\nu\rho\sigma} &= 2 \frac{\mathcal{K}_{3}(\mathcal{K}_{4} - \mathcal{K}_{1}) + \dot{\mathcal{K}}_{3}}{\mathcal{N}^{2}} n_{\nu} n_{[\rho} h_{\sigma]\mu} - 2 \frac{\mathcal{K}_{3}\mathcal{K}_{5}}{\mathcal{N}\mathcal{A}} n_{\nu} \varepsilon_{\mu\rho\sigma} \\ &+ 2 \frac{\mathcal{K}_{2}(\mathcal{K}_{4} - \mathcal{K}_{1}) - \dot{\mathcal{K}}_{2}}{\mathcal{A}^{2}} n_{\mu} n_{[\rho} h_{\sigma]\nu} - 2 \frac{\dot{\mathcal{K}}_{5}}{\mathcal{N}\mathcal{A}} \varepsilon_{\mu\nu[\rho} n_{\sigma]} \\ &+ 2 \frac{\mathcal{K}_{2}\mathcal{K}_{5}\mathcal{N}}{\mathcal{A}^{3}} n_{\mu} \varepsilon_{\nu\rho\sigma} + 2 \frac{u^{2} + \mathcal{K}_{2}\mathcal{K}_{3} - \mathcal{K}_{5}^{2}}{\mathcal{A}^{2}} h_{\mu[\rho} h_{\sigma]\nu} \,. \end{aligned}$$
(54)

 \Rightarrow Connection is flat if and only if

$$0 = \dot{\mathcal{K}}_{5} = \mathcal{K}_{2}\mathcal{K}_{5} = \mathcal{K}_{3}\mathcal{K}_{5} = u^{2} + \mathcal{K}_{2}\mathcal{K}_{3} - \mathcal{K}_{5}^{2} = \mathcal{K}_{3}(\mathcal{K}_{4} - \mathcal{K}_{1}) + \dot{\mathcal{K}}_{3} = \mathcal{K}_{2}(\mathcal{K}_{4} - \mathcal{K}_{1}) - \dot{\mathcal{K}}_{2}.$$
(55)

 \Rightarrow Several coupled conditions, whose solution depends on *u*.
Two of three metricity conditions solved immediately:

$$\mathcal{K}_1 = \frac{\dot{\mathcal{N}}}{\mathcal{N}}, \quad \mathcal{K}_4 = \frac{\dot{\mathcal{A}}}{\mathcal{A}}.$$
 (56)

• Two of three metricity conditions solved immediately:

$$\mathcal{K}_1 = \frac{\dot{\mathcal{N}}}{\mathcal{N}}, \quad \mathcal{K}_4 = \frac{\dot{\mathcal{A}}}{\mathcal{A}}.$$
 (56)

• Distinguish two cases for flatness condition:

Two of three metricity conditions solved immediately:

$$\mathcal{K}_1 = \frac{\dot{\mathcal{N}}}{\mathcal{N}}, \quad \mathcal{K}_4 = \frac{\dot{\mathcal{A}}}{\mathcal{A}}.$$
 (56)

Distinguish two cases for flatness condition:

1.
$$u = 0$$
: only solution given by $\mathcal{K}_2 = \mathcal{K}_3 = \mathcal{K}_5 = 0$.

• Two of three metricity conditions solved immediately:

$$\mathcal{K}_1 = \frac{\dot{\mathcal{N}}}{\mathcal{N}}, \quad \mathcal{K}_4 = \frac{\dot{\mathcal{A}}}{\mathcal{A}}.$$
 (56)

- Distinguish two cases for flatness condition:
 - 1. u = 0: only solution given by $\mathcal{K}_2 = \mathcal{K}_3 = \mathcal{K}_5 = 0$.
 - 2. $u \neq 0$ admits two distinct solutions:
 - 2.1 "Axial" solution: $\mathcal{K}_2 = \mathcal{K}_3 = 0$ and $\mathcal{K}_5 = \pm u$.
 - 2.2 "Vector" solution: $\mathcal{K}_5 = 0$ and $\mathcal{K}_2 \mathcal{N} / \mathcal{A} = \mathcal{K}_3 \mathcal{A} / \mathcal{N} = \pm i u$.

• Two of three metricity conditions solved immediately:

$$\mathcal{K}_1 = \frac{\dot{\mathcal{N}}}{\mathcal{N}}, \quad \mathcal{K}_4 = \frac{\dot{\mathcal{A}}}{\mathcal{A}}.$$
 (56)

Distinguish two cases for flatness condition:

1. u = 0: only solution given by $\mathcal{K}_2 = \mathcal{K}_3 = \mathcal{K}_5 = 0$.

2. $u \neq 0$ admits two distinct solutions:

2.1 "Axial" solution: $\mathcal{K}_2 = \mathcal{K}_3 = 0$ and $\mathcal{K}_5 = \pm u$.

2.2 "Vector" solution: $\mathcal{K}_5 = 0$ and $\mathcal{K}_2 \mathcal{N} / \mathcal{A} = \mathcal{K}_3 \mathcal{A} / \mathcal{N} = \pm iu$.

 \Rightarrow Solutions become complex depending on sign of u^2 .

• Two of three metricity conditions solved immediately:

$$\mathcal{K}_1 = \frac{\dot{\mathcal{N}}}{\mathcal{N}}, \quad \mathcal{K}_4 = \frac{\dot{\mathcal{A}}}{\mathcal{A}}.$$
 (56)

Distinguish two cases for flatness condition:

- 1. u = 0: only solution given by $\mathcal{K}_2 = \mathcal{K}_3 = \mathcal{K}_5 = 0$.
- 2. $u \neq 0$ admits two distinct solutions:

2.1 "Axial" solution: $\mathcal{K}_2 = \mathcal{K}_3 = 0$ and $\mathcal{K}_5 = \pm u$.

2.2 "Vector" solution: $\mathcal{K}_5 = 0$ and $\mathcal{K}_2 \mathcal{N} / \mathcal{A} = \mathcal{K}_3 \mathcal{A} / \mathcal{N} = \pm iu$.

- \Rightarrow Solutions become complex depending on sign of u^2 .
- \Rightarrow Smooth limit $u \rightarrow 0$ of solutions.

• Start from diagonal tetrad:

$$\theta'^{0} = \mathcal{N} dt, \quad \theta'^{1} = \frac{\mathcal{A}}{\chi} dr, \quad \theta'^{2} = \mathcal{A} r d\vartheta, \quad \theta'^{3} = \mathcal{A} r \sin \vartheta d\varphi.$$
 (57)

• Start from diagonal tetrad:

$$\theta'^{0} = \mathcal{N} dt, \quad \theta'^{1} = \frac{\mathcal{A}}{\chi} dr, \quad \theta'^{2} = \mathcal{A} r d\vartheta, \quad \theta'^{3} = \mathcal{A} r \sin \vartheta d\varphi.$$
 (57)

Calculate spin connection ω^{'a}_{bµ} from "tetrad postulate":

$$\mathbf{0} = \nabla_{\mu} \theta^{\prime a}{}_{\nu} = \partial_{\mu} \theta^{\prime a}{}_{\nu} + \omega^{\prime a}{}_{b\mu} \theta^{\prime b}{}_{\nu} - \Gamma^{\rho}{}_{\nu\mu} \theta^{\prime a}{}_{\rho} \,. \tag{58}$$

• Start from diagonal tetrad:

$$\theta'^{0} = \mathcal{N} dt, \quad \theta'^{1} = \frac{\mathcal{A}}{\chi} dr, \quad \theta'^{2} = \mathcal{A} r d\vartheta, \quad \theta'^{3} = \mathcal{A} r \sin \vartheta d\varphi.$$
 (57)

Calculate spin connection ω^{'a}_{bµ} from "tetrad postulate":

$$\mathbf{0} = \nabla_{\mu} \theta^{\prime a}{}_{\nu} = \partial_{\mu} \theta^{\prime a}{}_{\nu} + \omega^{\prime a}{}_{b\mu} \theta^{\prime b}{}_{\nu} - \Gamma^{\rho}{}_{\nu\mu} \theta^{\prime a}{}_{\rho} \,. \tag{58}$$

 \checkmark Find same spin connections as using first approach.

• Start from diagonal tetrad:

$$\theta'^{0} = \mathcal{N} dt, \quad \theta'^{1} = \frac{\mathcal{A}}{\chi} dr, \quad \theta'^{2} = \mathcal{A} r d\vartheta, \quad \theta'^{3} = \mathcal{A} r \sin \vartheta d\varphi.$$
 (57)

Calculate spin connection ω^{'a}_{bµ} from "tetrad postulate":

$$\mathbf{0} = \nabla_{\mu} \theta^{\prime a}{}_{\nu} = \partial_{\mu} \theta^{\prime a}{}_{\nu} + \omega^{\prime a}{}_{b\mu} \theta^{\prime b}{}_{\nu} - \Gamma^{\rho}{}_{\nu\mu} \theta^{\prime a}{}_{\rho} \,. \tag{58}$$

- \checkmark Find same spin connections as using first approach.
- → Perform Lorentz transformation to Weitzenböck gauge.

• Start from diagonal tetrad:

$$\theta'^{0} = \mathcal{N} dt, \quad \theta'^{1} = \frac{\mathcal{A}}{\chi} dr, \quad \theta'^{2} = \mathcal{A} r d\vartheta, \quad \theta'^{3} = \mathcal{A} r \sin \vartheta d\varphi.$$
 (57)

Calculate spin connection ω^{'a}_{bµ} from "tetrad postulate":

$$\mathbf{0} = \nabla_{\mu} \theta^{\prime a}{}_{\nu} = \partial_{\mu} \theta^{\prime a}{}_{\nu} + \omega^{\prime a}{}_{b\mu} \theta^{\prime b}{}_{\nu} - \Gamma^{\rho}{}_{\nu\mu} \theta^{\prime a}{}_{\rho} \,. \tag{58}$$

- ✓ Find same spin connections as using first approach.
- ~ Perform Lorentz transformation to Weitzenböck gauge.
- $\checkmark\,$ Obtain same non-diagonal tetrads as using first approach.

Outline

- 1. Metric-affine and teleparallel geometry
- 2. Symmetries of metrics, tetrads and connections
- 3. Cosmological symmetry: state of the art

4. Three approaches to teleparallel cosmology

- 4.1 The tetrad & representation approach
- 4.2 The metric-affine approach
- 4.3 The torsion decomposition approach

5. Two branches of cosmological teleparallel geometries

- 5.1 The "vector" branch
- 5.2 The "axial" or "two-form" branch

6. Properties & applications

7. Conclusion

• Start from cosmological (FLRW) metric.

- Start from cosmological (FLRW) metric.
- General metric-compatible connection defined by its torsion.

- Start from cosmological (FLRW) metric.
- General metric-compatible connection defined by its torsion.
- Irreducible decomposition of torsion w.r.t. Lorentz group:
 - vector torsion (4 components),
 - axial (pseudo-vector) torsion (4 components),
 - pure tensor torsion (16 components).

- Start from cosmological (FLRW) metric.
- General metric-compatible connection defined by its torsion.
- Irreducible decomposition of torsion w.r.t. Lorentz group:
 - vector torsion (4 components),
 - o axial (pseudo-vector) torsion (4 components),
 - pure tensor torsion (16 components).
- Impose cosmological symmetry on torsion components.

- Start from cosmological (FLRW) metric.
- General metric-compatible connection defined by its torsion.
- Irreducible decomposition of torsion w.r.t. Lorentz group:
 - vector torsion (4 components),
 - o axial (pseudo-vector) torsion (4 components),
 - pure tensor torsion (16 components).
- Impose cosmological symmetry on torsion components.
- \Rightarrow Most general cosmological Riemann-Cartan spacetime.

- Start from cosmological (FLRW) metric.
- General metric-compatible connection defined by its torsion.
- Irreducible decomposition of torsion w.r.t. Lorentz group:
 - vector torsion (4 components),
 - axial (pseudo-vector) torsion (4 components),
 - pure tensor torsion (16 components).
- Impose cosmological symmetry on torsion components.
- \Rightarrow Most general cosmological Riemann-Cartan spacetime.
 - Impose flatness (vanishing curvature).

- Start from cosmological (FLRW) metric.
- General metric-compatible connection defined by its torsion.
- Irreducible decomposition of torsion w.r.t. Lorentz group:
 - vector torsion (4 components),
 - axial (pseudo-vector) torsion (4 components),
 - pure tensor torsion (16 components).
- Impose cosmological symmetry on torsion components.
- \Rightarrow Most general cosmological Riemann-Cartan spacetime.
 - Impose flatness (vanishing curvature).
- \Rightarrow Most general cosmological teleparallel spacetime.

- Start from cosmological (FLRW) metric.
- General metric-compatible connection defined by its torsion.
- Irreducible decomposition of torsion w.r.t. Lorentz group:
 - vector torsion (4 components),
 - axial (pseudo-vector) torsion (4 components),
 - pure tensor torsion (16 components).
- Impose cosmological symmetry on torsion components.
- \Rightarrow Most general cosmological Riemann-Cartan spacetime.
 - Impose flatness (vanishing curvature).
- \Rightarrow Most general cosmological teleparallel spacetime.
 - Proceed as before to determine cosmological tetrad.

Step 1: decomposition of the connection

Recall decomposition of the connection:

$$\Gamma^{\mu}{}_{\nu\rho} = \overset{\circ}{\Gamma}{}^{\mu}{}_{\nu\rho} + K^{\mu}{}_{\nu\rho} + L^{\mu}{}_{\nu\rho} \,. \tag{59}$$

- Levi-Civita connection $\mathring{\Gamma}^{\mu}{}_{\nu\rho}$ of the metric.
- Contortion $K^{\mu}{}_{\nu\rho}$.
- Disformation $L^{\mu}{}_{\nu\rho}$.

Step 1: decomposition of the connection

• Recall decomposition of the connection:

$$\Gamma^{\mu}{}_{\nu\rho} = \overset{\circ}{\Gamma}{}^{\mu}{}_{\nu\rho} + K^{\mu}{}_{\nu\rho} + L^{\mu}{}_{\nu\rho} \,. \tag{59}$$

- Levi-Civita connection $\mathring{\Gamma}^{\mu}{}_{\nu\rho}$ of the metric.
- Contortion $K^{\mu}{}_{\nu\rho}$.
- Disformation $L^{\mu}{}_{\nu\rho}$.
- Metric compatibility imposes vanishing disformation: $L^{\mu}{}_{\nu\rho} = 0$.

Step 1: decomposition of the connection

Recall decomposition of the connection:

$$\Gamma^{\mu}{}_{\nu\rho} = \overset{\circ}{\Gamma}{}^{\mu}{}_{\nu\rho} + \frac{K^{\mu}{}_{\nu\rho}}{}_{\nu\rho} + L^{\mu}{}_{\nu\rho} \,. \tag{59}$$

- Levi-Civita connection $\mathring{\Gamma}^{\mu}{}_{\nu\rho}$ of the metric.
- Contortion $K^{\mu}{}_{\nu\rho}$.
- Disformation $L^{\mu}{}_{\nu\rho}$.
- Metric compatibility imposes vanishing disformation: $L^{\mu}{}_{\nu\rho} = 0$.
- Contortion expressed in terms of torsion and metric:

$$K^{\mu}{}_{\nu\rho} = \frac{1}{2} \left(T_{\nu}{}^{\mu}{}_{\rho} + T_{\rho}{}^{\mu}{}_{\nu} - T^{\mu}{}_{\nu\rho} \right) \,. \tag{60}$$

Step 2: irreducible torsion decomposition

- Torsion decomposes into three irreducible parts:
 - Vector torsion:

$$\mathfrak{v}_{\mu} = T^{\nu}{}_{\nu\mu} \quad \Rightarrow \quad \mathfrak{V}^{\mu}{}_{\nu\rho} = \frac{2}{3} \delta^{\mu}{}_{[\nu} \mathfrak{v}_{\rho]} \,.$$
 (61a)

Axial torsion:

$$\mathfrak{a}_{\mu} = \frac{1}{6} \epsilon_{\mu\nu\rho\sigma} T^{\nu\rho\sigma} \quad \Rightarrow \quad \mathfrak{A}_{\mu\nu\rho} = \epsilon_{\mu\nu\rho\sigma} \mathfrak{a}^{\sigma} \,. \tag{61b}$$

Tensor torsion:

$$\mathfrak{t}_{\mu\nu\rho} = T_{(\mu\nu)\rho} + \frac{1}{3} \left(T^{\sigma}{}_{\sigma(\mu}g_{\nu)\rho} - T^{\sigma}{}_{\sigma\rho}g_{\mu\nu} \right) \quad \Rightarrow \quad \mathfrak{T}^{\mu}{}_{\nu\rho} = \frac{4}{3} \mathfrak{t}^{\mu}{}_{[\nu\rho]}.$$
(61c)

Step 2: irreducible torsion decomposition

- Torsion decomposes into three irreducible parts:
 - Vector torsion:

$$\mathfrak{v}_{\mu} = T^{\nu}{}_{\nu\mu} \quad \Rightarrow \quad \mathfrak{V}^{\mu}{}_{\nu\rho} = \frac{2}{3} \delta^{\mu}{}_{[\nu} \mathfrak{v}_{\rho]} \,.$$
 (61a)

• Axial torsion:

$$\mathfrak{a}_{\mu} = \frac{1}{6} \epsilon_{\mu\nu\rho\sigma} T^{\nu\rho\sigma} \quad \Rightarrow \quad \mathfrak{A}_{\mu\nu\rho} = \epsilon_{\mu\nu\rho\sigma} \mathfrak{a}^{\sigma} \,. \tag{61b}$$

Tensor torsion:

$$\mathfrak{t}_{\mu\nu\rho} = T_{(\mu\nu)\rho} + \frac{1}{3} \left(T^{\sigma}{}_{\sigma(\mu}g_{\nu)\rho} - T^{\sigma}{}_{\sigma\rho}g_{\mu\nu} \right) \quad \Rightarrow \quad \mathfrak{T}^{\mu}{}_{\nu\rho} = \frac{4}{3} \mathfrak{t}^{\mu}{}_{[\nu\rho]}.$$
(61c)

• Unique decomposition $T^{\mu}{}_{\nu\rho} = \mathfrak{V}^{\mu}{}_{\nu\rho} + \mathfrak{U}^{\mu}{}_{\nu\rho} + \mathfrak{T}^{\mu}{}_{\nu\rho}$ such that

$$\mathfrak{A}^{\nu}{}_{\nu\mu} = \mathfrak{T}^{\nu}{}_{\nu\mu} = \mathbf{0} \,, \quad \mathfrak{V}_{[\mu\nu\rho]} = \mathfrak{T}_{[\mu\nu\rho]} = \mathbf{0} \,. \tag{62}$$

Most general torsion with cosmological symmetry:

$$T_{\mu\nu\rho} = 2\mathcal{T}_1 h_{\mu[\nu} n_{\rho]} + 2\mathcal{T}_2 \varepsilon_{\mu\nu\rho} \,. \tag{63}$$

Most general torsion with cosmological symmetry:

$$T_{\mu\nu\rho} = 2\mathcal{T}_1 h_{\mu[\nu} n_{\rho]} + 2\mathcal{T}_2 \varepsilon_{\mu\nu\rho} \,. \tag{63}$$

Irreducible decomposition:

$$\begin{split} \mathfrak{V}_{\mu\nu\rho} &= 2\mathcal{T}_{1}h_{\mu[\nu}n_{\rho]}, \qquad \qquad \mathfrak{v}_{\mu} = 3\mathcal{T}_{1}n_{\mu}, \qquad (64a)\\ \mathfrak{A}_{\mu\nu\rho} &= 2\mathcal{T}_{2}\varepsilon_{\mu\nu\rho}, \qquad \qquad \mathfrak{a}_{\mu} = -2\mathcal{T}_{2}n_{\mu}. \qquad (64b) \end{split}$$

Most general torsion with cosmological symmetry:

$$T_{\mu\nu\rho} = 2\mathcal{T}_1 h_{\mu[\nu} n_{\rho]} + 2\mathcal{T}_2 \varepsilon_{\mu\nu\rho} \,. \tag{63}$$

Irreducible decomposition:

$$\mathfrak{V}_{\mu\nu\rho} = 2\mathcal{T}_{1}h_{\mu[\nu}n_{\rho]}, \qquad \mathfrak{v}_{\mu} = 3\mathcal{T}_{1}n_{\mu}, \qquad (64a)$$

$$\mathfrak{A}_{\mu\nu\rho} = 2\mathcal{T}_{2}\varepsilon_{\mu\nu\rho}, \qquad \mathfrak{a}_{\mu} = -2\mathcal{T}_{2}n_{\mu}. \qquad (64b)$$

⇒ Tensor torsion always vanishes in cosmological symmetry.

Most general torsion with cosmological symmetry:

$$T_{\mu\nu\rho} = 2\mathcal{T}_1 h_{\mu[\nu} n_{\rho]} + 2\mathcal{T}_2 \varepsilon_{\mu\nu\rho} \,. \tag{63}$$

Irreducible decomposition:

$$\mathfrak{V}_{\mu\nu\rho} = 2\mathcal{T}_1 h_{\mu[\nu} n_{\rho]}, \qquad \qquad \mathfrak{v}_{\mu} = 3\mathcal{T}_1 n_{\mu}, \qquad (64a)$$

$$\mathfrak{A}_{\mu\nu\rho} = 2\mathcal{T}_2\varepsilon_{\mu\nu\rho}, \qquad \qquad \mathfrak{a}_{\mu} = -2\mathcal{T}_2n_{\mu}.$$
 (64b)

- ⇒ Tensor torsion always vanishes in cosmological symmetry.
- \Rightarrow Torsion fully determined by scalar $\mathcal{T}_1(t)$ and pseudo-scalar $\mathcal{T}_2(t)$.

• Calculate connection coefficients:

$$\mathcal{K}_{1} = \frac{\dot{\mathcal{N}}}{\mathcal{N}}, \quad \mathcal{K}_{2} = \frac{\mathcal{A}\dot{\mathcal{A}}}{\mathcal{N}^{2}} - \frac{\mathcal{A}^{2}\mathcal{T}_{1}}{\mathcal{N}}, \quad \mathcal{K}_{3} = \frac{\dot{\mathcal{A}}}{\mathcal{A}} - \mathcal{N}\mathcal{T}_{1}, \quad \mathcal{K}_{4} = \frac{\dot{\mathcal{A}}}{\mathcal{A}}, \quad \mathcal{K}_{5} = \mathcal{A}\mathcal{T}_{2}.$$
(65)

• Calculate connection coefficients:

$$\mathcal{K}_{1} = \frac{\dot{\mathcal{N}}}{\mathcal{N}}, \quad \mathcal{K}_{2} = \frac{\mathcal{A}\dot{\mathcal{A}}}{\mathcal{N}^{2}} - \frac{\mathcal{A}^{2}\mathcal{T}_{1}}{\mathcal{N}}, \quad \mathcal{K}_{3} = \frac{\dot{\mathcal{A}}}{\mathcal{A}} - \mathcal{N}\mathcal{T}_{1}, \quad \mathcal{K}_{4} = \frac{\dot{\mathcal{A}}}{\mathcal{A}}, \quad \mathcal{K}_{5} = \mathcal{A}\mathcal{T}_{2}.$$
(65)

- Flatness given by two solutions:
 - 1. "Pure vector" solution:

$$\mathcal{T}_1 = \frac{\dot{\mathcal{A}}}{\mathcal{A}\mathcal{N}} \pm \frac{iu}{\mathcal{A}}, \quad \mathcal{T}_2 = 0.$$
 (66)

2. "Axial" solution:

$$\mathcal{T}_1 = \frac{\mathcal{A}}{\mathcal{AN}}, \quad \mathcal{T}_2 = \pm \frac{u}{\mathcal{A}}.$$
 (67)

• Calculate connection coefficients:

$$\mathcal{K}_{1} = \frac{\dot{\mathcal{N}}}{\mathcal{N}}, \quad \mathcal{K}_{2} = \frac{\mathcal{A}\dot{\mathcal{A}}}{\mathcal{N}^{2}} - \frac{\mathcal{A}^{2}\mathcal{T}_{1}}{\mathcal{N}}, \quad \mathcal{K}_{3} = \frac{\dot{\mathcal{A}}}{\mathcal{A}} - \mathcal{N}\mathcal{T}_{1}, \quad \mathcal{K}_{4} = \frac{\dot{\mathcal{A}}}{\mathcal{A}}, \quad \mathcal{K}_{5} = \mathcal{A}\mathcal{T}_{2}.$$
(65)

- Flatness given by two solutions:
 - 1. "Pure vector" solution:

$$\mathcal{T}_1 = \frac{\dot{\mathcal{A}}}{\mathcal{AN}} \pm \frac{iu}{\mathcal{A}}, \quad \mathcal{T}_2 = 0.$$
 (66)

2. "Axial" solution:

$$\mathcal{T}_1 = \frac{\dot{\mathcal{A}}}{\mathcal{A}\mathcal{N}}, \quad \mathcal{T}_2 = \pm \frac{u}{\mathcal{A}}.$$
 (67)

\checkmark Obtain same solutions as if started from general connection.

Calculate connection coefficients:

$$\mathcal{K}_{1} = \frac{\dot{\mathcal{N}}}{\mathcal{N}}, \quad \mathcal{K}_{2} = \frac{\mathcal{A}\dot{\mathcal{A}}}{\mathcal{N}^{2}} - \frac{\mathcal{A}^{2}\mathcal{T}_{1}}{\mathcal{N}}, \quad \mathcal{K}_{3} = \frac{\dot{\mathcal{A}}}{\mathcal{A}} - \mathcal{N}\mathcal{T}_{1}, \quad \mathcal{K}_{4} = \frac{\dot{\mathcal{A}}}{\mathcal{A}}, \quad \mathcal{K}_{5} = \mathcal{A}\mathcal{T}_{2}.$$
(65)

- Flatness given by two solutions:
 - 1. "Pure vector" solution:

$$\mathcal{T}_1 = \frac{\dot{\mathcal{A}}}{\mathcal{AN}} \pm \frac{iu}{\mathcal{A}}, \quad \mathcal{T}_2 = 0.$$
 (66)

2. "Axial" solution:

$$\mathcal{T}_1 = \frac{\dot{\mathcal{A}}}{\mathcal{A}\mathcal{N}}, \quad \mathcal{T}_2 = \pm \frac{u}{\mathcal{A}}.$$
 (67)

✓ Obtain same solutions as if started from general connection.
 → Apply same procedure as before to obtain symmetric tetrads.

Outline

- 1. Metric-affine and teleparallel geometry
- 2. Symmetries of metrics, tetrads and connections
- 3. Cosmological symmetry: state of the art
- 4. Three approaches to teleparallel cosmology
- 4.1 The tetrad & representation approach
- 4.2 The metric-affine approach
- 4.3 The torsion decomposition approach

5. Two branches of cosmological teleparallel geometries

- 5.1 The "vector" branch
- 5.2 The "axial" or "two-form" branch

6. Properties & applications

7. Conclusion

Outline

- 1. Metric-affine and teleparallel geometry
- 2. Symmetries of metrics, tetrads and connections
- 3. Cosmological symmetry: state of the art
- 4. Three approaches to teleparallel cosmology
- 4.1 The tetrad & representation approach
- 4.2 The metric-affine approach
- 4.3 The torsion decomposition approach
- 5. Two branches of cosmological teleparallel geometries
- 5.1 The "vector" branch
- 5.2 The "axial" or "two-form" branch
- 6. Properties & applications
- 7. Conclusion

Solution in Weitzenböck gauge

• Homomorphism of the symmetry algebra:

$$R_i \mapsto J_i, \quad T_i \mapsto i u K_i.$$
 (68)
• Homomorphism of the symmetry algebra:

$$R_i \mapsto J_i, \quad T_i \mapsto i u K_i.$$
 (68)

⇒ Symmetric tetrad in Weitzenböck gauge:

$$\theta^{0} = \mathcal{N}\chi dt + iu\mathcal{A}\frac{r}{\chi} dr, \qquad (69a)$$

$$\theta^{1} = \mathcal{A}\left[\sin\vartheta\cos\varphi\left(dr + iu\frac{\mathcal{N}}{\mathcal{A}}rdt\right) + r\cos\vartheta\cos\varphi d\vartheta - r\sin\vartheta\sin\varphi d\varphi\right] \qquad (69b)$$

$$\theta^{2} = \mathcal{A}\left[\sin\vartheta\sin\varphi\left(dr + iu\frac{\mathcal{N}}{\mathcal{A}}rdt\right) + r\cos\vartheta\sin\varphi d\vartheta + r\sin\vartheta\cos\varphi d\varphi\right] \qquad (69c)$$

$$\theta^{3} = \mathcal{A}\left[\cos\vartheta\left(dr + iu\frac{\mathcal{N}}{\mathcal{A}}rdt\right) - r\sin\vartheta d\vartheta\right], \qquad (69d)$$

• Homomorphism of the symmetry algebra:

$$R_i \mapsto J_i, \quad T_i \mapsto \frac{iu}{K_i}.$$
 (68)

⇒ Symmetric tetrad in Weitzenböck gauge:

$$\theta^{0} = \mathcal{N}\chi dt + i\mathcal{U}\mathcal{A}\frac{r}{\chi}dr, \qquad (69a)$$

$$\theta^{1} = \mathcal{A}\left[\sin\vartheta\cos\varphi\left(dr + i\mathcal{U}\frac{\mathcal{N}}{\mathcal{A}}rdt\right) + r\cos\vartheta\cos\varphi d\vartheta - r\sin\vartheta\sin\varphi d\varphi\right] \qquad (69b)$$

$$\theta^{2} = \mathcal{A}\left[\sin\vartheta\sin\varphi\left(dr + i\mathcal{U}\frac{\mathcal{N}}{\mathcal{A}}rdt\right) + r\cos\vartheta\sin\varphi d\vartheta + r\sin\vartheta\cos\varphi d\varphi\right] \qquad (69c)$$

$$\theta^{3} = \mathcal{A}\left[\cos\vartheta\left(dr + i\mathcal{U}\frac{\mathcal{N}}{\mathcal{A}}rdt\right) - r\sin\vartheta d\vartheta\right], \qquad (69d)$$

 \Rightarrow Real for $u^2 \le 0$, complex for $u^2 > 0$.

Transformation to diagonal gauge

• Diagonalizing Lorentz transformation:

$$\Lambda^{a}{}_{b} = \begin{pmatrix} \chi & -iur\sin\vartheta\cos\varphi & -iur\sin\vartheta\sin\varphi & -iur\cos\vartheta \\ -iur & \chi\sin\vartheta\cos\varphi & \chi\sin\vartheta\sin\varphi & \chi\cos\vartheta \\ 0 & \cos\vartheta\cos\varphi & \cos\vartheta\sin\varphi & -\sin\vartheta \\ 0 & -\sin\varphi & \cos\varphi & 0 \end{pmatrix}.$$
(70)

Transformation to diagonal gauge

Diagonalizing Lorentz transformation:

$$\Lambda^{a}{}_{b} = \begin{pmatrix} \chi & -i\boldsymbol{u}\boldsymbol{r}\sin\vartheta\cos\varphi & -i\boldsymbol{u}\boldsymbol{r}\sin\vartheta\sin\varphi & -i\boldsymbol{u}\boldsymbol{r}\cos\vartheta \\ -i\boldsymbol{u}\boldsymbol{r} & \chi\sin\vartheta\cos\varphi & \chi\sin\vartheta\sin\varphi & \chi\cos\vartheta \\ 0 & \cos\vartheta\cos\varphi & \cos\vartheta\sin\varphi & -\sin\vartheta \\ 0 & -\sin\varphi & \cos\varphi & 0 \end{pmatrix} .$$
(70)

.

Spin connection in diagonal gauge:

$$\omega'^{0}{}_{1r} = \omega'^{1}{}_{0r} = -\frac{iu}{\chi}, \quad \omega'^{0}{}_{2\vartheta} = \omega'^{2}{}_{0\vartheta} = -iur,$$

$$\omega'^{0}{}_{3\varphi} = \omega'^{3}{}_{0\varphi} = -iur\sin\vartheta, \quad \omega'^{1}{}_{2\vartheta} = -\omega'^{2}{}_{1\vartheta} = -\chi,$$

$$\omega'^{1}{}_{3\varphi} = -\omega'^{3}{}_{1\varphi} = -\chi\sin\vartheta, \quad \omega'^{2}{}_{3\varphi} = -\omega'^{3}{}_{2\varphi} = -\cos\vartheta.$$
(71)

• Parameter functions in the connection:

$$\mathcal{K}_1 = \frac{\dot{\mathcal{N}}}{\mathcal{N}}, \quad \mathcal{K}_2 = -iu\frac{\mathcal{A}}{\mathcal{N}}, \quad \mathcal{K}_3 = -iu\frac{\mathcal{N}}{\mathcal{A}}, \quad \mathcal{K}_4 = \frac{\dot{\mathcal{A}}}{\mathcal{A}}, \quad \mathcal{K}_5 = 0.$$
 (72)

Induced affine connection

• Parameter functions in the connection:

$$\mathcal{K}_{1} = \frac{\dot{\mathcal{N}}}{\mathcal{N}}, \quad \mathcal{K}_{2} = -iu\frac{\mathcal{A}}{\mathcal{N}}, \quad \mathcal{K}_{3} = -iu\frac{\mathcal{N}}{\mathcal{A}}, \quad \mathcal{K}_{4} = \frac{\dot{\mathcal{A}}}{\mathcal{A}}, \quad \mathcal{K}_{5} = 0.$$
(72)

$$\Rightarrow \text{ Torsion:}$$

$$T_{\mu\nu\rho} = 2 \frac{\dot{\mathcal{A}} + iu\mathcal{N}}{\mathcal{A}\mathcal{N}} h_{\mu[\nu} n_{\rho]} \,. \tag{73}$$

• Parameter functions in the connection:

$$\mathcal{K}_1 = \frac{\dot{\mathcal{N}}}{\mathcal{N}}, \quad \mathcal{K}_2 = -iu\frac{\mathcal{A}}{\mathcal{N}}, \quad \mathcal{K}_3 = -iu\frac{\mathcal{N}}{\mathcal{A}}, \quad \mathcal{K}_4 = \frac{\dot{\mathcal{A}}}{\mathcal{A}}, \quad \mathcal{K}_5 = 0.$$
 (72)

 \Rightarrow Torsion:

$$T_{\mu\nu\rho} = 2 \frac{\dot{\mathcal{A}} + iu\mathcal{N}}{\mathcal{A}\mathcal{N}} h_{\mu[\nu} n_{\rho]} \,. \tag{73}$$

 \Rightarrow Contortion:

$$K_{\mu\nu\rho} = 2 \frac{\dot{\mathcal{A}} + iu\mathcal{N}}{\mathcal{A}\mathcal{N}} h_{\rho[\mu} n_{\nu]} \,. \tag{74}$$

Outline

- 1. Metric-affine and teleparallel geometry
- 2. Symmetries of metrics, tetrads and connections
- 3. Cosmological symmetry: state of the art
- 4. Three approaches to teleparallel cosmology
- 4.1 The tetrad & representation approach
- 4.2 The metric-affine approach
- 4.3 The torsion decomposition approach
- 5. Two branches of cosmological teleparallel geometries
- 5.1 The "vector" branch
- 5.2 The "axial" or "two-form" branch
- 6. Properties & applications
- 7. Conclusion

Homomorphism of the symmetry algebra:

$$R_i \mapsto J_i, \quad T_i \mapsto u J_i.$$
 (75)

Homomorphism of the symmetry algebra:

$$R_i \mapsto J_i, \quad T_i \mapsto u J_i.$$
 (75)

⇒ Symmetric tetrad in Weitzenböck gauge:

$$\begin{aligned} \theta^{0} &= \mathcal{N} dt , \qquad (76a) \\ \theta^{1} &= \mathcal{A} \left[\frac{\sin \vartheta \cos \varphi}{\chi} dr + r(\chi \cos \vartheta \cos \varphi + ur \sin \varphi) d\vartheta - r \sin \vartheta(\chi \sin \varphi - ur \cos \vartheta \cos \varphi) d\varphi \right] , \\ \theta^{2} &= \mathcal{A} \left[\frac{\sin \vartheta \sin \varphi}{\chi} dr + r(\chi \cos \vartheta \sin \varphi - ur \cos \varphi) d\vartheta + r \sin \vartheta(\chi \cos \varphi + ur \cos \vartheta \sin \varphi) d\varphi \right] , \\ \theta^{3} &= \mathcal{A} \left[\frac{\cos \vartheta}{\chi} dr - r\chi \sin \vartheta d\vartheta - ur^{2} \sin^{2} \vartheta d\varphi \right] , \qquad (76d) \end{aligned}$$

Homomorphism of the symmetry algebra:

$$R_i \mapsto J_i, \quad T_i \mapsto U J_i.$$
 (75)

⇒ Symmetric tetrad in Weitzenböck gauge:

$$\theta^{0} = \mathcal{N} dt, \qquad (76a)$$

$$\theta^{1} = \mathcal{A} \left[\frac{\sin \vartheta \cos \varphi}{\chi} dr + r(\chi \cos \vartheta \cos \varphi + ur \sin \varphi) d\vartheta - r \sin \vartheta(\chi \sin \varphi - ur \cos \vartheta \cos \varphi) d\varphi \right], \qquad (76b)$$

$$\theta^{2} = \mathcal{A} \left[\frac{\sin \vartheta \sin \varphi}{\chi} dr + r(\chi \cos \vartheta \sin \varphi - ur \cos \varphi) d\vartheta + r \sin \vartheta(\chi \cos \varphi + ur \cos \vartheta \sin \varphi) d\varphi \right], \qquad (76c)$$

$$\theta^{3} = \mathcal{A} \left[\frac{\cos \vartheta}{\chi} dr + r(\chi \cos \vartheta \sin \varphi - ur \cos \varphi) d\vartheta + r \sin \vartheta(\chi \cos \varphi + ur \cos \vartheta \sin \varphi) d\varphi \right], \qquad (76c)$$

$$\theta^{3} = \mathcal{A}\left[\frac{\cos\vartheta}{\chi}\mathrm{d}r - r\chi\sin\vartheta\mathrm{d}\vartheta - ur^{2}\sin^{2}\vartheta\mathrm{d}\varphi\right],\qquad(76d)$$

 \Rightarrow Real for $u^2 \ge 0$, complex for $u^2 < 0$.

Transformation to diagonal gauge

• Diagonalizing Lorentz transformation:

$$\Lambda^{a}{}_{b} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & \sin\vartheta\cos\varphi & \sin\vartheta\sin\varphi & \cos\vartheta \\ 0 & \chi\cos\vartheta\cos\varphi + ur\sin\varphi & \chi\cos\vartheta\sin\varphi - ur\cos\varphi & -\chi\sin\vartheta \\ 0 & ur\cos\vartheta\cos\varphi - \chi\sin\varphi & \chi\cos\varphi + ur\cos\vartheta\sin\varphi & -ur\sin\vartheta \end{pmatrix}.$$
(77)

Transformation to diagonal gauge

• Diagonalizing Lorentz transformation:

$$\Lambda^{a}{}_{b} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & \sin\vartheta\cos\varphi & \sin\vartheta\sin\varphi & \cos\vartheta \\ 0 & \chi\cos\vartheta\cos\varphi + ur\sin\varphi & \chi\cos\vartheta\sin\varphi - ur\cos\varphi & -\chi\sin\vartheta \\ 0 & ur\cos\vartheta\cos\varphi - \chi\sin\varphi & \chi\cos\varphi + ur\cos\vartheta\sin\varphi & -ur\sin\vartheta \end{pmatrix}.$$
(77)

Spin connection in diagonal gauge:

$$\omega^{\prime 1}{}_{2\vartheta} = -\omega^{\prime 2}{}_{1\vartheta} = -\chi, \quad \omega^{\prime 1}{}_{2\varphi} = -\omega^{\prime 2}{}_{1\varphi} = Ur\sin\vartheta,$$

$$\omega^{\prime 1}{}_{3\vartheta} = -\omega^{\prime 3}{}_{1\vartheta} = -Ur, \quad \omega^{\prime 1}{}_{3\varphi} = -\omega^{\prime 3}{}_{1\varphi} = -\chi\sin\vartheta,$$

$$\omega^{\prime 2}{}_{3r} = -\omega^{\prime 3}{}_{2r} = \frac{U}{\chi}, \quad \omega^{\prime 2}{}_{3\varphi} = -\omega^{\prime 3}{}_{2\varphi} = -\cos\vartheta. \quad (78)$$

Induced affine connection and torsion

Parameter functions in the connection:

$$\mathcal{K}_1 = \frac{\dot{\mathcal{N}}}{\mathcal{N}}, \quad \mathcal{K}_2 = \mathcal{K}_3 = \mathbf{0}, \quad \mathcal{K}_4 = \frac{\dot{\mathcal{A}}}{\mathcal{A}}, \quad \mathcal{K}_5 = -u.$$
 (79)

Induced affine connection and torsion

Parameter functions in the connection:

$$\mathcal{K}_1 = \frac{\dot{\mathcal{N}}}{\mathcal{N}}, \quad \mathcal{K}_2 = \mathcal{K}_3 = \mathbf{0}, \quad \mathcal{K}_4 = \frac{\dot{\mathcal{A}}}{\mathcal{A}}, \quad \mathcal{K}_5 = -u.$$
 (79)

.

 \rightarrow Torsion:

$$T_{\mu\nu\rho} = 2\frac{\mathcal{A}}{\mathcal{A}\mathcal{N}}h_{\mu[\nu}n_{\rho]} - 2\frac{u}{\mathcal{A}}\varepsilon_{\mu\nu\rho}.$$
 (80)

Induced affine connection and torsion

Parameter functions in the connection:

$$\mathcal{K}_1 = \frac{\dot{\mathcal{N}}}{\mathcal{N}}, \quad \mathcal{K}_2 = \mathcal{K}_3 = \mathbf{0}, \quad \mathcal{K}_4 = \frac{\dot{\mathcal{A}}}{\mathcal{A}}, \quad \mathcal{K}_5 = -u.$$
 (79)

.

 \Rightarrow Torsion:

$$T_{\mu\nu\rho} = 2\frac{\mathcal{A}}{\mathcal{A}\mathcal{N}}h_{\mu[\nu}n_{\rho]} - 2\frac{u}{\mathcal{A}}\varepsilon_{\mu\nu\rho}.$$
 (80)

 \Rightarrow Contortion:

$$K_{\mu\nu\rho} = 2\frac{\dot{\mathcal{A}}}{\mathcal{A}\mathcal{N}}h_{\rho[\mu}n_{\nu]} + \frac{u}{\mathcal{A}}\varepsilon_{\mu\nu\rho}.$$
(81)

Outline

- 1. Metric-affine and teleparallel geometry
- 2. Symmetries of metrics, tetrads and connections
- 3. Cosmological symmetry: state of the art
- 4. Three approaches to teleparallel cosmology
- 4.1 The tetrad & representation approach
- 4.2 The metric-affine approach
- 4.3 The torsion decomposition approach
- 5. Two branches of cosmological teleparallel geometries
- 5.1 The "vector" branch
- 5.2 The "axial" or "two-form" branch

6. Properties & applications

7. Conclusion

Torsion of general cosmological connection:

$$\mathfrak{v}_{\mu} = 3 \frac{\mathcal{K}_4 - \mathcal{K}_3}{\mathcal{N}} n_{\mu} , \quad \mathfrak{a}_{\mu} = -2 \frac{\mathcal{K}_5}{\mathcal{A}} n_{\mu} .$$
 (82)

• Torsion of general cosmological connection:

$$\mathfrak{v}_\mu = 3rac{\mathcal{K}_4 - \mathcal{K}_3}{\mathcal{N}} n_\mu\,, \quad \mathfrak{a}_\mu = -2rac{\mathcal{K}_5}{\mathcal{A}} n_\mu\,.$$

⇒ Torsion of teleparallel cosmological connections:

	"vector"	"axial"
\mathfrak{v}_{μ}	$3rac{\dot{\mathcal{A}}+iu\mathcal{N}}{\mathcal{A}\mathcal{N}}\textit{n}_{\mu}$	$3rac{\dot{A}}{{\cal A}{\cal N}}n_{\mu}$
\mathfrak{a}_{μ}	0	$2\frac{u}{A}n_{\mu}$
$\mathfrak{V}_{\mu u ho}$	$2 rac{\dot{A} + iuN}{AN} h_{\mu[u} n_{ ho]}$	$2\frac{\dot{A}}{AN}h_{\mu[u}n_{ ho]}$
$\mathfrak{A}_{\mu u ho}$	0	$-2\frac{u}{A}\varepsilon_{\mu u ho}$
real?	$u^2 \leq 0$	$u^2 \ge 0$
complex?	$u^{2} > 0$	<i>u</i> ² < 0

(82)

Torsion of general cosmological connection:

$$\mathfrak{v}_{\mu} = 3 \frac{\mathcal{K}_4 - \mathcal{K}_3}{\mathcal{N}} n_{\mu} , \quad \mathfrak{a}_{\mu} = -2 \frac{\mathcal{K}_5}{\mathcal{A}} n_{\mu} .$$
 (82)

 \Rightarrow Torsion of teleparallel cosmological connections:

✓ Full characterization of torsion (analogous to Riemann tensor).

• Torsion of general cosmological connection:

$$\mathfrak{v}_{\mu} = 3 \frac{\mathcal{K}_4 - \mathcal{K}_3}{\mathcal{N}} n_{\mu}, \quad \mathfrak{a}_{\mu} = -2 \frac{\mathcal{K}_5}{\mathcal{A}} n_{\mu}.$$
 (82)

 \Rightarrow Torsion of teleparallel cosmological connections:

	"vector"	"axial"
\mathfrak{v}_{μ}	$3rac{\dot{\mathcal{A}}+iu\mathcal{N}}{\mathcal{A}\mathcal{N}}\textit{n}_{\mu}$	3 $rac{\dot{\mathcal{A}}}{\mathcal{A}\mathcal{N}} n_{\mu}$
\mathfrak{a}_{μ}	0	$2rac{u}{\mathcal{A}}n_{\mu}$
$\mathfrak{V}_{\mu u ho}$	$2rac{\dot{A}+iu\mathcal{N}}{\mathcal{A}\mathcal{N}}h_{\mu[u}n_{ ho]}$	$2rac{\dot{A}}{AN}h_{\mu[u}n_{ ho]}$
$\mathfrak{A}_{\mu u ho}$	0	$-2\frac{u}{A}\varepsilon_{\mu u ho}$
real?	$u^2 \leq 0$	$u^2 \ge 0$
complex?	<i>u</i> ² > 0	<i>u</i> ² < 0

✓ Full characterization of torsion (analogous to Riemann tensor).

✓ May now calculate cosmological dynamics, perturbations, ...

• Torsion of general cosmological connection:

$$\mathfrak{v}_{\mu} = 3 \frac{\mathcal{K}_4 - \mathcal{K}_3}{\mathcal{N}} n_{\mu}, \quad \mathfrak{a}_{\mu} = -2 \frac{\mathcal{K}_5}{\mathcal{A}} n_{\mu}.$$
 (82)

⇒ Torsion of teleparallel cosmological connections:

	"vector"	"axial"
\mathfrak{v}_{μ}	$3rac{\dot{\mathcal{A}}+iu\mathcal{N}}{\mathcal{A}\mathcal{N}}\textit{n}_{\mu}$	$3rac{\dot{\mathcal{A}}}{\mathcal{A}\mathcal{N}}n_{\mu}$
\mathfrak{a}_{μ}	0	$2\frac{u}{A}n_{\mu}$
$\mathfrak{V}_{\mu u ho}$	$2rac{\dot{A}+iu\mathcal{N}}{\mathcal{A}\mathcal{N}}h_{\mu[u}n_{ ho]}$	$2\frac{\dot{A}}{AN}h_{\mu[u}n_{ ho]}$
$\mathfrak{A}_{\mu u ho}$	0	$-2\frac{u}{A}\varepsilon_{\mu u ho}$
real?	$u^2 \leq 0$	$u^2 \ge 0$
complex?	<i>u</i> ² > 0	<i>u</i> ² < 0

- ✓ Full characterization of torsion (analogous to Riemann tensor).
- ✓ May now calculate cosmological dynamics, perturbations, ...
- $\checkmark\,$ Not necessary to work with cumbersome coordinate expressions.

Consider tetrad field equations of some teleparallel theory:

$$E_{\mu\nu} = \kappa^2 \Theta_{\mu\nu} \,. \tag{83}$$

• Consider tetrad field equations of some teleparallel theory:

$$E_{\mu\nu} = \kappa^2 \Theta_{\mu\nu} \,. \tag{83}$$

- Consequences of cosmological symmetry:
 - Energy-momentum tensor takes perfect fluid form:

$$\Theta_{\mu\nu} = (\rho + \rho)n_{\mu}n_{\nu} + \rho g_{\mu\nu} = \rho n_{\mu}n_{\nu} + \rho h_{\mu\nu}.$$
(84)

Gravitational part of the field equations decomposes analogously:

$$E_{\mu\nu} = \mathfrak{N} n_{\mu} n_{\nu} + \mathfrak{H} h_{\mu\nu} \,. \tag{85}$$

⇒ Two scalar field equations in analogy to Friedmann equations:

$$\mathfrak{N} = \kappa^2 \rho \,, \quad \mathfrak{H} = \kappa^2 \rho \,. \tag{86}$$

• Consider tetrad field equations of some teleparallel theory:

$$E_{\mu\nu} = \kappa^2 \Theta_{\mu\nu} \,. \tag{83}$$

- Consequences of cosmological symmetry:
 - Energy-momentum tensor takes perfect fluid form:

$$\Theta_{\mu\nu} = (\rho + p)n_{\mu}n_{\nu} + pg_{\mu\nu} = \rho n_{\mu}n_{\nu} + ph_{\mu\nu}.$$
(84)

Gravitational part of the field equations decomposes analogously:

$$E_{\mu\nu} = \mathfrak{N} n_{\mu} n_{\nu} + \mathfrak{H} h_{\mu\nu} \,. \tag{85}$$

 \Rightarrow Two scalar field equations in analogy to Friedmann equations:

$$\mathfrak{N} = \kappa^2 \rho \,, \quad \mathfrak{H} = \kappa^2 \rho \,. \tag{86}$$

\Rightarrow Calculate $\mathfrak{N}(t)$ and $\mathfrak{H}(t)$ for any given teleparallel theory.

• Consider tetrad field equations of some teleparallel theory:

$$E_{\mu\nu} = \kappa^2 \Theta_{\mu\nu} \,. \tag{83}$$

- Consequences of cosmological symmetry:
 - Energy-momentum tensor takes perfect fluid form:

$$\Theta_{\mu\nu} = (\rho + p)n_{\mu}n_{\nu} + pg_{\mu\nu} = \rho n_{\mu}n_{\nu} + ph_{\mu\nu}.$$
(84)

Gravitational part of the field equations decomposes analogously:

$$E_{\mu\nu} = \mathfrak{N} n_{\mu} n_{\nu} + \mathfrak{H} h_{\mu\nu} \,. \tag{85}$$

Two scalar field equations in analogy to Friedmann equations:

$$\mathfrak{N} = \kappa^2 \rho \,, \quad \mathfrak{H} = \kappa^2 \rho \,. \tag{86}$$

⇒ Calculate $\mathfrak{N}(t)$ and $\mathfrak{H}(t)$ for any given teleparallel theory. ⇒ There exist only two branches of cosmological solutions.

• Consider spatial reflection / parity transformation:

$$\vartheta \mapsto \pi - \vartheta, \quad \varphi \mapsto \pi + \varphi.$$
 (87)

• Consider spatial reflection / parity transformation:

$$\vartheta \mapsto \pi - \vartheta, \quad \varphi \mapsto \pi + \varphi.$$
 (87)

• Effect on geometric quantities in 3 + 1 spilt:

$$n_{\mu} \mapsto n_{\mu}, \quad h_{\mu\nu} \mapsto h_{\mu\nu}, \quad \varepsilon_{\mu\nu\rho} \mapsto -\varepsilon_{\mu\nu\rho}.$$
 (88)

Consider spatial reflection / parity transformation:

$$\vartheta \mapsto \pi - \vartheta, \quad \varphi \mapsto \pi + \varphi.$$
 (87)

• Effect on geometric quantities in 3 + 1 spilt:

$$n_{\mu} \mapsto n_{\mu}, \quad h_{\mu\nu} \mapsto h_{\mu\nu}, \quad \varepsilon_{\mu\nu\rho} \mapsto -\varepsilon_{\mu\nu\rho}.$$
 (88)

Effect on torsion components:

$$\mathfrak{v}_{\mu} \mapsto \mathfrak{v}_{\mu} , \quad \mathfrak{a}_{\mu} \mapsto -\mathfrak{a}_{\mu} .$$
 (89)

• Consider spatial reflection / parity transformation:

$$\vartheta \mapsto \pi - \vartheta, \quad \varphi \mapsto \pi + \varphi.$$
 (87)

• Effect on geometric quantities in 3 + 1 spilt:

$$n_{\mu} \mapsto n_{\mu}, \quad h_{\mu\nu} \mapsto h_{\mu\nu}, \quad \varepsilon_{\mu\nu\rho} \mapsto -\varepsilon_{\mu\nu\rho}.$$
 (88)

Effect on torsion components:

$$\mathfrak{v}_{\mu} \mapsto \mathfrak{v}_{\mu} , \quad \mathfrak{a}_{\mu} \mapsto -\mathfrak{a}_{\mu} .$$
 (89)

- ⇒ Axial torsion pseudo-vector reverses sign under reflection.
 - \Rightarrow "Vector" branch of tetrads is parity-invariant, $\mathfrak{a}_{\mu} = 0$.
 - ⇒ "Axial" branch of tetrads is not parity-invariant, $a_{\mu} = 2\frac{u}{A}n_{\mu} \neq 0$.

Outline

- 1. Metric-affine and teleparallel geometry
- 2. Symmetries of metrics, tetrads and connections
- 3. Cosmological symmetry: state of the art
- 4. Three approaches to teleparallel cosmology
- 4.1 The tetrad & representation approach
- 4.2 The metric-affine approach
- 4.3 The torsion decomposition approach

5. Two branches of cosmological teleparallel geometries

- 5.1 The "vector" branch
- 5.2 The "axial" or "two-form" branch

6. Properties & applications

7. Conclusion

- Metric-affine and teleparallel geometry:
 - Based on metric and independent connection.
 - Connection may exhibit curvature, torsion, nonmetricity.
 - Metric teleparallel geometry characterized by torsion only.
 - More conventional to work with tetrad and spin connection.

- Metric-affine and teleparallel geometry:
 - Based on metric and independent connection.
 - Connection may exhibit curvature, torsion, nonmetricity.
 - Metric teleparallel geometry characterized by torsion only.
 - More conventional to work with tetrad and spin connection.
- Spacetime symmetry of teleparallel geometry:
 - Defined by symmetry group / algebra acting on spacetime.
 - Tetrad and spin connection invariant up to Lorentz transformation.

- Metric-affine and teleparallel geometry:
 - Based on metric and independent connection.
 - Connection may exhibit curvature, torsion, nonmetricity.
 - Metric teleparallel geometry characterized by torsion only.
 - More conventional to work with tetrad and spin connection.
- Spacetime symmetry of teleparallel geometry:
 - Defined by symmetry group / algebra acting on spacetime.
 - Tetrad and spin connection invariant up to Lorentz transformation.
- Teleparallel geometry with cosmological symmetry:
 - May be derived in (at least) three different ways.
 - Two branches of solutions depending on lapse and scale factor.
 - Simple formulas for torsion in terms of defining functions.

- Metric-affine and teleparallel geometry:
 - Based on metric and independent connection.
 - Connection may exhibit curvature, torsion, nonmetricity.
 - Metric teleparallel geometry characterized by torsion only.
 - More conventional to work with tetrad and spin connection.
- Spacetime symmetry of teleparallel geometry:
 - Defined by symmetry group / algebra acting on spacetime.
 - Tetrad and spin connection invariant up to Lorentz transformation.
- Teleparallel geometry with cosmological symmetry:
 - May be derived in (at least) three different ways.
 - Two branches of solutions depending on lapse and scale factor.
 - Simple formulas for torsion in terms of defining functions.
- Answered a few questions:
 - ✓ Determined most general cosmological teleparallel geometries.
 - ✓ Torsion & field equations expressed like in Riemannian geometry.
 - ✓ Effective way to work with perturbations in teleparallel cosmology.

Outlook

- Cosmological (background) dynamics:
 - Study theories which distinguish vector and axial torsion.
 - Different dynamics for different branches when $u \neq 0$?
 - Effects of parity violation? Involve pseudo-tensor fields?
 - One branch is complex when the other is real trouble or insight?
Outlook

- Cosmological (background) dynamics:
 - Study theories which distinguish vector and axial torsion.
 - Different dynamics for different branches when $u \neq 0$?
 - Effects of parity violation? Involve pseudo-tensor fields?
 - One branch is complex when the other is real trouble or insight?
- New path towards teleparallel $u \neq 0$ cosmological perturbations:
 - Perform gauge-invariant decomposition of tetrad perturbations.
 - Use coordinate-independent formulas for background geometry.
 - Calculate perturbed field equations.

Outlook

- Cosmological (background) dynamics:
 - Study theories which distinguish vector and axial torsion.
 - Different dynamics for different branches when $u \neq 0$?
 - Effects of parity violation? Involve pseudo-tensor fields?
 - One branch is complex when the other is real trouble or insight?
- New path towards teleparallel $u \neq 0$ cosmological perturbations:
 - Perform gauge-invariant decomposition of tetrad perturbations.
 - Use coordinate-independent formulas for background geometry.
 - Calculate perturbed field equations.
- Extend to more general cosmological geometries:
 - Study Riemann-Cartan geometry?
 - Study symmetric teleparallel geometry?
 - Similar approach to metric-affine gravity + perturbations?

Outlook

- Cosmological (background) dynamics:
 - Study theories which distinguish vector and axial torsion.
 - Different dynamics for different branches when $u \neq 0$?
 - Effects of parity violation? Involve pseudo-tensor fields?
 - One branch is complex when the other is real trouble or insight?
- New path towards teleparallel $u \neq 0$ cosmological perturbations:
 - Perform gauge-invariant decomposition of tetrad perturbations.
 - Use coordinate-independent formulas for background geometry.
 - Calculate perturbed field equations.
- Extend to more general cosmological geometries:
 - Study Riemann-Cartan geometry?
 - Study symmetric teleparallel geometry?
 - Similar approach to metric-affine gravity + perturbations?
- Apply method to more general symmetries:
 - Spherical symmetry: black holes and quasinormal modes.
 - Planar symmetry: gravitational wave propagation.

Literature

- MH; Spacetime and observer space symmetries in the language of Cartan geometry; J. Math. Phys. 57 (2016) 082502 [arXiv:1505.07809].
- MH, L. Järv, U. Ualikhanova; Dynamical systems approach and generic properties of f(T) cosmology; Phys. Rev. D96 (2017) 043508 [arXiv:1706.02376].
- MH, L. Järv, U. Ualikhanova; Covariant formulation of scalar-torsion gravity; Phys. Rev. D97 (2018) 104011 [arXiv:1801.05786].
- MH, L. Järv, C. Pfeifer, M. Krššák; *Modified teleparallel theories of gravity in symmetric spacetimes*; Phys. Rev. D100 (2019) 084002 [arXiv:1901.05472].
- MH; *Metric-affine Geometries With Spherical Symmetry*; Symmetry **12** (2020) 453 [arXiv:1912.12906].