Classification of metric-affine geometries by spacetime symmetries

Manuel Hohmann

Laboratory of Theoretical Physics - Institute of Physics - University of Tartu Center of Excellence "The Dark Side of the Universe"

European Union
European Union European Regional
Development Fund

3. September 2019

2nd International Conference on Symmetry

Motivation

- Open questions in gravity theory:
- Accelerating expansion of the universe.
- Homogeneity of cosmic microwave background.
- Unification with quantum theory and other fundamental forces.

Motivation

- Open questions in gravity theory:
- Accelerating expansion of the universe.
- Homogeneity of cosmic microwave background.
- Unification with quantum theory and other fundamental forces.
- Potential solutions to these problems:
- Modify gravitational dynamics, coupling to matter...
- Consider more general geometry to describe gravity.

Motivation

- Open questions in gravity theory:
- Accelerating expansion of the universe.
- Homogeneity of cosmic microwave background.
- Unification with quantum theory and other fundamental forces.
- Potential solutions to these problems:
- Modify gravitational dynamics, coupling to matter. . .
- Consider more general geometry to describe gravity.
- Metric-affine class of geometries:
- Consider metric $g_{\mu \nu}$ and connection $\Gamma^{\mu}{ }_{\nu \rho}$ as independent fields.
- Impose relations between $g_{\mu \nu}$ and $\Gamma^{\mu}{ }_{\nu \rho}$ by Lagrange multipliers.
- Large range of possible dynamics.
- Possible to relate to gauge theory - other forces?
- Geometry is special case of Cartan geometry.

Motivation

- Open questions in gravity theory:
- Accelerating expansion of the universe.
- Homogeneity of cosmic microwave background.
- Unification with quantum theory and other fundamental forces.
- Potential solutions to these problems:
- Modify gravitational dynamics, coupling to matter. .
- Consider more general geometry to describe gravity.
- Metric-affine class of geometries:
- Consider metric $g_{\mu \nu}$ and connection $\Gamma^{\mu}{ }_{\nu \rho}$ as independent fields.
- Impose relations between $g_{\mu \nu}$ and $\Gamma^{\mu}{ }_{\nu \rho}$ by Lagrange multipliers.
- Large range of possible dynamics.
- Possible to relate to gauge theory - other forces?
- Geometry is special case of Cartan geometry.
- Consider solutions with particular spacetime symmetries:
- Field equations greatly simplify after imposing symmetry.
- Possible to classify all metric-affine geometries by their symmetries.

Metric-affine geometries and properties

- Objects defining the geometry:
- Pseudo-Riemannian metric $g_{\mu \nu}$.
- Affine connection with covariant derivative ∇_{μ} and coefficients $\Gamma^{\mu}{ }_{\nu \rho}$.

Metric-affine geometries and properties

- Objects defining the geometry:
- Pseudo-Riemannian metric $g_{\mu \nu}$.
- Affine connection with covariant derivative ∇_{μ} and coefficients $\Gamma^{\mu}{ }_{\nu \rho}$.
- Properties of metric-affine geometries:
- Curvature:

$$
R^{\mu}{ }_{\nu \rho \sigma}=\partial_{\rho} \Gamma^{\mu}{ }_{\nu \sigma}-\partial_{\sigma} \Gamma^{\mu}{ }_{\nu \rho}+\Gamma^{\mu}{ }_{\omega \rho} \Gamma^{\omega}{ }_{\nu \sigma}-\Gamma^{\mu}{ }_{\omega \sigma} \Gamma^{\omega}{ }_{\nu \rho} .
$$

- Torsion:

$$
T^{\rho}{ }_{\mu \nu}=\Gamma^{\rho}{ }_{\nu \mu}-\Gamma^{\rho}{ }_{\mu \nu} .
$$

- Nonmetricity:

$$
Q_{\mu \nu \rho}=\nabla_{\mu} g_{\nu \rho} .
$$

Metric-affine geometries and properties

- Objects defining the geometry:
- Pseudo-Riemannian metric $g_{\mu \nu}$.
- Affine connection with covariant derivative ∇_{μ} and coefficients $\Gamma^{\mu}{ }_{\nu \rho}$.
- Properties of metric-affine geometries:
- Curvature - depends only on connection coefficients 「:

$$
R^{\mu}{ }_{\nu \rho \sigma}=\partial_{\rho} \Gamma^{\mu}{ }_{\nu \sigma}-\partial_{\sigma} \Gamma^{\mu}{ }_{\nu \rho}+\Gamma^{\mu}{ }_{\omega \rho} \Gamma^{\omega}{ }_{\nu \sigma}-\Gamma^{\mu}{ }_{\omega \sigma} \Gamma^{\omega}{ }_{\nu \rho} .
$$

- Torsion - depends only on connection coefficients 「:

$$
T^{\rho}{ }_{\mu \nu}=\Gamma^{\rho}{ }_{\nu \mu}-\Gamma^{\rho}{ }_{\mu \nu} .
$$

- Nonmetricity - depends on both connection coefficients Γ and metric g :

$$
Q_{\mu \nu \rho}=\nabla_{\mu} g_{\nu \rho}
$$

Metric-affine geometries and properties

- Objects defining the geometry:
- Pseudo-Riemannian metric $g_{\mu \nu}$.
- Affine connection with covariant derivative ∇_{μ} and coefficients $\Gamma^{\mu}{ }_{\nu \rho}$.
- Properties of metric-affine geometries:
- Curvature - depends only on connection coefficients 「:

$$
R^{\mu}{ }_{\nu \rho \sigma}=\partial_{\rho} \Gamma^{\mu}{ }_{\nu \sigma}-\partial_{\sigma} \Gamma^{\mu}{ }_{\nu \rho}+\Gamma^{\mu}{ }_{\omega \rho} \Gamma^{\omega}{ }_{\nu \sigma}-\Gamma^{\mu}{ }_{\omega \sigma} \Gamma^{\omega}{ }_{\nu \rho} .
$$

- Torsion - depends only on connection coefficients Γ :

$$
T^{\rho}{ }_{\mu \nu}=\Gamma^{\rho}{ }_{\nu \mu}-\Gamma^{\rho}{ }_{\mu \nu} .
$$

- Nonmetricity - depends on both connection coefficients Γ and metric g :

$$
Q_{\mu \nu \rho}=\nabla_{\mu} g_{\nu \rho} .
$$

$\Rightarrow 8$ types of geometries based on (non-)vanishing of R, T, Q.

Decomposition of affine connection

- Affine connection coefficients can be written as:

$$
\Gamma^{\mu}{ }_{\nu \rho}=\left\{\begin{array}{c}
\mu \\
\nu \rho
\end{array}\right\}+K^{\mu}{ }_{\nu \rho}+L^{\mu}{ }_{\nu \rho} .
$$

Decomposition of affine connection

- Affine connection coefficients can be written as:

$$
\Gamma^{\mu}{ }_{\nu \rho}=\left\{\begin{array}{c}
\mu \\
\nu \rho
\end{array}\right\}+K^{\mu}{ }_{\nu \rho}+L^{\mu}{ }_{\nu \rho} .
$$

- Terms in the decomposition:
- Levi-Civita connection coefficients:

$$
\left\{\begin{array}{c}
\mu \\
\nu \rho
\end{array}\right\}=\frac{1}{2} g^{\mu \sigma}\left(\partial_{\nu} g_{\sigma \rho}+\partial_{\rho} g_{\nu \sigma}-\partial_{\sigma} g_{\nu \rho}\right) .
$$

- Contortion tensor:

$$
K^{\rho}{ }_{\mu \nu}=\frac{1}{2}\left(T_{\mu}{ }^{\rho}{ }_{\nu}+T_{\nu}{ }^{\rho}{ }_{\mu}-T^{\rho}{ }_{\mu \nu}\right) .
$$

- Disformation tensor:

$$
L^{\rho}{ }_{\mu \nu}=\frac{1}{2}\left(Q^{\rho}{ }_{\mu \nu}-Q_{\mu \nu}{ }^{\rho}-Q_{\nu \mu}^{\rho}\right) .
$$

Decomposition of affine connection

- Affine connection coefficients can be written as:

$$
\Gamma^{\mu}{ }_{\nu \rho}=\left\{\begin{array}{l}
\mu \rho
\end{array}\right\}+K^{\mu}{ }_{\nu \rho}+L^{\mu}{ }_{\nu \rho} .
$$

- Terms in the decomposition:
- Levi-Civita connection coefficients:

$$
\left\{\begin{array}{c}
\mu \\
\nu \rho
\end{array}\right\}=\frac{1}{2} g^{\mu \sigma}\left(\partial_{\nu} g_{\sigma \rho}+\partial_{\rho} g_{\nu \sigma}-\partial_{\sigma} g_{\nu \rho}\right) .
$$

- Contortion tensor:

$$
K^{\rho}{ }_{\mu \nu}=\frac{1}{2}\left(T_{\mu}{ }^{\rho}{ }_{\nu}+T_{\nu}{ }^{\rho}{ }_{\mu}-T^{\rho}{ }_{\mu \nu}\right) .
$$

- Disformation tensor:

$$
L^{\rho}{ }_{\mu \nu}=\frac{1}{2}\left(Q^{\rho}{ }_{\mu \nu}-Q_{\mu \nu}{ }^{\rho}-Q_{\nu \mu}^{\rho}\right) .
$$

\Rightarrow Decomposition is unique if both metric and affine connection are given.

Brief detour: symmetries in Cartan geometry

- Ingredients of a Cartan geometry:
- Lie group G with closed Lie subgroup $H \subset G \Rightarrow$ homogeneous space G / H.
- Principal H-bundle $\pi: P \rightarrow M$ over manifold M.
- Cartan connection is Lie algebra valued 1 -form $A \in \Omega^{1}(P, \mathfrak{g})$, where:

For all $p \in P, A_{p}: T_{p} P \rightarrow \mathfrak{g}$ is a linear isomorphism.
A is H-equivariant: $\left(R_{h}\right)^{*} A=\mathrm{Ad}\left(h^{-1}\right) \circ A$ for all $h \in H$.
$A(\tilde{h})=h$ for all $h \in \mathfrak{h}$, where \tilde{h} is the fundamental vector field of h.

Brief detour: symmetries in Cartan geometry

- Ingredients of a Cartan geometry:
- Lie group G with closed Lie subgroup $H \subset G \Rightarrow$ homogeneous space G / H.
- Principal H-bundle $\pi: P \rightarrow M$ over manifold M.
- Cartan connection is Lie algebra valued 1 -form $A \in \Omega^{1}(P, \mathfrak{g})$, where:

For all $p \in P, A_{p}: T_{p} P \rightarrow \mathfrak{g}$ is a linear isomorphism.
A is H-equivariant: $\left(R_{h}\right)^{*} A=\operatorname{Ad}\left(h^{-1}\right) \circ A$ for all $h \in H$.
$A(\tilde{h})=h$ for all $h \in \mathfrak{h}$, where \tilde{h} is the fundamental vector field of h.

- Further constraints:
- First order: quotient representation of adjoint representations of H on $\mathfrak{g} / \mathfrak{h}$ is faithful.
- Reductive: Lie algebra of G is direct sum $\mathfrak{g}=\mathfrak{h} \oplus \mathfrak{z}$ of subrepresentations of H.

Brief detour: symmetries in Cartan geometry

- Ingredients of a Cartan geometry:
- Lie group G with closed Lie subgroup $H \subset G \Rightarrow$ homogeneous space G / H.
- Principal H-bundle $\pi: P \rightarrow M$ over manifold M.
- Cartan connection is Lie algebra valued 1 -form $A \in \Omega^{1}(P, \mathfrak{g})$, where:
- For all $p \in P, A_{p}: T_{p} P \rightarrow \mathfrak{g}$ is a linear isomorphism.
- A is H-equivariant: $\left(R_{h}\right)^{*} A=\operatorname{Ad}\left(h^{-1}\right) \circ A$ for all $h \in H$.
$A(\tilde{h})=h$ for all $h \in \mathfrak{h}$, where \tilde{h} is the fundamental vector field of h.
- Further constraints:
- First order: quotient representation of adjoint representations of H on $\mathfrak{g} / \mathfrak{h}$ is faithful.
- Reductive: Lie algebra of G is direct sum $\mathfrak{g}=\mathfrak{h} \oplus \mathfrak{z}$ of subrepresentations of H.
\Rightarrow Notion of symmetry under generating vector field ξ on M :
- P canonically identified with subbundle of frame bundle of M.
- Canonical decomposition $A=\omega+e$:
$\omega \in \Omega^{1}(P, \mathfrak{h})$ is affine (Ehresmann) connection.
$e \in \Omega^{1}(P, \mathfrak{z})$ is tautological (solder) form.
- Vector field ξ canonically lifted to vector field 三 on frame bundle (functorial lift).- Symmetry of Cartan connection defined by lifted vector field 三: [MH $\left.{ }^{\prime} 15\right]$

Lifted vector field \equiv is tangent to P.
Lie derivative $\mathcal{L} \equiv \omega$ vanishes (sufficient since $\mathcal{L} \equiv e$ always vanishes).

Finite and infinitesimal transformations of metric-affine geometry

- Finite spacetime transformation:
- Generated by 1-parameter diffeomorphism group $\varphi_{t}: M \rightarrow M$ with $x^{\prime}=\varphi(x)$ and $t \in \mathbb{R}$.
- Transformations of fundamental geometric objects:

Metric:

$$
\left(\varphi_{t}^{*} g\right)_{\mu \nu}(x)=g_{\tau \omega}\left(x^{\prime}\right) \frac{\partial x^{\prime \tau}}{\partial x^{\mu}} \frac{\partial x^{\prime \omega}}{\partial x^{\nu}} .
$$

Connection coefficients:

$$
\left(\varphi_{t}^{*} \Gamma\right)^{\mu}{ }_{\nu \rho}(x)=\Gamma^{\sigma}{ }_{\tau \omega}\left(x^{\prime}\right) \frac{\partial x^{\mu}}{\partial x^{\prime \sigma}} \frac{\partial x^{\prime \tau}}{\partial x^{\nu}} \frac{\partial x^{\prime \omega}}{\partial x^{\rho}}+\frac{\partial x^{\mu}}{\partial x^{\prime \sigma}} \frac{\partial^{2} x^{\prime \sigma}}{\partial x^{\nu} \partial x^{\rho}} .
$$

Finite and infinitesimal transformations of metric-affine geometry

- Finite spacetime transformation:
- Generated by 1-parameter diffeomorphism group $\varphi_{t}: M \rightarrow M$ with $x^{\prime}=\varphi(x)$ and $t \in \mathbb{R}$.
- Transformations of fundamental geometric objects:

Metric:

$$
\left(\varphi_{t}^{*} g\right)_{\mu \nu}(x)=g_{\tau \omega}\left(x^{\prime}\right) \frac{\partial x^{\prime \tau}}{\partial x^{\mu}} \frac{\partial x^{\prime \omega}}{\partial x^{\nu}} .
$$

Connection coefficients:

$$
\left(\varphi_{t}^{*} \Gamma\right)^{\mu}{ }_{\nu \rho}(x)=\Gamma^{\sigma}{ }_{\tau \omega}\left(x^{\prime}\right) \frac{\partial x^{\mu}}{\partial x^{\prime \sigma}} \frac{\partial x^{\prime \tau}}{\partial x^{\nu}} \frac{\partial x^{\prime \omega}}{\partial x^{\rho}}+\frac{\partial x^{\mu}}{\partial x^{\prime \sigma}} \frac{\partial^{2} x^{\prime \sigma}}{\partial x^{\nu} \partial x^{\rho}} .
$$

- Infinitesimal spacetime transformation:
- Generated by vector field ξ on M.
- Lie derivatives of fundamental geometric objects are tensor fields:

Metric:

$$
\left(\mathcal{L}_{\xi} g\right)_{\mu \nu}=\xi^{\rho} \partial_{\rho} g_{\mu \nu}+\partial_{\mu} \xi^{\rho} g_{\rho \nu}+\partial_{\nu} \xi^{\rho} g_{\mu \rho} .
$$

Connection coefficients:

$$
\begin{aligned}
\left(\mathcal{L}_{\xi} \Gamma\right)^{\mu}{ }_{\nu \rho} & =\xi^{\sigma} \partial_{\sigma} \Gamma^{\mu}{ }_{\nu \rho}-\partial_{\sigma} \xi^{\mu} \Gamma^{\sigma}{ }_{\nu \rho}+\partial_{\nu} \xi^{\sigma} \Gamma^{\mu}{ }_{\sigma \rho}+\partial_{\rho} \xi^{\sigma} \Gamma^{\mu}{ }_{\nu \sigma}+\partial_{\nu} \partial_{\rho} \xi^{\mu} \\
& =\nabla_{\rho} \nabla_{\nu} \xi^{\mu}-\xi^{\sigma} R^{\mu}{ }_{\nu \rho \sigma}-\nabla_{\rho}\left(\xi^{\sigma} T^{\mu}{ }_{\nu \sigma}\right) .
\end{aligned}
$$

Symmetries and properties of metric-affine geometry

- Definition of symmetry: $\mathcal{L}_{\xi} g=0$ and $\mathcal{L}_{\xi} \Gamma=0$.

Symmetries and properties of metric-affine geometry

- Definition of symmetry: $\mathcal{L}_{\xi} g=0$ and $\mathcal{L}_{\xi} \Gamma=0$.
- Properties of the Levi-Civita connection:
- Symmetric metric: $\mathcal{L}_{\xi} g=0 \Rightarrow \mathcal{L}_{\xi}\{ \}=0$.
- Converse is not true: $\mathcal{L}_{\xi}\{ \}=0 \nRightarrow \mathcal{L}_{\xi} g=0$.
- Weaker statement holds: $\mathcal{L}_{\xi}\{ \}=0 \Leftrightarrow \mathcal{L}_{\xi} g=c \cdot g$.

Symmetries and properties of metric-affine geometry

- Definition of symmetry: $\mathcal{L}_{\xi} g=0$ and $\mathcal{L}_{\xi} \Gamma=0$.
- Properties of the Levi-Civita connection:
- Symmetric metric: $\mathcal{L}_{\xi} g=0 \Rightarrow \mathcal{L}_{\xi}\{ \}=0$.
- Converse is not true: $\mathcal{L}_{\xi}\{ \}=0 \nRightarrow \mathcal{L}_{\xi} g=0$.
- Weaker statement holds: $\mathcal{L}_{\xi}\{ \}=0 \Leftrightarrow \mathcal{L}_{\xi} g=c \cdot g$.
- Assume symmetric metric-affine geometry: $\mathcal{L}_{\xi} g=0$ and $\mathcal{L}_{\xi} \Gamma=0$.
\Rightarrow Constituents of connection: $\mathcal{L}_{\xi} K=0, \mathcal{L}_{\xi} L=0$ and $\mathcal{L}_{\xi}\{ \}=0$.
\Rightarrow Tensorial properties: $\mathcal{L}_{\xi} T=0, \mathcal{L}_{\xi} Q=0$ and $\mathcal{L}_{\xi} R=0$.
\Rightarrow Covariant derivatives of any tensor field $U: \mathcal{L}_{\xi}(\nabla U)=0$.

Symmetries and properties of metric-affine geometry

- Definition of symmetry: $\mathcal{L}_{\xi} g=0$ and $\mathcal{L}_{\xi} \Gamma=0$.
- Properties of the Levi-Civita connection:
- Symmetric metric: $\mathcal{L}_{\xi} g=0 \Rightarrow \mathcal{L}_{\xi}\{ \}=0$.
- Converse is not true: $\mathcal{L}_{\xi}\{ \}=0 \nRightarrow \mathcal{L}_{\xi} g=0$.
- Weaker statement holds: $\mathcal{L}_{\xi}\{ \}=0 \Leftrightarrow \mathcal{L}_{\xi} g=c \cdot g$.
- Assume symmetric metric-affine geometry: $\mathcal{L}_{\xi} g=0$ and $\mathcal{L}_{\xi} \Gamma=0$.
\Rightarrow Constituents of connection: $\mathcal{L}_{\xi} K=0, \mathcal{L}_{\xi} L=0$ and $\mathcal{L}_{\xi}\{ \}=0$.
\Rightarrow Tensorial properties: $\mathcal{L}_{\xi} T=0, \mathcal{L}_{\xi} Q=0$ and $\mathcal{L}_{\xi} R=0$.
\Rightarrow Covariant derivatives of any tensor field $U: \mathcal{L}_{\xi}(\nabla U)=0$.
- Special case: symmetric teleparallel geometry $T=0$ and $R=0$.
\Rightarrow Connection takes the form $\Gamma^{\mu}{ }_{\nu \rho}=\frac{\partial x^{\mu}}{\partial x^{\prime} \sigma} \frac{\partial^{2} x^{\prime \sigma}}{\partial x^{\nu} \partial x^{\rho}}$.
\Rightarrow Choose coordinates such that $\Gamma^{\mu}{ }_{\nu \rho}=0$ in open neighborhood.
\Rightarrow Lie derivative simplifies to $\left(\mathcal{L}_{\xi} \Gamma\right)^{\mu}{ }_{\nu \rho}=\partial_{\rho} \partial_{\nu} \xi^{\mu}$.
\Rightarrow Every vector field linear in coordinates generates symmetry.

Example: metric-affine cosmological spacetime

- Cosmological metric-affine geometry: $5+2$ components of connection and metric.

Example: metric-affine cosmological spacetime

- Cosmological metric-affine geometry: $5+2$ components of connection and metric.
- Metric takes Robertson-Walker form

$$
g_{t t}=-n^{2}, \quad g_{r r}=a^{2}, \quad g_{\vartheta \vartheta}=a^{2} r^{2}, \quad g_{\varphi \varphi}=g_{\vartheta \vartheta} \sin ^{2} \vartheta .
$$

Example: metric-affine cosmological spacetime

- Cosmological metric-affine geometry: $5+2$ components of connection and metric.
- Metric takes Robertson-Walker form

$$
g_{t t}=-n^{2}, \quad g_{r r}=a^{2}, \quad g_{\vartheta \vartheta}=a^{2} r^{2}, \quad g_{\varphi \varphi}=g_{\vartheta \vartheta} \sin ^{2} \vartheta
$$

- Most general cosmologically symmetric connection:

$$
\begin{gathered}
\Gamma_{t t}^{t}=\Gamma_{1}^{C}, \quad \Gamma^{r}{ }_{t r}=\Gamma^{\theta}{ }_{t \theta}=\Gamma_{t \varphi}^{\varphi}=\Gamma_{3}^{C}, \quad \Gamma_{r t}^{r}=\Gamma_{\theta t}^{\theta}=\Gamma^{\varphi}{ }_{\varphi t}=\Gamma_{4}^{C}, \quad \Gamma^{t}{ }_{r r}=\frac{\Gamma_{2}^{C}}{1-k r^{2}}, \\
\Gamma^{t}{ }_{\theta \theta}=\Gamma_{2}^{C} r^{2}, \quad \Gamma^{t}{ }_{\varphi \varphi}=\Gamma_{2}^{C} r^{2} \sin ^{2} \theta, \quad \Gamma^{r}{ }_{\varphi \theta}=-\Gamma^{r}{ }_{\theta \varphi}=\Gamma_{5}^{C} r^{2} \sqrt{1-k r^{2}} \sin \theta \\
\Gamma^{\theta}{ }_{r \varphi}=-\Gamma^{\theta}{ }_{\varphi r}=\frac{\Gamma_{5}^{C} \sin \theta}{\sqrt{1-k r^{2}}}, \quad \Gamma^{\varphi}{ }_{r \theta}=-\Gamma^{\varphi}{ }_{\theta r}=-\frac{\Gamma_{5}^{C}}{\sqrt{1-k r^{2}} \sin \theta}, \quad \Gamma^{r}{ }_{r r}=\frac{k r}{1-k r^{2}} \\
\Gamma^{\theta}{ }_{r \theta}=\Gamma^{\theta}{ }_{\theta r}=\Gamma^{\varphi}{ }_{r \varphi}=\Gamma^{\varphi}{ }_{\varphi r}=\frac{1}{r}, \quad \Gamma^{\varphi}{ }_{\theta \varphi}=\Gamma^{\varphi}{ }_{\varphi \theta}=\cot \theta, \quad \Gamma^{\theta}{ }_{\varphi \varphi}=-\sin \theta \cos \theta \\
\Gamma^{r}{ }_{\theta \theta}=r\left(k r^{2}-1\right), \quad \Gamma_{\varphi \varphi}^{r}=r\left(k r^{2}-1\right) \sin ^{2} \theta .
\end{gathered}
$$

Example: metric-affine cosmological spacetime

- Cosmological metric-affine geometry: $5+2$ components of connection and metric.
- Metric takes Robertson-Walker form

$$
g_{t t}=-n^{2}, \quad g_{r r}=a^{2}, \quad g_{\vartheta \vartheta}=a^{2} r^{2}, \quad g_{\varphi \varphi}=g_{\vartheta \vartheta} \sin ^{2} \vartheta
$$

- Most general cosmologically symmetric connection:

$$
\begin{gathered}
\Gamma_{t t}^{t}=\Gamma_{1}^{C}, \quad \Gamma_{t r}^{r}=\Gamma^{\theta}{ }_{t \theta}=\Gamma^{\varphi}{ }_{t \varphi}=\Gamma_{3}^{C}, \quad \Gamma_{r t}^{r}=\Gamma_{\theta t}^{\theta}=\Gamma^{\varphi}{ }_{\varphi t}=\Gamma_{4}^{C}, \quad \Gamma_{r r}^{t}=\frac{\Gamma_{2}^{C}}{1-k r^{2}} \\
\Gamma_{\theta \theta}^{t}=\Gamma_{2}^{C} r^{2}, \quad \Gamma^{t}{ }_{\varphi \varphi}=\Gamma_{2}^{C} r^{2} \sin ^{2} \theta, \quad \Gamma^{r}{ }_{\varphi \theta}=-\Gamma^{r}{ }_{\theta \varphi}=\Gamma_{5}^{C} r^{2} \sqrt{1-k r^{2}} \sin \theta \\
\Gamma_{r \varphi}^{\theta}=-\Gamma^{\theta}{ }_{\varphi r}=\frac{\Gamma_{5}^{C} \sin \theta}{\sqrt{1-k r^{2}}}, \quad \Gamma_{r \theta}^{\varphi}=-\Gamma^{\varphi}{ }_{\theta r}=-\frac{\Gamma_{5}^{C}}{\sqrt{1-k r^{2}} \sin \theta}, \quad \Gamma_{r r}^{r}=\frac{k r}{1-k r^{2}} \\
\Gamma_{r \theta}^{\theta}=\Gamma^{\theta}{ }_{\theta r}=\Gamma^{\varphi}{ }_{r \varphi}=\Gamma^{\varphi}{ }_{\varphi r}=\frac{1}{r}, \quad \Gamma^{\varphi}{ }_{\theta \varphi}=\Gamma^{\varphi}{ }_{\varphi \theta}=\cot \theta, \quad \Gamma^{\theta}{ }_{\varphi \varphi}=-\sin \theta \cos \theta \\
\Gamma^{r}{ }_{\theta \theta}=r\left(k r^{2}-1\right), \quad \Gamma^{r}{ }_{\varphi \varphi}=r\left(k r^{2}-1\right) \sin ^{2} \theta
\end{gathered}
$$

- Free parameters $n, a, \Gamma_{1}^{C}, \ldots, \Gamma_{5}^{C}$ are functions of time t.

Example: metric-affine cosmological spacetime

- Cosmological metric-affine geometry: $5+2$ components of connection and metric.
- Metric takes Robertson-Walker form

$$
g_{t t}=-n^{2}, \quad g_{r r}=a^{2}, \quad g_{\vartheta \vartheta}=a^{2} r^{2}, \quad g_{\varphi \varphi}=g_{\vartheta \vartheta} \sin ^{2} \vartheta
$$

- Most general cosmologically symmetric connection - torsion part:

$$
\begin{gathered}
\Gamma_{t t}^{t}=\Gamma_{1}^{C}, \quad \Gamma_{t r}^{r}=\Gamma^{\theta}{ }_{t \theta}=\Gamma^{\varphi}{ }_{t \varphi}=\Gamma_{3}^{C}, \quad \Gamma_{r t}^{r}=\Gamma_{\theta t}^{\theta}=\Gamma^{\varphi}{ }_{\varphi t}=\Gamma_{4}^{C}, \quad \Gamma_{r r}^{t}=\frac{\Gamma_{2}^{C}}{1-k r^{2}} \\
\Gamma^{t}{ }_{r \varphi}=\Gamma_{2}^{C} r^{2}, \quad \Gamma^{t}{ }_{\varphi \varphi}=\Gamma^{\theta}{ }_{\varphi r}=\frac{\Gamma_{2}^{C} r^{2} \sin ^{2} \theta, \quad \Gamma^{r}{ }_{\varphi \theta}=-\Gamma^{r}{ }_{\theta \varphi}=\Gamma_{5}^{C} r^{2} \sqrt{1-k r^{2}} \sin \theta}{\sqrt{1-k r^{2}}, \quad \Gamma_{r \theta}=-\Gamma^{\varphi}{ }_{\theta r}=-\frac{\Gamma_{5}^{C}}{\sqrt{1-k r^{2}} \sin \theta}, \quad \Gamma_{r r}^{r}=\frac{k r}{1-k r^{2}}} \begin{array}{c}
\Gamma_{r \theta}^{\theta}=\Gamma^{\theta}{ }_{\theta r}=\Gamma^{\varphi}{ }_{r \varphi}=\Gamma^{\varphi}{ }_{\varphi r}=\frac{1}{r}, \quad \Gamma^{\varphi}{ }_{\theta \varphi}=\Gamma^{\varphi}{ }_{\varphi \theta}=\cot \theta, \quad \Gamma^{\theta}{ }_{\varphi \varphi}=-\sin \theta \cos \theta \\
\Gamma^{r}{ }_{\theta \theta}=r\left(k r^{2}-1\right), \quad \Gamma^{r}{ }_{\varphi \varphi}=r\left(k r^{2}-1\right) \sin ^{2} \theta
\end{array} .
\end{gathered}
$$

- Free parameters $n, a, \Gamma_{1}^{C}, \ldots, \Gamma_{5}^{C}$ are functions of time t.

From symmetric geometry to gravity theory

- Gravitational part of the field equations:
- Tensorial expression (follows from diffeomorphism invariance).
- Composed from $g_{\mu \nu}, R^{\mu}{ }_{\nu \rho \sigma}, T^{\mu}{ }_{\nu \rho}, Q_{\mu \nu \rho}$ and ∇_{μ}.

From symmetric geometry to gravity theory

- Gravitational part of the field equations:
- Tensorial expression (follows from diffeomorphism invariance).
- Composed from $g_{\mu \nu}, R^{\mu}{ }_{\nu \rho \sigma}, T^{\mu}{ }_{\nu \rho}, Q_{\mu \nu \rho}$ and ∇_{μ}.
- Example: fully general teleparallel gravity $R=0$ and $Q=0$:
- Field equations are of the form $E_{\mu \nu}=\Theta_{\mu \nu}$ (right hand side is energy-momentum tensor).
- Local Lorentz invariance induces decomposition: $E_{(\mu \nu)}=\Theta_{\mu \nu}$ and $E_{[\mu \nu]}=0$.

From symmetric geometry to gravity theory

- Gravitational part of the field equations:
- Tensorial expression (follows from diffeomorphism invariance).
- Composed from $g_{\mu \nu}, R^{\mu}{ }_{\nu \rho \sigma}, T^{\mu}{ }_{\nu \rho}, Q_{\mu \nu \rho}$ and ∇_{μ}.
- Example: fully general teleparallel gravity $R=0$ and $Q=0$:
- Field equations are of the form $E_{\mu \nu}=\Theta_{\mu \nu}$ (right hand side is energy-momentum tensor).
- Local Lorentz invariance induces decomposition: $E_{(\mu \nu)}=\Theta_{\mu \nu}$ and $E_{[\mu \nu]}=0$.
- Impose cosmological symmetry (homogeneity and isotropy):
\Rightarrow Most general geometry defined by two free functions of time.
\Rightarrow One free function can be eliminated by time redefinition.
\Rightarrow Remaining free function takes role of scale factor.
\Rightarrow Antisymmetric field equations $E_{[\mu \nu]}=0$ solved identically.

From symmetric geometry to gravity theory

- Gravitational part of the field equations:
- Tensorial expression (follows from diffeomorphism invariance).
- Composed from $g_{\mu \nu}, R^{\mu}{ }_{\nu \rho \sigma}, T^{\mu}{ }_{\nu \rho}, Q_{\mu \nu \rho}$ and ∇_{μ}.
- Example: fully general teleparallel gravity $R=0$ and $Q=0$:
- Field equations are of the form $E_{\mu \nu}=\Theta_{\mu \nu}$ (right hand side is energy-momentum tensor).
- Local Lorentz invariance induces decomposition: $E_{(\mu \nu)}=\Theta_{\mu \nu}$ and $E_{[\mu \nu]}=0$.
- Impose cosmological symmetry (homogeneity and isotropy):
\Rightarrow Most general geometry defined by two free functions of time.
\Rightarrow One free function can be eliminated by time redefinition.
\Rightarrow Remaining free function takes role of scale factor.
\Rightarrow Antisymmetric field equations $E_{[\mu \nu]}=0$ solved identically.
\Rightarrow Possible to classify teleparallel geometries by symmetry: [MH, Järv, Krš̌šak, Pefiefer '19]
- Express metric and connection through tetrad and (flat) spin connection.
- Derive symmetry conditions on tetrad and spin connection.
\Rightarrow Symmetric geometries can be labelled by Lie group homomorphisms \wedge : $G \rightarrow \mathrm{SO}(1,3)$.

Conclusion

- Summary:
- Consider metric-affine geometry in modified gravity.
- Study symmetries of metric-affine geometries.
\Rightarrow Simplification of field equations and symmetric solutions.

Conclusion

- Summary:
- Consider metric-affine geometry in modified gravity.
- Study symmetries of metric-affine geometries.
\Rightarrow Simplification of field equations and symmetric solutions.
- Outlook:
- Study more general geometries (Cartan, Finsler).
- Catalogue of symmetric geometries for gravity theories.

Conclusion

- Summary:
- Consider metric-affine geometry in modified gravity.
- Study symmetries of metric-affine geometries.
\Rightarrow Simplification of field equations and symmetric solutions.
- Outlook:
- Study more general geometries (Cartan, Finsler).
- Catalogue of symmetric geometries for gravity theories.
- References:
- MH, "Spacetime and observer space symmetries in the language of Cartan geometry", J. Math. Phys. 57 (2016) 082502 [arXiv:1505.07809 [math-ph]].
- MH, L. Järv, M.Krššák, C. Pfeifer, "Modified teleparallel theories of gravity in symmetric spacetimes", arXiv:1901.05472 [gr-qc], to appear in Phys. Rev. D.

