Propagation of gravitational waves in teleparallel gravity
Manuel Hohmann*, Martin Krššák, Christian Pfeifer, Jackson Levi Said, Ulbossyn Ualikhanova
Laboratory of Theoretical Physics, Institute of Physics, University of Tartu \& Center of Excellence TK133 "The Dark Side of the Universe"

E(2) classes

Perturbation around flat metric: $g_{\mu \nu}=\eta_{\mu \nu}+\epsilon h_{\mu \nu} . \quad$ (1)
Plane wave in z direction:

$$
h_{u v}=H_{\mu u e^{i \omega}(t-z)}^{i t} .
$$ (2) Possible modes:

$\Psi_{2}=-\frac{1}{-} R_{\text {nlll }}$
\qquad
$\Psi_{4}=-R_{\text {ninuñ }}=-\overline{R_{\text {nmmm }}}$,
$\Phi_{22}=-R_{\text {nmmin }}$.
(2) lasses are combinations: modes are allowed.

IIII5: 5 polarizations, $\Psi_{2}=0$ all other modes are allowed.
N_{3} : 3 polarizations, $\Psi_{2}=$ $\Psi_{3}=0$, tensor and breath ing modes are allowed.

■ N_{2} : 2 polarizations, Ψ_{2} $\Psi_{3}=\Phi_{22}=0$, only tenso modes are allowed.
$\square \mathrm{O}_{1}$: 1 polarization, $\Psi_{2}=$ $\Psi_{3}=\Psi_{4}=0$, only breathing mode is allowed.
$\square \mathrm{O}_{0}$: no gravitational waves.

References

[1] M. Hohmann, "Polarization of gravitational waves in general eleparallel theories of grav ity" Astron Rep 62 (2018) no.12, 890 [arXiv:1806.10429 [gr-qc]].
[2] M. Hohmann, M. Krššák, C. Pfeifer and U. Ua likhanova, "Propagation graviational waves in, Phys Rev D 98 (2018) no.12, hys. Rev. D 28 (200 1807.04580 [gr-qcl].
[3] M. Hohmann, C. Pfeifer J. L. Said and U. Ualikhanova, "Propagation of gravitational waves in symmetric teleparallel grav9 (2019) no ${ }^{2}$ Rev. [arXiv:1808.02894 [gr-qc]]

Investing in your future

European Union European Regional Development Fund

Torsion teleparallel gravity [1, 2]

The fundamental fields are a tetrad $\theta^{a}{ }_{\mu}$ and a flat Lorentz spin connection $\omega^{a}{ }_{b \mu}$. We denote by $e_{a}{ }^{\mu}$ the inverse tetrad, which satisfies $\theta^{a}{ }_{\mu} e_{a}^{v}=\delta_{\mu}^{v}$ and $\theta^{a}{ }_{\mu} e_{b}{ }^{\mu}=\delta_{b}^{a}$. We further use the metric $g_{\mu \nu}=\eta_{a b} \theta^{a}{ }_{\mu} \theta^{b}{ }_{v}$ and the torsion $T^{\rho}{ }_{\mu \nu}=2 e_{a}{ }^{\rho}\left(\partial_{[\mu} \theta^{\mu}{ }^{\mu}{ }^{2}+\omega^{a}{ }_{b[\mu} \theta^{b}{ }^{b}\right]$. The action we consider is of the form

$$
S[\theta, \omega, \chi]=S_{g}[\theta, \omega]+S_{m}[\theta, \chi],
$$

(4)
where χ denotes matter fields. The gravitational part takes the form
$S_{g}[\theta, \omega]=\frac{1}{2 \kappa^{2}} \int_{M} \mathcal{F}\left(T^{\mu \nu \rho} T_{\mu \nu \rho}, T^{\mu \nu \rho} T_{\rho \nu \mu}, T^{\mu}{ }_{\mu \rho} T_{\nu}{ }^{\nu \rho}\right) \operatorname{det} \theta d^{4} x$,
with a free function \mathcal{F}. The relevant field equations obtained from this action are
$\kappa^{2} \Theta_{\mu \nu}=\frac{1}{2} \mathcal{F} g_{\mu \nu}+2 \stackrel{\circ}{\nabla}^{\rho}\left(\mathcal{F}_{1} T_{\nu \mu \rho}+\mathcal{F}_{, 2} T_{[\rho \mu] \nu}+\mathcal{F}_{, 3} T^{\sigma}{ }_{\sigma[\rho} g_{\mu] \nu}\right)+\mathcal{F}_{, 1} T^{\rho \sigma}{ }_{\mu}\left(T_{\nu \rho \sigma}-2 T_{[\rho \sigma] \nu}\right)$

$$
+\frac{1}{2} \mathcal{F}_{, 2}\left[T_{\mu}{ }^{\rho \sigma}\left(2 T_{\rho \sigma v}-T_{\nu \rho \sigma}\right)+T^{\rho \sigma}{ }_{\mu}\left(2 T_{[\rho \sigma] \nu}-T_{\nu \rho \sigma}\right)\right]-\frac{1}{2} \mathcal{F}_{, 3} T^{\sigma}{ }_{\sigma \rho}\left(T^{\rho}{ }_{\mu \nu}+2 T_{(\mu \nu)^{\rho}}\right),
$$

where $\Theta_{\mu v}$ is the energy-momentum tensor. Using the linear perturbation
$\theta^{a}{ }_{\mu}=\Delta^{a}{ }_{\mu}+\epsilon \tau^{a}{ }_{\mu}, \quad e_{a}{ }^{\mu}=\left(\Delta^{-1}\right)_{a}{ }^{\mu}-\epsilon \tau_{a}{ }^{\mu}, \quad \omega^{a}{ }_{b \mu}=\epsilon \partial_{\mu} \lambda^{a}{ }_{b}$,
around the diagonal tetrad $\Delta^{a}{ }_{\mu}=\operatorname{diag}(1,1,1,1)$ and the Taylor expansion

$$
\mathcal{F}=\left.\mathcal{F}\right|_{T \rho_{\mu \nu}=0}+O\left(\epsilon^{2}\right)=F+O\left(\epsilon^{2}\right), \quad \mathcal{F}_{, i}=\mathcal{F}_{, i \mid T_{\mu \nu}=0}+O\left(\epsilon^{2}\right)=F_{i}+O\left(\epsilon^{2}\right),
$$(8)

as well as the symmetric-antisymmetric decomposition $s_{\mu \nu}=\tau_{(\mu \nu)}$ and $a_{\mu \nu}=\tau_{[\mu \nu]}-\lambda_{\mu \nu}$, and assuming $F=0$, one finds the linearized vacuum equations

$$
0=E_{\mu \nu}=\partial^{\rho}\left[2\left(2 F_{, 1}-F_{, 2}\right) \partial_{[v} a_{\rho] \mu}+\left(2 F_{, 2}+F_{, 3}\right) \partial_{\mu} a_{\rho v}\right]
$$

$$
+2 \partial^{\rho}\left[\left(2 F_{1}+F_{, 2}\right) \partial_{[\rho} s_{\nu] \mu}+F_{, 3}\left(\eta_{\mu[\nu} \partial_{\rho]} s^{\sigma}{ }_{\sigma}-\partial^{\sigma} \sigma_{\sigma[\rho} \eta_{V] \mu}\right)\right],
$$(9)

For the plane wave $s_{\mu \nu}=S_{\mu \nu} e^{i \omega(t-z)}$ and $a_{\mu \nu}=A_{\mu \nu} e^{i \omega(t-z)}$ one finds in the Newman-Penrose basis the components
(10a)
(10b)

This yields the following polarizations:
$\square 2 F_{1}+F_{, 2}=F_{, 3}=0$: None of the six possible modes is restricted by the linearized field equations. Theories satisfying these conditions belong to the $\mathrm{E}(2)$ class I_{6}, shown in blue
in the figure. in the figure.
$\square 2 F_{, 1}\left(F_{2,2}+F_{, 3}\right)+F_{, 2}^{2}=0$ and $2 F_{, 1}+F_{, 2}+F_{3} \neq 0$: In this case the field equations enforce $\Psi_{2}=0$, so that there is no longitudinal mode. All other modes are unrestricted. Theories of this type belong to the $\mathrm{E}(2)$ class III_{5}. This case is represented by the green line in the figure.
$2 F_{1}\left(F_{2}+F_{3}\right)+F_{2}^{2} \neq 0$ and $2 F_{1}+F_{2}+F_{3} \neq 0$: From the field equations follows $\Psi_{2}=\Psi_{3}=0$, while the breathing mode $\Phi_{22}^{\prime 2}$ and tensor modes Ψ_{4} are unrestricted. This wave has the $\mathrm{E}(2)$ class N_{3}. Almost all points of the parameter space, shown in white in the figure belong to this class.
$\square 2 F_{, 1}+F_{, 2}+F_{3}=0$ and $F_{, 3} \neq 0$: The only mode which is allowed to be nonzero is given by the two tensor polarizations Ψ_{4}. The $\mathrm{E}(2)$ class of this wave is N_{2}. This case is shown as a red line in the figure. Also TEGR, marked as a red point, belongs to this class.
Introducing polar coordinates

$$
F_{, 1}=C \sin \vartheta \cos \varphi, \quad F_{, 2}=C \sin \vartheta \sin \varphi, \quad F_{, 3}=C \cos \vartheta,
$$

(11)
with $C=\sqrt{F_{, 1}^{2}+F_{, 2}^{2}+F_{3}^{2}} \neq 0$, one can visualize the modes:

$$
\begin{aligned}
& 0=E_{n n}=\left(2 F_{1}+F_{, 2}+F_{, 3}\right) \ddot{\dddot{n}}_{n l}+2 F_{3} \ddot{s}_{m i n}+\left(2 F_{1}+F_{, 2}+F_{, 3}\right) \ddot{u}_{n} \\
& 0=E_{m n}=\overline{E_{\text {min }}}=\left(2 F_{1}+F_{2}\right) \ddot{s}_{m l}+\left(2 F_{1}-F_{2}\right) \ddot{u}_{m l} \\
& 0=E_{n m}=\overline{E_{n \bar{n}}}=-F_{3,3 \ddot{S}_{m l}}+\left(2 F_{, 2}+F_{, 3}\right) \ddot{u}_{m l}, \\
& 0=E_{m \bar{n}}=E_{\bar{m} m}=-F_{3,3} \ddot{S}_{l l}, \\
& 0=E_{l n}=\left(2 F_{, 1}+F_{, 2}\right) \stackrel{s}{l l}_{l l}
\end{aligned}
$$

Non-metricity teleparallel gravity [1, 3]

The fundamental fields are a metric $g_{\mu v}$ and a flat, symmetric affine connection $\Gamma^{\rho}{ }_{\mu v}$. They define the non-metricity $Q_{\rho \mu v}=\nabla_{\rho} g_{\mu v}$. The action we consider is of the form

$$
S[g, \Gamma, \chi]=S_{g}[g, \Gamma]+S_{m}[g, \chi],
$$

where χ denotes matter fields. The gravitational part takes the form
$S_{g}[g, \Gamma]=\frac{1}{2 \kappa^{2}} \int_{M} \mathcal{F}\left(Q^{\mu \nu \rho} Q_{\mu v \rho}, Q^{\mu \nu \rho} Q_{\rho \mu \nu}, Q^{\rho \mu}{ }_{\mu} Q_{\rho \nu}{ }^{\nu}, Q^{\mu}{ }_{\mu \rho} Q_{v}{ }^{v \rho}, Q^{\mu}{ }_{\mu \rho} Q^{\rho \nu}{ }_{\nu}\right) \sqrt{-\operatorname{det} g} d^{4} x$, with a free function \mathcal{F}. The relevant field equations obtained from this action are
$\kappa^{2} \Theta_{\mu \nu}=-2 \stackrel{\circ}{\nabla}_{\rho}\left[\mathcal{F}_{1,1} Q^{\rho}{ }_{\mu \nu}+\mathcal{F}_{2} Q_{(\mu \nu}{ }^{\rho}+\mathcal{F}_{3} Q^{\rho \sigma}{ }_{\sigma}{ }_{g \mu v}+\mathcal{F}_{4} Q^{\sigma}{ }_{\sigma(\mu} \delta_{\nu)}^{\rho}+\frac{\mathcal{F}_{5}}{2}\left(Q_{\sigma}{ }^{\sigma \rho} g_{\mu \nu}+\delta_{(\mu}^{\rho} Q_{\nu) \sigma}{ }^{\sigma}\right)\right]$ $+\frac{1}{2} \mathcal{F} g_{\mu \nu}-\mathcal{F}_{3} Q_{\mu \rho}{ }^{\rho} Q_{\nu \sigma}{ }^{\sigma}+\mathcal{F}, 1\left(2 Q^{\rho \sigma}{ }_{\mu} Q_{\sigma \rho \nu}-Q_{\mu}{ }^{\rho \sigma} Q_{\nu \rho \sigma}-2 Q^{\rho \sigma}{ }_{(\mu} Q_{\nu \nu \rho \sigma}\right)$

$$
+\mathcal{F}_{, 2}\left(Q^{\rho \sigma}{ }_{\mu} Q_{\rho \sigma v}-Q_{\mu}{ }^{\rho \sigma} Q_{v \rho \sigma}-Q^{\rho \sigma}{ }_{(\mu} Q_{\nu) \rho \sigma}\right)+\frac{1}{2} \mathcal{F}_{5}\left[Q^{\rho \sigma}{ }_{\sigma}\left(Q_{\rho \mu \nu}-2 Q_{(\mu \nu) \rho}\right)-Q_{\mu \rho}{ }^{\rho} Q_{v \sigma}{ }^{\sigma}\right]
$$

$$
+\mathcal{F}_{4}\left[Q_{\rho}{ }^{\rho \sigma}\left(Q_{\sigma \mu \nu}-2 Q_{(\mu \nu) \sigma}\right)+Q^{\rho}{ }_{\rho \mu} Q^{\sigma}{ }_{\sigma \nu}-Q^{\rho}{ }_{\rho(\mu} Q_{\nu \nu \sigma}{ }^{\sigma}\right],
$$

where $\Theta_{\mu \nu}$ is the energy-momentum tensor. Using the linear perturbation

$$
g_{\mu \nu}=\eta_{\mu \nu}+\epsilon h_{\mu \nu}, \quad \Gamma^{\rho}{ }_{\mu \nu}=\epsilon \partial_{\mu} \partial_{\nu} \zeta^{\rho}
$$

around the Minkowski metric $\eta_{\mu \nu}=\operatorname{diag}(-1,1,1,1)$ and the Taylor expansion

$$
\mathcal{F}=\left.\mathcal{F}\right|_{Q_{\rho \mu \nu}=0}+O\left(\epsilon^{2}\right)=F+O\left(\epsilon^{2}\right), \quad \mathcal{F}_{i}=\left.\mathcal{F}_{, i}\right|_{Q_{p \mu \nu}=0}+O\left(\epsilon^{2}\right)=F_{, i}+O\left(\epsilon^{2}\right),
$$

as well as the gauge-invariant perturbation $b_{\mu \nu}=h_{\mu \nu}-2 \partial_{(\mu} \xi_{\nu}$, and assuming $F=0$, one finds the linearized vacuum equations
$0=E_{\mu \nu}=2 F_{1} \square b_{\mu \nu}+\left(F_{, 2}+F_{,}\right) \eta^{\alpha \sigma}\left(\partial_{\alpha} \partial_{\mu} b_{\sigma v}+\partial_{\alpha} \partial_{\nu} b_{\sigma \mu}\right)$

$$
+2 F_{, 3} \eta_{\mu \nu} \eta^{\tau \omega} \square b_{\tau \omega}+F_{, 5} \eta_{\mu \nu} \eta^{\omega \gamma} \eta^{\alpha \sigma} \partial_{\alpha} \partial_{\omega} b_{\sigma \gamma}+F_{, 5} \eta^{\omega \sigma} \partial_{\mu} \partial_{\nu} b_{\omega \sigma}
$$

For the plane wave $b_{\mu \nu}=B_{\mu \nu} e^{i \omega(t-z)}$ one finds in the Newman-Penrose basis the components

$$
\begin{aligned}
& 0=E_{n n}=2 F_{,} \ddot{b}_{m \bar{n}}-2\left(F_{, 2}+F_{, 4}+F_{5}\right) \ddot{b}_{l n}, \\
& 0=E_{n m}=\bar{E}_{n \grave{\pi}}=-\left(F_{, 2}+F_{, 4}\right) \ddot{b}_{l m}, \\
& 0=E_{m \bar{n}}=F_{5} \ddot{b}_{l l},
\end{aligned}
$$

$$
\begin{aligned}
& 0=E_{l n}=-\left(F_{, 2}+F_{, 4}\right) \ddot{b}_{l l} .
\end{aligned}
$$

polarizations:
$\square F_{, 2}+F_{, 4}=F_{, 5}=0$: In this case the linearized field equations are satisfied identically for allowed polarizations Theories of this type belong to the $\mathrm{E}(2)$ class II_{6} shown in blue in the figure.
$\square F_{, 2}+F_{4}=0$ and $F_{5} \neq 0$: The longitudinal mode Ψ_{2} is prohibited in this case, while the remaining modes are unrestricted. This corresponds to the $\mathrm{E}(2)$ class Π_{5}, shown as a green line in the figure
$\square F_{, 2}+F_{4} \neq 0$ and $F_{, 2}+F_{4}+F_{, 5} \neq 0$: The only allowed modes in this case are the breathing mode Φ_{22} and the two tensor modes Ψ_{4}, while the longitudinal mode Ψ_{2} and the two vector modes Ψ_{3} are prohibited. These theories have the $\mathrm{E}(2)$ class N_{3}, occupying most of the parameter space shown in the figure in white.
$F_{, 2}+F_{4}+F_{, 5}=0$ and $F_{, 5} \neq 0$: The only allowed polarizations are the two tensor modes Ψ_{2} These theories belong to the $\mathrm{E}(2)$ class N_{2}, shown as a red line in the figure. This include STEGR, marked as a red point.

Introducing polar coordinates

$$
F_{, 2}=C \sin \vartheta \cos \varphi, \quad F_{, 4}=C \sin \vartheta \sin \varphi, \quad F_{5}=C \cos \vartheta .
$$

with $C=\sqrt{F_{, 2}^{2}+F_{4}^{2}+F_{, 5}^{2}} \neq 0$, one can visualize the modes:

