From spacetime symmetries to "good tetrads" in teleparallel gravity

Manuel Hohmann

Laboratory of Theoretical Physics - Institute of Physics - University of Tartu Center of Excellence "The Dark Side of the Universe"

European Union European Regional Development Fund

Investing in your future

DPG Spring Conference - Session MP 8-21. March 2018

Motivation

- Open questions in cosmology and gravity:
- Accelerating phases in the history of the Universe?
- Relation between gravity and gauge theories?
- How to quantize gravity?

Motivation

- Open questions in cosmology and gravity:
- Accelerating phases in the history of the Universe?
- Relation between gravity and gauge theories?
- How to quantize gravity?
- Teleparallel gravity [Moller'61]:
- Based on tetrad and flat spin connection.
- Describes gravity as gauge theory of the translation group.
- First order action, second order field equations.
- Spin connection as Lorentz gauge degree of freedom.

Motivation

- Open questions in cosmology and gravity:
- Accelerating phases in the history of the Universe?
- Relation between gravity and gauge theories?
- How to quantize gravity?
- Teleparallel gravity [Moller '61]:
- Based on tetrad and flat spin connection.
- Describes gravity as gauge theory of the translation group.
- First order action, second order field equations.
- Spin connection as Lorentz gauge degree of freedom.
- Scalar-torsion gravity in covariant formulation [mн, Jär, Ualikhanova' '18]:
- Simple class of teleparallel theories beyond general relativity.
- Contains $f(T)$ gravity [Bengochea, Ferraro '09].
- Contains teleparallel dark energy [Geng '11].
- Cosmology allows for de Sitter attractors [MH, Järv, Ualikhanova '17].

Motivation

- Open questions in cosmology and gravity:
- Accelerating phases in the history of the Universe?
- Relation between gravity and gauge theories?
- How to quantize gravity?
- Teleparallel gravity [Moller '61]:
- Based on tetrad and flat spin connection.
- Describes gravity as gauge theory of the translation group.
- First order action, second order field equations.
- Spin connection as Lorentz gauge degree of freedom.
- Scalar-torsion gravity in covariant formulation [mн, Jär, Ualikhanova' ${ }^{18]}$:
- Simple class of teleparallel theories beyond general relativity.
- Contains $f(T)$ gravity [Bengochea, Ferraro '09].
- Contains teleparallel dark energy [Geng '11].
- Cosmology allows for de Sitter attractors [мH, Järv, Ualikhanova '17].
\& Cumbersome equation relating tetrad and spin connection.
- Use notion of symmetry to find particular solutions?

Ingredients of scalar-torsion gravity

- Fundamental fields:
- Coframe field $\theta^{a}=\theta^{a}{ }_{\mu} \mathrm{d} x^{\mu}$.
- Flat spin connection $\dot{\omega}^{a}{ }_{b}=\dot{\omega}^{a}{ }_{b \mu} \mathrm{~d} x^{\mu}$.
- N scalar fields $\phi=\left(\phi^{A} ; A=1, \ldots, N\right)$.
- Arbitrary matter fields χ^{\prime}.

Ingredients of scalar-torsion gravity

- Fundamental fields:
- Coframe field $\theta^{a}=\theta^{a}{ }_{\mu} \mathrm{d} x^{\mu}$.
- Flat spin connection $\dot{\omega}^{a}{ }_{b}=\dot{\omega}^{a}{ }_{b \mu} \mathrm{~d} x^{\mu}$.
- N scalar fields $\phi=\left(\phi^{A} ; A=1, \ldots, N\right)$.
- Arbitrary matter fields χ^{\prime}.
- Derived quantities:
- Frame field $e_{a}=e_{a}{ }^{\mu} \partial_{\mu}$ with $\iota_{e_{a}} \theta^{b}=\delta_{a}^{b}$.
- Metric $g_{\mu \nu}=\eta_{a b} \theta^{a}{ }_{\mu} \theta^{b}{ }_{\nu}$.
- Volume form $\theta \mathrm{d}^{4} x=\theta^{0} \wedge \theta^{1} \wedge \theta^{2} \wedge \theta^{3}$.
- Levi-Civita connection

$$
\stackrel{\circ}{\omega}_{a b}=-\frac{1}{2}\left(\iota_{e_{b}} \iota_{e_{c}} \mathrm{~d} \theta_{a}+\iota_{e_{c}} \iota_{e_{a}} \mathrm{~d} \theta_{b}-\iota_{e_{a}} \iota_{e_{b}} \mathrm{~d} \theta_{c}\right) \theta^{c} .
$$

- Torsion $T^{a}=\mathrm{d} \theta^{a}+\dot{\omega}^{a}{ }_{b} \wedge \theta^{b}$.

Scalar-torsion gravity action and field equations

- Gravitational action ${ }_{[M H,}$ L. Järv, U. Ualikhanova' '18]:

$$
S=\frac{1}{2 \kappa^{2}} \int_{M}\left[f(T, \phi)+Z_{A B}(\phi) g^{\mu \nu} \phi_{, \mu}^{A} \phi_{, \nu}^{B}\right] \theta d^{4} x+S_{m}\left[\theta^{a}, \chi^{\prime}\right]
$$

Scalar-torsion gravity action and field equations

- Gravitational action ${ }_{[M H,}$ L. Järv, U. Ualikhanova '18]:

$$
S=\frac{1}{2 \kappa^{2}} \int_{M}\left[f(T, \phi)+Z_{A B}(\phi) g^{\mu \nu} \phi_{, \mu}^{A} \phi_{, \nu}^{B}\right] \theta d^{4} x+S_{m}\left[\theta^{a}, \chi^{\prime}\right]
$$

- Field equations:
- Symmetric part of the tetrad field equations:

$$
\begin{aligned}
\frac{1}{2} f g_{\mu \nu}+\stackrel{\circ}{\nabla}_{\rho}\left(f_{T} S_{(\mu \nu)}^{\rho}\right) & -\frac{1}{2} f_{T} S_{(\mu}^{\rho \sigma} T_{\nu) \rho \sigma} \\
& -Z_{A B} \phi_{, \mu}^{A} \phi_{, \nu}^{B}+\frac{1}{2} Z_{A B} \phi_{, \rho}^{A} \phi_{, \sigma}^{B} g^{\rho \sigma} g_{\mu \nu}=\kappa^{2} \Theta_{\mu \nu}
\end{aligned}
$$

- Antisymmetric part of the tetrad field equations:

$$
\partial_{[\rho} f_{T} T^{\rho}{ }_{\mu \nu]}=0 \quad \Leftrightarrow \quad \iota V_{a b} \mathrm{~d} f_{T}=0, \quad V_{a b}=\left(\iota_{\left[e_{[a}\right.} \iota e_{b} T^{c}\right) e_{c]} .
$$

- Scalar field equation:

$$
f_{\phi^{A}}-\left(2 Z_{A B, \phi^{C}}-Z_{B C, \phi^{A}}\right) g^{\mu \nu} \phi_{, \mu}^{B} \phi_{, \nu}^{C}-2 Z_{A B} \stackrel{\circ}{\square} \phi^{B}=0 .
$$

Scalar-torsion gravity action and field equations

- Gravitational action ${ }_{[\mathrm{MH}, \mathrm{L} . \text { Järv, U. Ualikhanova' '18]: }}$

$$
S=\frac{1}{2 \kappa^{2}} \int_{M}\left[f(T, \phi)+Z_{A B}(\phi) g^{\mu \nu} \phi_{, \mu}^{A} \phi_{, \nu}^{B}\right] \theta d^{4} x+S_{m}\left[\theta^{a}, \chi^{\prime}\right]
$$

- Field equations:
- Symmetric part of the tetrad field equations:

$$
\begin{aligned}
\frac{1}{2} f g_{\mu \nu}+\stackrel{\circ}{\nabla}_{\rho}\left(f_{T} S_{(\mu \nu)}^{\rho}\right) & -\frac{1}{2} f_{T} S_{(\mu}^{\rho \sigma} T_{\nu) \rho \sigma} \\
& -Z_{A B} \phi_{, \mu}^{A} \phi_{, \nu}^{B}+\frac{1}{2} Z_{A B} \phi_{, \rho}^{A} \phi_{, \sigma}^{B} g^{\rho \sigma} g_{\mu \nu}=\kappa^{2} \Theta_{\mu \nu}
\end{aligned}
$$

- Antisymmetric part of the tetrad field equations:

$$
\partial_{[\rho} f_{T} T^{\rho}{ }_{\mu \nu]}=0 \quad \Leftrightarrow \quad \iota V_{a b} \mathrm{~d} f_{T}=0, \quad V_{a b}=\left(\iota_{e_{[a}} \iota_{e_{b}} T^{c}\right) e_{c]} .
$$

- Scalar field equation:

$$
f_{\phi^{A}}-\left(2 Z_{A B, \phi^{C}}-Z_{B C, \phi^{A}}\right) g^{\mu \nu} \phi_{, \mu}^{B} \phi_{, \nu}^{C}-2 Z_{A B} \stackrel{\circ}{\square} \phi^{B}=0 .
$$

- Solutions to the antisymmetric part of the equations?

Four ways to solve $\iota v_{a b} \mathrm{~d} f_{T}=0$

- Different possibilities to solve this equation:

$$
\iota V_{a b} \mathrm{~d} f_{T}=0 \quad \Leftrightarrow \quad f_{T T} \iota V_{a b} \mathrm{~d} T+f_{T \phi^{A} \iota V_{a b}} \mathrm{~d} \phi^{A}=0 .
$$

Four ways to solve $\iota v_{a b} \mathrm{~d} f_{T}=0$

- Different possibilities to solve this equation:

$$
\iota V_{a b} \mathrm{~d} f_{T}=0 \quad \Leftrightarrow \quad f_{T T} \iota V_{a b} \mathrm{~d} T+f_{T \phi^{A} \iota V_{a b}} \mathrm{~d} \phi^{A}=0 .
$$

(1) T and ϕ^{A} are constant, $\mathrm{d} T=0$ and $\mathrm{d} \phi^{A}=0$.

Four ways to solve $\iota v_{a b} \mathrm{~d} f_{T}=0$

- Different possibilities to solve this equation:

$$
\iota V_{a b} \mathrm{~d} f_{T}=0 \quad \Leftrightarrow \quad f_{T T} \iota V_{a b} \mathrm{~d} T+f_{T \phi^{A} \iota V_{a b}} \mathrm{~d} \phi^{A}=0 .
$$

(1) T and ϕ^{A} are constant, $\mathrm{d} T=0$ and $\mathrm{d} \phi^{A}=0$.
(2) f_{T} is stationary, $f_{T T}=0$ and $f_{T \phi^{A}}=0$.

Four ways to solve $\iota v_{a b} \mathrm{~d} f_{T}=0$

- Different possibilities to solve this equation:

$$
\iota_{a b} \mathrm{~d} f_{T}=0 \quad \Leftrightarrow \quad f_{T T} \iota V_{a b} \mathrm{~d} T+f_{T \phi^{A} \iota V_{a b}} \mathrm{~d} \phi^{A}=0 .
$$

(1) T and ϕ^{A} are constant, $\mathrm{d} T=0$ and $\mathrm{d} \phi^{A}=0$.
(2) f_{T} is stationary, $f_{T T}=0$ and $f_{T \phi^{A}}=0$.
(3) T and ϕ^{A} have identical level sets; vector fields $V_{a b}$ are tangent to these level sets.

Four ways to solve $\iota v_{a b} \mathrm{~d} f_{T}=0$

- Different possibilities to solve this equation:

$$
{ }^{\iota} V_{a b} \mathrm{~d} f_{T}=0 \quad \Leftrightarrow \quad f_{T T} \iota V_{a b} \mathrm{~d} T+f_{T \phi^{A} \iota} V_{a b} \mathrm{~d} \phi^{A}=0 .
$$

(1) T and ϕ^{A} are constant, $\mathrm{d} T=0$ and $\mathrm{d} \phi^{A}=0$.
(2) f_{T} is stationary, $f_{T T}=0$ and $f_{T \phi^{A}}=0$.
(3) T and ϕ^{A} have identical level sets; vector fields $V_{a b}$ are tangent to these level sets.
(4) Vector fields $V_{a b}$ are tangent to the level sets of $f_{T}(T, \phi)$.

Four ways to solve $\iota v_{a b} \mathrm{~d} f_{T}=0$

- Different possibilities to solve this equation:

$$
\iota^{\iota} V_{a b} \mathrm{~d} f_{T}=0 \quad \Leftrightarrow \quad f_{T T} \iota V_{a b} \mathrm{~d} T+f_{T \phi^{A} \iota V_{a b}} \mathrm{~d} \phi^{A}=0 .
$$

(1) T and ϕ^{A} are constant, $\mathrm{d} T=0$ and $\mathrm{d} \phi^{A}=0$.
(2) f_{T} is stationary, $f_{T T}=0$ and $f_{T \phi^{A}}=0$.
(3) T and ϕ^{A} have identical level sets; vector fields $V_{a b}$ are tangent to these level sets.
(4) Vector fields $V_{a b}$ are tangent to the level sets of $f_{T}(T, \phi)$.

- Consider group action on M with orbits of codimension 1.
- Choose geometry to be symmetric under this group action.

Symmetry of the geometry

- Diffeomorphisms generated by vector field ξ.
- Invariance of spacetime geometry:
- Metric:

$$
0=\left(\mathcal{L}_{\xi} g\right)_{\mu \nu}=\xi^{\rho} \partial_{\rho} g_{\mu \nu}+\partial_{\mu} \xi^{\rho} g_{\rho \nu}+\partial_{\nu} \xi^{\rho} g_{\mu \rho}
$$

- Connection:

$$
0=\left(\mathcal{L}_{\xi} \Gamma\right)^{\mu}{ }_{\nu \rho}=\xi^{\sigma} \partial_{\sigma} \Gamma^{\mu}{ }_{\nu \rho}-\partial_{\sigma} \xi^{\mu} \Gamma^{\sigma}{ }_{\nu \rho}+\partial_{\nu} \xi^{\sigma} \Gamma^{\mu}{ }_{\sigma \rho}+\partial_{\rho} \xi^{\sigma} \Gamma^{\mu}{ }_{\nu \sigma}+\partial_{\nu} \partial_{\rho} \xi^{\mu} .
$$

Symmetry of the geometry

- Diffeomorphisms generated by vector field ξ.
- Invariance of spacetime geometry:
- Metric:

$$
0=\left(\mathcal{L}_{\xi} g\right)_{\mu \nu}=\xi^{\rho} \partial_{\rho} g_{\mu \nu}+\partial_{\mu} \xi^{\rho} g_{\rho \nu}+\partial_{\nu} \xi^{\rho} g_{\mu \rho}
$$

- Connection:

$$
0=\left(\mathcal{L}_{\xi} \Gamma\right)^{\mu}{ }_{\nu \rho}=\xi^{\sigma} \partial_{\sigma} \Gamma^{\mu}{ }_{\nu \rho}-\partial_{\sigma} \xi^{\mu} \Gamma^{\sigma}{ }_{\nu \rho}+\partial_{\nu} \xi^{\sigma} \Gamma^{\mu}{ }_{\sigma \rho}+\partial_{\rho} \xi^{\sigma} \Gamma^{\mu}{ }_{\nu \sigma}+\partial_{\nu} \partial_{\rho} \xi^{\mu} .
$$

- Satisfied if and only if $\exists \lambda: M \rightarrow \mathfrak{s o}(1,3)$ such that $\left[M H^{\prime} 55\right]$

$$
\left(\mathcal{L}_{\xi} e\right)^{a}{ }_{\mu}=-\lambda^{a}{ }_{b} e^{b}{ }_{\mu}, \quad\left(\mathcal{L}_{\xi} \omega\right)^{a}{ }_{b \mu}=D_{\mu} \lambda^{a}{ }_{b}
$$

Symmetry of the geometry

- Diffeomorphisms generated by vector field ξ.
- Invariance of spacetime geometry:
- Metric:

$$
0=\left(\mathcal{L}_{\xi} g\right)_{\mu \nu}=\xi^{\rho} \partial_{\rho} g_{\mu \nu}+\partial_{\mu} \xi^{\rho} g_{\rho \nu}+\partial_{\nu} \xi^{\rho} g_{\mu \rho}
$$

- Connection:

$$
0=\left(\mathcal{L}_{\xi} \Gamma\right)^{\mu}{ }_{\nu \rho}=\xi^{\sigma} \partial_{\sigma} \Gamma^{\mu}{ }_{\nu \rho}-\partial_{\sigma} \xi^{\mu} \Gamma^{\sigma}{ }_{\nu \rho}+\partial_{\nu} \xi^{\sigma} \Gamma^{\mu}{ }_{\sigma \rho}+\partial_{\rho} \xi^{\sigma} \Gamma^{\mu}{ }_{\nu \sigma}+\partial_{\nu} \partial_{\rho} \xi^{\mu} .
$$

- Satisfied if and only if $\exists \lambda: M \rightarrow \mathfrak{s o}(1,3)$ such that $\left[M H^{\prime} 55\right]$

$$
\left(\mathcal{L}_{\xi} e\right)^{a}{ }_{\mu}=-\lambda^{a}{ }_{b} e^{b}{ }_{\mu}, \quad\left(\mathcal{L}_{\xi} \omega\right)^{a}{ }_{b \mu}=D_{\mu} \lambda^{a}{ }_{b}
$$

- Several symmetry generators ξ form Lie algebra $\mathfrak{g} \subset \operatorname{Vect}(M)$.
- Local Lie algebra homomorphism $\lambda: \mathfrak{g} \times M \rightarrow \mathfrak{s o}(1,3)$.

Weitzenböck gauge and "good tetrads"

- Use local Lorentz invariance to choose simple spin connection.
- Weitzenböck gauge: $\omega^{a}{ }_{b \mu} \equiv 0$.

Weitzenböck gauge and "good tetrads"

- Use local Lorentz invariance to choose simple spin connection.
- Weitzenböck gauge: $\omega^{a}{ }_{b \mu} \equiv 0$.

"Good tetrad" [Tamanini \& Böhmer '12]

A tetrad is called good tetrad if it satisfies the equation

$$
T^{\rho}{ }_{[\mu \nu} \partial_{\rho]} T=0
$$

in the Weitzenböck gauge.

Weitzenböck gauge and "good tetrads"

- Use local Lorentz invariance to choose simple spin connection.
- Weitzenböck gauge: $\omega^{a}{ }_{b \mu} \equiv 0$.

"Good tetrad" [Tamanini \& Böhmer ' 12]

A tetrad is called good tetrad if it satisfies the equation

$$
T^{\rho}{ }_{[\mu \nu} \partial_{\rho]} T=0
$$

in the Weitzenböck gauge.

- Symmetry condition in Weitzenböck gauge:

$$
\left(\mathcal{L}_{\xi} e\right)^{a}{ }_{\mu}=-\lambda^{a}{ }_{b} e^{b}{ }_{\mu}, \quad 0=\left(\mathcal{L}_{\xi} \omega\right)^{a}{ }_{b \mu}=D_{\mu} \lambda^{a}{ }_{b}=\partial_{\mu} \lambda^{a}{ }_{b} .
$$

- First order differential equation for $e^{a}{ }_{\mu}$.
\Rightarrow Lie algebra homomorphism $\lambda: \mathfrak{g} \rightarrow \mathfrak{s o}(1,3)$ (independent of M).

Weitzenböck gauge and "good tetrads"

- Use local Lorentz invariance to choose simple spin connection.
- Weitzenböck gauge: $\omega^{a}{ }_{b \mu} \equiv 0$.

"Good tetrad" [Tamanini \& Bobhmer '12]

A tetrad is called good tetrad if it satisfies the equation

$$
T^{\rho}{ }_{[\mu \nu} \partial_{\rho]} T=0
$$

in the Weitzenböck gauge.

- Symmetry condition in Weitzenböck gauge:

$$
\left(\mathcal{L}_{\xi} e\right)^{a}{ }_{\mu}=-\lambda^{a}{ }_{b} e^{b}{ }_{\mu}, \quad 0=\left(\mathcal{L}_{\xi} \omega\right)^{a}{ }_{b \mu}=D_{\mu} \lambda^{a}{ }_{b}=\partial_{\mu} \lambda^{a}{ }_{b} .
$$

- First order differential equation for $e^{a}{ }_{\mu}$.
\Rightarrow Lie algebra homomorphism $\lambda: \mathfrak{g} \rightarrow \mathfrak{s o}$ (1,3) (independent of M).
- Use local Lorentz transformation to go to arbitrary gauge.

Weitzenböck gauge and "good tetrads"

- Use local Lorentz invariance to choose simple spin connection.
- Weitzenböck gauge: $\omega^{a}{ }_{b \mu} \equiv 0$.

"Good tetrad" [Tamanini \& Böhmer '12]

A tetrad is called good tetrad if it satisfies the equation

$$
T^{\rho}{ }_{[\mu \nu} \partial_{\rho]} T=0
$$

in the Weitzenböck gauge.

- Symmetry condition in Weitzenböck gauge:

$$
\left(\mathcal{L}_{\xi} e\right)^{a}{ }_{\mu}=-\lambda^{a}{ }_{b} e^{b}{ }_{\mu}, \quad 0=\left(\mathcal{L}_{\xi} \omega\right)^{a}{ }_{b \mu}=D_{\mu} \lambda^{a}{ }_{b}=\partial_{\mu} \lambda^{a}{ }_{b} .
$$

- First order differential equation for $e^{a}{ }_{\mu}$.
\Rightarrow Lie algebra homomorphism $\lambda: \mathfrak{g} \rightarrow \mathfrak{s o}(1,3)$ (independent of M).
- Use local Lorentz transformation to go to arbitrary gauge.
- Use additional condition also for the scalar fields.

Example: spatially flat FLRW

- 3 generators of rotations, 3 generators of translations.
- Symmetry algebra $\mathfrak{g} \cong \mathfrak{i s o}$ (3).

Example: spatially flat FLRW

- 3 generators of rotations, 3 generators of translations.
- Symmetry algebra $\mathfrak{g} \cong \mathfrak{i s o}(3)$.
- Representation: translations $\mapsto 0$, rotations $\rightarrow \mathfrak{s o}(3) \subset \mathfrak{s o}(1,3)$.
- Symmetry condition fixes tetrad up to $n(t), a(t)$.

$$
e^{a}{ }_{\mu}=\left(\begin{array}{cccc}
n(t) & 0 & 0 & 0 \\
0 & a(t) \sin \theta \cos \phi & a(t) r \cos \theta \cos \phi & -a(t) r \sin \theta \sin \phi \\
0 & a(t) \sin \theta \sin \phi & a(t) r \cos \theta \sin \phi & a(t) r \sin \theta \cos \phi \\
0 & a(t) \cos \theta & -a(t) r \sin \theta & 0
\end{array}\right) .
$$

Example: closed FLRW

- 3 generators of rotations, 3 generators of quasi-translations.
- Symmetry algebra $\mathfrak{g} \cong \mathfrak{s o}(4) \cong \mathfrak{s o}(3) \oplus \mathfrak{s o}(3)$.

Example: closed FLRW

- 3 generators of rotations, 3 generators of quasi-translations.
- Symmetry algebra $\mathfrak{g} \cong \mathfrak{s o}(4) \cong \mathfrak{s o}(3) \oplus \mathfrak{s o}(3)$.
- Representation: left / right isoclinic rotations $\rightarrow \mathfrak{s o}(3) \subset \mathfrak{s o}(1,3)$.
- Symmetry condition fixes tetrad up to $n(t), a(t)$.
$e^{a}{ }_{\mu}=\left(\begin{array}{cccc}n(t) & 0 & 0 & 0 \\ 0 & \frac{a(t) \sin \theta \cos \phi}{\sqrt{1-r^{2}}} & a(t) r\left(\sqrt{1-r^{2}} \cos \theta \cos \phi-r \sin \phi\right) & -a(t) r \sin \theta\left(\sqrt{1-r^{2}} \sin \phi+r \cos \theta \cos \phi\right) \\ 0 & \frac{a(t) \sin \theta \sin \phi}{\sqrt{1-r^{2}}} & a(t) r\left(\sqrt{1-r^{2}} \cos \theta \sin \phi+r \cos \phi\right) & a(t) r \sin \theta\left(\sqrt{1-r^{2}} \cos \phi-r \cos \theta \sin \phi\right) \\ 0 & \frac{a(t) \cos \theta}{\sqrt{1-r^{2}}} & -a(t) r \sqrt{1-r^{2}} \sin \theta & a(t) r^{2} \sin ^{2} \theta\end{array}\right)$.

Example: open FLRW

- 3 generators of rotations, 3 generators of quasi-translations.
- Symmetry algebra $\mathfrak{g} \cong \mathfrak{s o}(1,3)$.

Example: open FLRW

- 3 generators of rotations, 3 generators of quasi-translations.
- Symmetry algebra $\mathfrak{g} \cong \mathfrak{s o}(1,3)$.
- Representation: identity representation $\mathfrak{s o}(1,3) \rightarrow \mathfrak{s o}(1,3)$.
- Symmetry condition fixes tetrad up to $n(t), a(t)$.

$$
e^{a}=\left(\begin{array}{cccc}
n(t) \sqrt{1+r^{2}} & \frac{a(t) r}{\sqrt{1+r^{2}}} & 0 & 0 \\
n(t) r \sin \theta \cos \phi & a(t) \sin \theta \cos \phi & a(t) r \cos \theta \cos \phi & -a(t) r \sin \theta \sin \phi \\
n(t) r \sin \theta \sin \phi & a(t) \sin \theta \sin \phi & a(t) r \cos \theta \sin \phi & a(t) r \sin \theta \cos \phi \\
n(t) r \cos \theta & a(t) \cos \theta & -a(t) r \sin \theta & 0
\end{array}\right) .
$$

Conclusion

- Summary:
- Try to find solutions of modified teleparallel gravity theories.
- Write antisymmetric field equation as $\iota v_{a b} \mathrm{~d} f_{T}=0$.
- Four possible ways to solve this equation.
- One possibility: consider symmetry of metric and connection.
- Solve in Weitzenböck gauge $\omega^{a}{ }_{b \mu}=0$, then transform.

Conclusion

- Summary:
- Try to find solutions of modified teleparallel gravity theories.
- Write antisymmetric field equation as $\iota v_{a b} \mathrm{~d} f_{T}=0$.
- Four possible ways to solve this equation.
- One possibility: consider symmetry of metric and connection.
- Solve in Weitzenböck gauge $\omega^{a}{ }_{b \mu}=0$, then transform.
- Outlook:
- Solve also other field equations, possibly using symmetry.
- Further solutions with other symmetries?

Conclusion

- Summary:
- Try to find solutions of modified teleparallel gravity theories.
- Write antisymmetric field equation as $\iota v_{a b} \mathrm{~d} f_{T}=0$.
- Four possible ways to solve this equation.
- One possibility: consider symmetry of metric and connection.
- Solve in Weitzenböck gauge $\omega^{a}{ }_{b \mu}=0$, then transform.
- Outlook:
- Solve also other field equations, possibly using symmetry.
- Further solutions with other symmetries?
- Further reading:
- MH, L. Järv, U. Ualikhanova; Covariant formulation of scalar-torsion gravity; arXiv:1801.05786.
- MH, L. Järv, C. Pfeifer, M. Krššák; Modified teleparallel theories of gravity in symmetric spacetimes; to appear.

