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Motivation: problems to solve

• So far unexplained cosmological observations:
◦ Accelerating expansion of the universe.
◦ Homogeneity of cosmic microwave background.

• Models for explaining these observations:
◦ ΛCDM model / dark energy.
◦ Inflation.

• Physical mechanisms are not understood:
◦ Unknown type of matter?

◦ Modification of the laws of gravity?

◦ Scalar field in addition to metric mediating gravity?
◦ Quantum gravity effects?

• Idea here: modification of the geometric structure of spacetime!
◦ Study classical gravity theories based on modified geometry.
◦ Consider geometries as effective models of quantum gravity.
◦ Derive observable effects to test modified geometry.

Manuel Hohmann (University of Tartu) Lorentz invariance and gravity Theoretical Physics Seminar - 16. April 2024 4 / 40



Motivation: problems to solve

• So far unexplained cosmological observations:
◦ Accelerating expansion of the universe.
◦ Homogeneity of cosmic microwave background.

• Models for explaining these observations:
◦ ΛCDM model / dark energy.
◦ Inflation.

• Physical mechanisms are not understood:
◦ Unknown type of matter?

◦ Modification of the laws of gravity?

◦ Scalar field in addition to metric mediating gravity?
◦ Quantum gravity effects?

• Idea here: modification of the geometric structure of spacetime!
◦ Study classical gravity theories based on modified geometry.
◦ Consider geometries as effective models of quantum gravity.
◦ Derive observable effects to test modified geometry.

Manuel Hohmann (University of Tartu) Lorentz invariance and gravity Theoretical Physics Seminar - 16. April 2024 4 / 40



Motivation: problems to solve

• So far unexplained cosmological observations:
◦ Accelerating expansion of the universe.
◦ Homogeneity of cosmic microwave background.

• Models for explaining these observations:
◦ ΛCDM model / dark energy.
◦ Inflation.

• Physical mechanisms are not understood:
◦ Unknown type of matter?
◦ Modification of the laws of gravity?
◦ Scalar field in addition to metric mediating gravity?
◦ Quantum gravity effects?

• Idea here: modification of the geometric structure of spacetime!
◦ Study classical gravity theories based on modified geometry.
◦ Consider geometries as effective models of quantum gravity.
◦ Derive observable effects to test modified geometry.

Manuel Hohmann (University of Tartu) Lorentz invariance and gravity Theoretical Physics Seminar - 16. April 2024 4 / 40



Motivation: problems to solve

• So far unexplained cosmological observations:
◦ Accelerating expansion of the universe.
◦ Homogeneity of cosmic microwave background.

• Models for explaining these observations:
◦ ΛCDM model / dark energy.
◦ Inflation.

• Physical mechanisms are not understood:
◦ Unknown type of matter?
◦ Modification of the laws of gravity?
◦ Scalar field in addition to metric mediating gravity?
◦ Quantum gravity effects?

• Idea here: modification of the geometric structure of spacetime!
◦ Study classical gravity theories based on modified geometry.
◦ Consider geometries as effective models of quantum gravity.
◦ Derive observable effects to test modified geometry.

Manuel Hohmann (University of Tartu) Lorentz invariance and gravity Theoretical Physics Seminar - 16. April 2024 4 / 40



Motivation: observation of particles

• Consider simple particle detector:
◦ Particles enter tracker chamber with constant magnetic field.
◦ Particles hit calorimeter and emit photons until full stop.
◦ Measure radius and direction of particle tracks: momentum.
◦ Measure photon frequencies from particle impact: energy.

• Units used by particle detector:
◦ Measuring frequency requires standard clock.
◦ Measuring radius (distance) requires standard ruler.
◦ Measuring direction components requires orthogonal axes.
◦ Relating magnetic field, momentum, Lorentz force gives orientation.

• Relating different measurements:
◦ Particle detector establishes local reference frame.
◦ Relatively moving detector at the same point has different frame.
◦ Measured energy and momentum disagree between detectors.

• Questions:
◦ How are measurements between detectors at same point related?
◦ How does this relation depend on the location of detectors?
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The Einstein equivalence principle

• Einstein equivalence principle:
1. Freely falling test bodies move independent of their composition.
2. Local non-gravitational experiments independent of velocity.
3. Local non-gravitational experiments independent of position.

• Explanations:

◦ Test body: sufficiently small, no charges, no self-gravitation.
◦ Gravity absent in sufficiently small, freely falling laboratory.
◦ Local freely falling laboratory with no external forces or fields.

• Invariance of physical laws:

◦ No preferred rest frame: local Lorentz invariance (LLI).
◦ No preferred locations: local position invariance (LPI).

• Consequences for gravitational theory:
◦ Spacetime equipped with metric gµν .
◦ Freely falling particles follow geodesics of gµν .
◦ Local, freely falling laboratories with gµν = ηµν .
◦ Local, non-gravitational physics respects special relativity.
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Orthonormal frames and Lorentz transformations

• Establish orthonormal frame ea
µ at spacetime point x ∈ M:

◦ Four-velocity of observer⇝ direction of time component.
◦ Clock showing proper time⇝ normalization of time component.
◦ Light rays / radar experiment⇝ direction of spatial components.
◦ Light turnaround time⇝ normalization of spatial components.
◦ Parity-violating particles⇝ orientation of frame.

• Comparing frames established by different observers:
◦ Observers with different four-velocities γ̇µ, γ̇′µ at same point x .
◦ Each observer establishes an orthonormal frame ea

µ,e′
a
µ.

◦ LLI: observers’ frames are related by Lorentz transformation:

e′
a
µ = Λa

beb
µ , Λa

cΛb
dηcd = ηab . (1)

⇒ Observers find same metric components

gµν = ηabea
µeb

ν = ηabe′
a
µe′

b
ν . (2)

◦ Frames have same orientation and time-orientation.
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Lorentz covariance of observables
• Relating observations made by different observers:

◦ Observers measure quantities in their own frames ea
µ,e′

a
µ.

◦ Observers in general obtain different values QI ,Q′I .
◦ Lorentz covariance: representation ρ of SO0(1,3):

Q′I = ρI
J(Λ)QJ . (3)

◦ Lorentz invariance if Q′I = QI .

• Example: energy-momentum of particles:
◦ Observers measure (pa) = (E , p⃗) and (p′

a) = (E ′, p⃗′).
◦ Momentum components form covector: p′

a = Λa
bpb.

⇒ Physical, frame independent quantity pµ gives observables:

pa = ea
µpµ , p′

a = e′
a
µpµ . (4)

⇒ Mass m is Lorentz-invariant quantity:

ηabpapb = ηabp′
ap′

b = gµνpµpν = −m2 . (5)

• Local Lorentz invariance manifest in dispersion relation.
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LLI in the PPN formalism

• Perturbative expansion of the metric:

g(2)
00 = 2αU , (6a)

g(2)
αβ = 2γUδαβ , (6b)

g(3)
0α = −1

2
(3 + 4γ + α1 − α2 + ζ1 − 2ξ)Vα

− 1
2
(1 + α2 − ζ1 + 2ξ)Wα , (6c)

g(4)
00 = −2βU2 − 2ξΦW + (2 + 2γ + α3 + ζ1 − 2ξ)Φ1

+ 2(1 + 3γ − 2β + ζ2 + ξ)Φ2 + 2(1 + ζ3)Φ3

+ 2(3γ + 3ζ4 − 2ξ)Φ4 − (ζ1 − 2ξ)A . (6d)

• PPN parameters α, γ, β, α1, . . . , α3, ζ1, . . . , ζ4, ξ.
• PPN potentials U,Vα,Wα,Φ1, . . . ,Φ4,ΦW ,A.
• LLI if (α1, α2, α3) ̸= (0,0,0).

Manuel Hohmann (University of Tartu) Lorentz invariance and gravity Theoretical Physics Seminar - 16. April 2024 9 / 40



LLI in the PPN formalism

• Perturbative expansion of the metric:

g(2)
00 = 2αU , (6a)

g(2)
αβ = 2γUδαβ , (6b)

g(3)
0α = −1

2
(3 + 4γ + α1 − α2 + ζ1 − 2ξ)Vα

− 1
2
(1 + α2 − ζ1 + 2ξ)Wα , (6c)

g(4)
00 = −2βU2 − 2ξΦW + (2 + 2γ + α3 + ζ1 − 2ξ)Φ1

+ 2(1 + 3γ − 2β + ζ2 + ξ)Φ2 + 2(1 + ζ3)Φ3

+ 2(3γ + 3ζ4 − 2ξ)Φ4 − (ζ1 − 2ξ)A . (6d)

• PPN parameters α, γ, β, α1, . . . , α3, ζ1, . . . , ζ4, ξ.

• PPN potentials U,Vα,Wα,Φ1, . . . ,Φ4,ΦW ,A.
• LLI if (α1, α2, α3) ̸= (0,0,0).

Manuel Hohmann (University of Tartu) Lorentz invariance and gravity Theoretical Physics Seminar - 16. April 2024 9 / 40



LLI in the PPN formalism

• Perturbative expansion of the metric:

g(2)
00 = 2αU , (6a)

g(2)
αβ = 2γUδαβ , (6b)

g(3)
0α = −1

2
(3 + 4γ + α1 − α2 + ζ1 − 2ξ)Vα

− 1
2
(1 + α2 − ζ1 + 2ξ)Wα , (6c)

g(4)
00 = −2βU2 − 2ξΦW + (2 + 2γ + α3 + ζ1 − 2ξ)Φ1

+ 2(1 + 3γ − 2β + ζ2 + ξ)Φ2 + 2(1 + ζ3)Φ3

+ 2(3γ + 3ζ4 − 2ξ)Φ4 − (ζ1 − 2ξ)A . (6d)

• PPN parameters α, γ, β, α1, . . . , α3, ζ1, . . . , ζ4, ξ.
• PPN potentials U,Vα,Wα,Φ1, . . . ,Φ4,ΦW ,A.

• LLI if (α1, α2, α3) ̸= (0,0,0).

Manuel Hohmann (University of Tartu) Lorentz invariance and gravity Theoretical Physics Seminar - 16. April 2024 9 / 40



LLI in the PPN formalism

• Perturbative expansion of the metric:

g(2)
00 = 2αU , (6a)

g(2)
αβ = 2γUδαβ , (6b)

g(3)
0α = −1

2
(3 + 4γ + α1 − α2 + ζ1 − 2ξ)Vα

− 1
2
(1 + α2 − ζ1 + 2ξ)Wα , (6c)

g(4)
00 = −2βU2 − 2ξΦW + (2 + 2γ + α3 + ζ1 − 2ξ)Φ1

+ 2(1 + 3γ − 2β + ζ2 + ξ)Φ2 + 2(1 + ζ3)Φ3

+ 2(3γ + 3ζ4 − 2ξ)Φ4 − (ζ1 − 2ξ)A . (6d)

• PPN parameters α, γ, β, α1, . . . , α3, ζ1, . . . , ζ4, ξ.
• PPN potentials U,Vα,Wα,Φ1, . . . ,Φ4,ΦW ,A.
• LLI if (α1, α2, α3) ̸= (0,0,0).
Manuel Hohmann (University of Tartu) Lorentz invariance and gravity Theoretical Physics Seminar - 16. April 2024 9 / 40



Outline

1. Lorentz covariance and invariance

2. Teleparallel gravity

3. Finsler gravity

4. Conclusion

Manuel Hohmann (University of Tartu) Lorentz invariance and gravity Theoretical Physics Seminar - 16. April 2024 10 / 40



Field variables in teleparallel gravity

• Metric teleparallelism conventionally formulated using:
◦ Tetrad / coframe: θa = θa

µdxµ with inverse ea = ea
µ∂µ.

◦ Spin connection: ωa
b = ωa

bµdxµ.

• Induced metric-affine geometry:
◦ Metric:

gµν = ηabθ
a
µθ

b
ν . (7)

◦ Affine connection:
Γµνρ = ea

µ
(
∂ρθ

a
ν + ωa

bρθ
b
ν

)
. (8)

• Conditions on the spin connection:
◦ Flatness R = 0:

∂µω
a

bν − ∂νω
a

bµ + ωa
cµω

c
bν − ωa

cνω
c

bµ = 0 . (9)

◦ Metric compatibility Q = 0:
ηacω

c
bµ + ηbcω

c
aµ = 0 . (10)
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Local Lorentz transformations

• Local Lorentz transformation of the tetrad only:

θa
µ 7→ θ′aµ = Λa

bθ
b
µ . (11)

✓ Metric is invariant: g′
µν = gµν .

 Connection is not invariant: Γ′µνρ ̸= Γµνρ.

• Perform also transformation of the spin connection:

ωa
bµ 7→ ω′a

bµ = Λa
c(Λ

−1)d
bω

c
dµ + Λa

c∂µ(Λ
−1)c

b . (12)

✓ Metric is invariant: g′
µν = gµν .

✓ Connection is invariant: Γ′µνρ = Γµνρ.
⇒ Metric-affine geometry equivalently described by:

◦ Metric gµν and affine connection Γµνρ.
◦ Equivalence class of tetrad θa

µ and spin connection ωa
bµ.

◦ Equivalence defined with respect to local Lorentz transformations.
• Is LLI broken if teleparallel gravity action depends on Γµνρ?
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The Weitzenböck gauge

• Intuitive conclusion: One can always use the Weitzenböck gauge.
◦ The spin connection is flat:

∂µω
a

bν − ∂νω
a

bµ + ωa
cµω

c
bν − ωa

cνω
c

bµ ≡ 0 . (13)

⇒ The spin connection can always be written in the form

ωa
bµ = Λa

c∂µ(Λ
−1)c

b . (14)

⇒ One can achieve the Weitzenböck gauge by θa
µ = Λa

b
w

θb
µ.

• Λa
b and

w
θa

µ defined only up to global transform

Λa
b 7→ Λ′a

b = Λa
cΩ

c
b ,

w
θa

µ 7→
w
θ′aµ = (Ω−1)a

b
w
θb

µ . (15)

• Questions posed by the adept of geometry:

1. How can we determine the transformation Λa
b?

2. Is this even true?

• Remark: this holds also in symmetric and general teleparallelism.
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How to obtain the Weitzenböck gauge?

• Recall that we have gauge invariant quantities:
◦ The metric gµν = ηabθ

a
µθ

b
ν .

◦ The teleparallel affine connection Γµνρ = ea
µ
(
∂ρθ

a
ν + ωa

bρθ
b
ν

)
.

• The tetrad and connection satisfy the “tetrad postulate”:

∂µθ
a
ν + ωa

bµθ
b
ν − Γρνµθ

a
ρ = 0 . (16)

• The tetrad postulate also holds in the Weitzenböck gauge.

⇒ Each component
w
θa

µdxµ is a covariantly constant covector field.
⇒ Recipe for integrating the connection:

1. Choose
w

θa
µ(x) at some x ∈ M to fit with the metric.

2. For any other y ∈ M, choose path x ⇝ y , and parallel transport.

• Obtained tetrad satisfies required properties:

✓
w

θa
µ gives correct metric, since connection is metric-compatible.

✓ Global Lorentz invariance encoded in freedom of choice for
w

θa
µ(x).
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Can we always use the Weitzenböck gauge?

• Recipe for integrating the connection:
1. At some x ∈ M,

choose
w

θa
µ(x) to fit with the metric.

2. For any other y ∈ M,

choose path x
γ
⇝ y , and parallel transport.

• What happens if we choose another path x
γ′
⇝ y?

✓ Vanishing curvature: parallel transport along both path agrees.
 But only if γ and γ′ are homotopic paths!

M

Rµ
νρσ = 0

x

yγ

γ′
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Trouble with the tetrad?

• Starting from an arbitrary tetrad and flat spin connection:
◦ One may always locally transform into Weitzenböck gauge.
◦ One may not always globally transform into Weitzenböck gauge.

• Is there always some global tetrad and flat spin connection?
• The case of the tetrad:

✓
◦ We want to be able to describe spinor fields on spacetime.

⇒ Physical spacetime manifold must admit a spin structure.
◦ Spacetime admits a spin structure ⇔ it is parallelizable. [Geroch ’68]

⇒ Physical spacetime possesses global frame bundle sections.

• The case of the spin connection:

✓
◦ Parallelizable manifold always admits flat affine connection Γ.

⇒ A spin connection can be constructed from the “tetrad postulate”.

⇒ Physical spacetime always has global tetrad and spin connection.

Manuel Hohmann (University of Tartu) Lorentz invariance and gravity Theoretical Physics Seminar - 16. April 2024 16 / 40



Trouble with the tetrad?

• Starting from an arbitrary tetrad and flat spin connection:
◦ One may always locally transform into Weitzenböck gauge.
◦ One may not always globally transform into Weitzenböck gauge.

• Is there always some global tetrad and flat spin connection?

• The case of the tetrad:

✓
◦ We want to be able to describe spinor fields on spacetime.

⇒ Physical spacetime manifold must admit a spin structure.
◦ Spacetime admits a spin structure ⇔ it is parallelizable. [Geroch ’68]

⇒ Physical spacetime possesses global frame bundle sections.

• The case of the spin connection:

✓
◦ Parallelizable manifold always admits flat affine connection Γ.

⇒ A spin connection can be constructed from the “tetrad postulate”.

⇒ Physical spacetime always has global tetrad and spin connection.

Manuel Hohmann (University of Tartu) Lorentz invariance and gravity Theoretical Physics Seminar - 16. April 2024 16 / 40



Trouble with the tetrad?

• Starting from an arbitrary tetrad and flat spin connection:
◦ One may always locally transform into Weitzenböck gauge.
◦ One may not always globally transform into Weitzenböck gauge.

• Is there always some global tetrad and flat spin connection?
• The case of the tetrad:

✓

◦ We want to be able to describe spinor fields on spacetime.

⇒ Physical spacetime manifold must admit a spin structure.
◦ Spacetime admits a spin structure ⇔ it is parallelizable. [Geroch ’68]

⇒ Physical spacetime possesses global frame bundle sections.
• The case of the spin connection:

✓
◦ Parallelizable manifold always admits flat affine connection Γ.

⇒ A spin connection can be constructed from the “tetrad postulate”.

⇒ Physical spacetime always has global tetrad and spin connection.

Manuel Hohmann (University of Tartu) Lorentz invariance and gravity Theoretical Physics Seminar - 16. April 2024 16 / 40



Trouble with the tetrad?

• Starting from an arbitrary tetrad and flat spin connection:
◦ One may always locally transform into Weitzenböck gauge.
◦ One may not always globally transform into Weitzenböck gauge.

• Is there always some global tetrad and flat spin connection?
• The case of the tetrad:

✓

◦ We want to be able to describe spinor fields on spacetime.
⇒ Physical spacetime manifold must admit a spin structure.

◦ Spacetime admits a spin structure ⇔ it is parallelizable. [Geroch ’68]

⇒ Physical spacetime possesses global frame bundle sections.
• The case of the spin connection:

✓
◦ Parallelizable manifold always admits flat affine connection Γ.

⇒ A spin connection can be constructed from the “tetrad postulate”.

⇒ Physical spacetime always has global tetrad and spin connection.

Manuel Hohmann (University of Tartu) Lorentz invariance and gravity Theoretical Physics Seminar - 16. April 2024 16 / 40



Trouble with the tetrad?

• Starting from an arbitrary tetrad and flat spin connection:
◦ One may always locally transform into Weitzenböck gauge.
◦ One may not always globally transform into Weitzenböck gauge.

• Is there always some global tetrad and flat spin connection?
• The case of the tetrad:

✓

◦ We want to be able to describe spinor fields on spacetime.
⇒ Physical spacetime manifold must admit a spin structure.
◦ Spacetime admits a spin structure ⇔ it is parallelizable. [Geroch ’68]

⇒ Physical spacetime possesses global frame bundle sections.
• The case of the spin connection:

✓
◦ Parallelizable manifold always admits flat affine connection Γ.

⇒ A spin connection can be constructed from the “tetrad postulate”.

⇒ Physical spacetime always has global tetrad and spin connection.

Manuel Hohmann (University of Tartu) Lorentz invariance and gravity Theoretical Physics Seminar - 16. April 2024 16 / 40



Trouble with the tetrad?

• Starting from an arbitrary tetrad and flat spin connection:
◦ One may always locally transform into Weitzenböck gauge.
◦ One may not always globally transform into Weitzenböck gauge.

• Is there always some global tetrad and flat spin connection?
• The case of the tetrad: ✓

◦ We want to be able to describe spinor fields on spacetime.
⇒ Physical spacetime manifold must admit a spin structure.
◦ Spacetime admits a spin structure ⇔ it is parallelizable. [Geroch ’68]

⇒ Physical spacetime possesses global frame bundle sections.

• The case of the spin connection:

✓
◦ Parallelizable manifold always admits flat affine connection Γ.

⇒ A spin connection can be constructed from the “tetrad postulate”.

⇒ Physical spacetime always has global tetrad and spin connection.

Manuel Hohmann (University of Tartu) Lorentz invariance and gravity Theoretical Physics Seminar - 16. April 2024 16 / 40



Trouble with the tetrad?

• Starting from an arbitrary tetrad and flat spin connection:
◦ One may always locally transform into Weitzenböck gauge.
◦ One may not always globally transform into Weitzenböck gauge.

• Is there always some global tetrad and flat spin connection?
• The case of the tetrad: ✓

◦ We want to be able to describe spinor fields on spacetime.
⇒ Physical spacetime manifold must admit a spin structure.
◦ Spacetime admits a spin structure ⇔ it is parallelizable. [Geroch ’68]

⇒ Physical spacetime possesses global frame bundle sections.
• The case of the spin connection:

✓

◦ Parallelizable manifold always admits flat affine connection Γ.

⇒ A spin connection can be constructed from the “tetrad postulate”.

⇒ Physical spacetime always has global tetrad and spin connection.

Manuel Hohmann (University of Tartu) Lorentz invariance and gravity Theoretical Physics Seminar - 16. April 2024 16 / 40



Trouble with the tetrad?

• Starting from an arbitrary tetrad and flat spin connection:
◦ One may always locally transform into Weitzenböck gauge.
◦ One may not always globally transform into Weitzenböck gauge.

• Is there always some global tetrad and flat spin connection?
• The case of the tetrad: ✓

◦ We want to be able to describe spinor fields on spacetime.
⇒ Physical spacetime manifold must admit a spin structure.
◦ Spacetime admits a spin structure ⇔ it is parallelizable. [Geroch ’68]

⇒ Physical spacetime possesses global frame bundle sections.
• The case of the spin connection: ✓

◦ Parallelizable manifold always admits flat affine connection Γ.
⇒ A spin connection can be constructed from the “tetrad postulate”.

⇒ Physical spacetime always has global tetrad and spin connection.

Manuel Hohmann (University of Tartu) Lorentz invariance and gravity Theoretical Physics Seminar - 16. April 2024 16 / 40



Trouble with the tetrad?

• Starting from an arbitrary tetrad and flat spin connection:
◦ One may always locally transform into Weitzenböck gauge.
◦ One may not always globally transform into Weitzenböck gauge.

• Is there always some global tetrad and flat spin connection?
• The case of the tetrad: ✓

◦ We want to be able to describe spinor fields on spacetime.
⇒ Physical spacetime manifold must admit a spin structure.
◦ Spacetime admits a spin structure ⇔ it is parallelizable. [Geroch ’68]

⇒ Physical spacetime possesses global frame bundle sections.
• The case of the spin connection: ✓

◦ Parallelizable manifold always admits flat affine connection Γ.
⇒ A spin connection can be constructed from the “tetrad postulate”.

⇒ Physical spacetime always has global tetrad and spin connection.

Manuel Hohmann (University of Tartu) Lorentz invariance and gravity Theoretical Physics Seminar - 16. April 2024 16 / 40



Palatini and the space of orbits

• Consider local Lorentz transformations Λ : M → O(1,3):
◦ Simultaneous action on tetrad and spin connection:

(θ, ω) 7→ (Λθ,ΛωΛ−1 + ΛdΛ−1) . (17)

◦ (θ, ω) Λ∼(θ′, ω′) if and only if (g, Γ) = (g′, Γ′).
⇒ Orbits parametrized by metric and teleparallel affine connection.

• Consider locally O(1,3)-invariant teleparallel gravity theory:
◦ Λ : M → O(1,3) maps solutions to solutions.

⇒ Only metric and affine connection become dynamical variables.

• Decomposition of the Lorentz group:
◦ Proper Lorentz group SO0(1,3) ⊂ O(1,3), T,P ∈ O(1,3).
◦ Standard model of particle physics only invariant under SO0(1,3).

⇒ Need orientation and time orientation in addition to g and Γ.
⇒ Physical geometries parametrized by orbits of SO0(1,3).

• Physical geometry: SO0(1,3) reduction of the frame bundle & Γ.
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What about the teleparallel affine connection?

• Coupling of the teleparallel affine connection Γ:
◦ No direct coupling with matter (commonly considered consistent).
◦ Possible coupling to metric through gravity (vanishes in TEGR).

⇒ Teleparallel connection becomes just (another) “dark” field:
◦ Scalar fields / dark energy in scalar-tensor theories.
◦ “Dark” vector fields, “dark” photons in generalized Proca theories.
◦ Second metric in bimetric theories.

⇒ The “usual rules” for playing with “dark” fields apply:
◦ Find out which degrees of freedom couple to physical observables.
◦ “Remnant symmetries” may yield gauge degrees of freedom.
◦ Make sure physical degrees of freedom obey healthy evolution.
 Pay attention to possible pathologies:

· Is the evolution of physical degrees of freedom determined?
· Are the physical degrees of freedom stable under perturbations?
· Does the theory remain healthy under quantization?
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Dynamical field variables in teleparallel gravity

• What are the dynamical field variables in teleparallel gravity?
1. Only a tetrad.

2. A tetrad and a flat, antisymmetric spin connection.
3. A metric and a flat, metric-compatible affine connection.
4. A flat connection on a SO0(1,3)-reduction of the frame bundle.

• Problems encountered with choice of variables:

1. Does not reflect observed local Lorentz invariance.
2. Contains unphysical gauge degrees of freedom as variables.
3. Does not contain information on orientation and time orientation.

• Can we still use any of the other field variables?

4 → 3: If (time) orientation is fixed, metric and connection are sufficient.
3 → 2: Possible to choose tetrad and spin connection as representatives.
2 → 1: Locally possible to transform into Weitzenböck gauge.

⇒ Most fundamental variables found in geometric picture.

Manuel Hohmann (University of Tartu) Lorentz invariance and gravity Theoretical Physics Seminar - 16. April 2024 19 / 40



Dynamical field variables in teleparallel gravity

• What are the dynamical field variables in teleparallel gravity?
1. Only a tetrad.
2. A tetrad and a flat, antisymmetric spin connection.

3. A metric and a flat, metric-compatible affine connection.
4. A flat connection on a SO0(1,3)-reduction of the frame bundle.

• Problems encountered with choice of variables:
1. Does not reflect observed local Lorentz invariance.

2. Contains unphysical gauge degrees of freedom as variables.
3. Does not contain information on orientation and time orientation.

• Can we still use any of the other field variables?

4 → 3: If (time) orientation is fixed, metric and connection are sufficient.
3 → 2: Possible to choose tetrad and spin connection as representatives.
2 → 1: Locally possible to transform into Weitzenböck gauge.

⇒ Most fundamental variables found in geometric picture.

Manuel Hohmann (University of Tartu) Lorentz invariance and gravity Theoretical Physics Seminar - 16. April 2024 19 / 40



Dynamical field variables in teleparallel gravity

• What are the dynamical field variables in teleparallel gravity?
1. Only a tetrad.
2. A tetrad and a flat, antisymmetric spin connection.
3. A metric and a flat, metric-compatible affine connection.

4. A flat connection on a SO0(1,3)-reduction of the frame bundle.

• Problems encountered with choice of variables:
1. Does not reflect observed local Lorentz invariance.
2. Contains unphysical gauge degrees of freedom as variables.

3. Does not contain information on orientation and time orientation.
• Can we still use any of the other field variables?

4 → 3: If (time) orientation is fixed, metric and connection are sufficient.
3 → 2: Possible to choose tetrad and spin connection as representatives.
2 → 1: Locally possible to transform into Weitzenböck gauge.

⇒ Most fundamental variables found in geometric picture.

Manuel Hohmann (University of Tartu) Lorentz invariance and gravity Theoretical Physics Seminar - 16. April 2024 19 / 40



Dynamical field variables in teleparallel gravity

• What are the dynamical field variables in teleparallel gravity?
1. Only a tetrad.
2. A tetrad and a flat, antisymmetric spin connection.
3. A metric and a flat, metric-compatible affine connection.
4. A flat connection on a SO0(1,3)-reduction of the frame bundle.

• Problems encountered with choice of variables:
1. Does not reflect observed local Lorentz invariance.
2. Contains unphysical gauge degrees of freedom as variables.
3. Does not contain information on orientation and time orientation.

• Can we still use any of the other field variables?

4 → 3: If (time) orientation is fixed, metric and connection are sufficient.
3 → 2: Possible to choose tetrad and spin connection as representatives.
2 → 1: Locally possible to transform into Weitzenböck gauge.

⇒ Most fundamental variables found in geometric picture.

Manuel Hohmann (University of Tartu) Lorentz invariance and gravity Theoretical Physics Seminar - 16. April 2024 19 / 40



Dynamical field variables in teleparallel gravity

• What are the dynamical field variables in teleparallel gravity?
1. Only a tetrad.
2. A tetrad and a flat, antisymmetric spin connection.
3. A metric and a flat, metric-compatible affine connection.
4. A flat connection on a SO0(1,3)-reduction of the frame bundle.

• Problems encountered with choice of variables:
1. Does not reflect observed local Lorentz invariance.
2. Contains unphysical gauge degrees of freedom as variables.
3. Does not contain information on orientation and time orientation.

• Can we still use any of the other field variables?
4 → 3: If (time) orientation is fixed, metric and connection are sufficient.

3 → 2: Possible to choose tetrad and spin connection as representatives.
2 → 1: Locally possible to transform into Weitzenböck gauge.

⇒ Most fundamental variables found in geometric picture.

Manuel Hohmann (University of Tartu) Lorentz invariance and gravity Theoretical Physics Seminar - 16. April 2024 19 / 40



Dynamical field variables in teleparallel gravity

• What are the dynamical field variables in teleparallel gravity?
1. Only a tetrad.
2. A tetrad and a flat, antisymmetric spin connection.
3. A metric and a flat, metric-compatible affine connection.
4. A flat connection on a SO0(1,3)-reduction of the frame bundle.

• Problems encountered with choice of variables:
1. Does not reflect observed local Lorentz invariance.
2. Contains unphysical gauge degrees of freedom as variables.
3. Does not contain information on orientation and time orientation.

• Can we still use any of the other field variables?
4 → 3: If (time) orientation is fixed, metric and connection are sufficient.
3 → 2: Possible to choose tetrad and spin connection as representatives.

2 → 1: Locally possible to transform into Weitzenböck gauge.

⇒ Most fundamental variables found in geometric picture.

Manuel Hohmann (University of Tartu) Lorentz invariance and gravity Theoretical Physics Seminar - 16. April 2024 19 / 40



Dynamical field variables in teleparallel gravity

• What are the dynamical field variables in teleparallel gravity?
1. Only a tetrad.
2. A tetrad and a flat, antisymmetric spin connection.
3. A metric and a flat, metric-compatible affine connection.
4. A flat connection on a SO0(1,3)-reduction of the frame bundle.

• Problems encountered with choice of variables:
1. Does not reflect observed local Lorentz invariance.
2. Contains unphysical gauge degrees of freedom as variables.
3. Does not contain information on orientation and time orientation.

• Can we still use any of the other field variables?
4 → 3: If (time) orientation is fixed, metric and connection are sufficient.
3 → 2: Possible to choose tetrad and spin connection as representatives.
2 → 1: Locally possible to transform into Weitzenböck gauge.

⇒ Most fundamental variables found in geometric picture.

Manuel Hohmann (University of Tartu) Lorentz invariance and gravity Theoretical Physics Seminar - 16. April 2024 19 / 40



Dynamical field variables in teleparallel gravity

• What are the dynamical field variables in teleparallel gravity?
1. Only a tetrad.
2. A tetrad and a flat, antisymmetric spin connection.
3. A metric and a flat, metric-compatible affine connection.
4. A flat connection on a SO0(1,3)-reduction of the frame bundle.

• Problems encountered with choice of variables:
1. Does not reflect observed local Lorentz invariance.
2. Contains unphysical gauge degrees of freedom as variables.
3. Does not contain information on orientation and time orientation.

• Can we still use any of the other field variables?
4 → 3: If (time) orientation is fixed, metric and connection are sufficient.
3 → 2: Possible to choose tetrad and spin connection as representatives.
2 → 1: Locally possible to transform into Weitzenböck gauge.

⇒ Most fundamental variables found in geometric picture.

Manuel Hohmann (University of Tartu) Lorentz invariance and gravity Theoretical Physics Seminar - 16. April 2024 19 / 40



The geometric picture

1. Start with the general linear frame bundle π : GL(M) → M.

2. Metric reduces bundle to orthonormal frame bundle P̃.
3. Orientation and time orientation select oriented frame bundle P.
4. Connection specifies horizontal directions TP = VP ⊕ HP in P.

M

π

GL(M)

P̃
P

HP
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Tetrads and spin structure

• How to obtain a spin structure from a tetrad e : M → P?
1. Spin structure obtained from trivial bundle Q = M × SL(2,C).
2. Use covering map σ : SL(2,C) → SO0(1,3).
3. Define spin structure φ : Q → P as map

φ(x , z) = e(x) · σ(z) . (18)

• Do different tetrads e,e′ define the same spin structure?
◦ Consider non-simply connected manifold M.
◦ Let γ : [0,1] → M with γ(0) = γ(1) non-contractible.
◦ Let Λ : M → SO0(1,3) such that Λ ◦ γ has odd winding.
◦ Tetrads e = e′ · Λ define spin structures φ,φ′.
◦ Assume existence of bundle isomorphism µ : Q → Q, φ = φ′ ◦ µ.

⇒ Curve connects antipodes: µ(γ(1),1) = −µ(γ(0),1).
 Contradicts γ(0) = γ(1).
⇒ Spin structures φ,φ′ are inequivalent.
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Tetrads vs observers

• Clash of two notions of orthonormal frames:
1. Tetrad e : M → P solving teleparallel field equation.
2. Observer frame ẽ : R → γ∗P along trajectory γ.

• Parallel transport properties of frames:

0 = γ̇µ(∂µẽa
ν +

◦
Γνρµẽa

ρ) = γ̇µ(∂µea
ν + Γνρµea

ρ) . (19)

• Possible to identify teleparallel as observer frames?
1. e forms congruence, transported with flat connection.
2. ẽ only defined on worldline, no congruences.

• e and ẽ only agree up to local Lorentz transformation.
⇒ Observer geometry defined by metric: LLI holds.
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• e and ẽ only agree up to local Lorentz transformation.
⇒ Observer geometry defined by metric: LLI holds.

Manuel Hohmann (University of Tartu) Lorentz invariance and gravity Theoretical Physics Seminar - 16. April 2024 22 / 40



Tetrads vs observers

• Clash of two notions of orthonormal frames:
1. Tetrad e : M → P solving teleparallel field equation.
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2. ẽ only defined on worldline, no congruences.
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• e and ẽ only agree up to local Lorentz transformation.
⇒ Observer geometry defined by metric: LLI holds.

Manuel Hohmann (University of Tartu) Lorentz invariance and gravity Theoretical Physics Seminar - 16. April 2024 22 / 40



Relevance of the connection

• Split Levi-Civita connection coefficients:
◦
Γµνρ = Γµνρ − K µ

νρ . (20)

⇒ Possible to rewrite geodesic equation:

ẍµ + Γµνρẋν ẋρ = K µ
νρẋν ẋρ . (21)

• Interpretation: “Separate gravity K µ
νρ from inertia Γµνρ.”

• Fully equivalent to standard form (teleparallel connection cancels):

ẍµ +
◦
Γµνρẋν ẋρ = 0 . (22)

• Matter coupled to metric only insensitive to Γµνρ.
• Connection appears only as “dark” field coupling to gravity:

S = Sg[g, Γ] + Sm[g, χ] . (23)
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• Fully equivalent to standard form (teleparallel connection cancels):

ẍµ +
◦
Γµνρẋν ẋρ = 0 . (22)

• Matter coupled to metric only insensitive to Γµνρ.
• Connection appears only as “dark” field coupling to gravity:

S = Sg[g, Γ] + Sm[g, χ] . (23)
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ẍµ +
◦
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LLI violation in post-Newtonian limit?

• Study teleparallel gravity theories:
1. New General Relativity [Ualikhanova, MH ’19]

2. Scalar-torsion gravity [Emtsova, MH ’19]

3. Generalized scalar-torsion gravity [Flathmann, MH ’19]

• PPN parameters:
◦ β ≈ γ ≈ 1: bounds on theory parameters.
◦ ξ = α1 = α2 = α3 = ζ1 = ζ2 = ζ3 = ζ4 = 0.

⇒ No violation of LLI.
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Outline

1. Lorentz covariance and invariance

2. Teleparallel gravity

3. Finsler gravity

4. Conclusion
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Finsler spacetime geometry

• Proper time along a curve in Lorentzian spacetime:

τ =

∫ t2

t1

√
−gab(x(t))ẋa(t)ẋb(t)dt . (24)

• Finsler geometry: use a more general length functional:

τ =

∫ t2

t1
F (x(t), ẋ(t))dt . (25)

• Finsler function F : TM → R+.
• Parametrization invariance requires homogeneity:

F (x , λy) = λF (x , y) ∀λ > 0 . (26)

• Cartan non-linear connection:

Na
b =

1
4
∂̄b

[
gF ac(yd∂d ∂̄cF 2 − ∂cF 2)

]
. (27)
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Motion of test particles

• Finsler geodesic: extremal of length functional:

δ

∫ t2

t1
F (x(t), ẋ(t))dt = 0 . (28)

⇒ Geodesic equation for curve x(τ) on spacetime M:

ẍa + Na
b(x , ẋ)ẋb = 0 . (29)

• Finsler Lagrangian: L(x , ẋ) = F 2.
• Legendre transformation: Finsler Hamiltonian H(x ,p).
• Modified dispersion relation:

H(x ,p) = −m2 . (30)

• Hamilton equations of motion:

ṗµ = −∂µH , ẋµ = ∂̄µH . (31)
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F (x(t), ẋ(t))dt = 0 . (28)

⇒ Geodesic equation for curve x(τ) on spacetime M:
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Spherically symmetric MDR

• General spherically symmetric MDR:

−m2 = H(t , r ,pt ,pr ,w) , w2 = p2
ϑ +

p2
φ

sin2 ϑ
. (32)

• Static spherically symmetric: energy conservation

ṗt = −∂tH = 0 ⇒ pt = E = const . (33)

• Polar angle:

ϑ̇ = ∂̄ϑH =
∂H
∂w

1
2w

∂̄ϑw2 =
∂H
∂w

1
w

pϑ , (34a)

ṗϑ = −∂ϑH = −∂H
∂w

1
2w

∂ϑw2 =
∂H
∂w

1
w

cosϑ

sin3 ϑ
p2
φ . (34b)

⇒ Planar motion in equatorial plane: ϑ = π
2 , pϑ = 0.

• Angular momentum conservation:

ṗφ = −∂φH = 0 ⇒ w = pφ = L = const . (35)
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Example: κ-Poincarè dispersion relation

• General form of κ-Poincarè dispersion relation:

H(x ,p) = − 2
ℓ2 sinh2

(
ℓ

2
Zµpµ

)
+

1
2

eℓZµpµ [gµνpµpν + (Zµpµ)
2] . (36)

• Ingredients and properties:
◦ Lorentzian metric gµν .
◦ Unit timelike vector field Zµ: gµνZµZ ν = −1.
◦ Planck length ℓ as perturbation parameter.
◦ H → gµνpµpν for ℓ → 0.

• Spherically symmetric dispersion relation:

H = − 2
ℓ2 sinh2

[
ℓ

2
(cpt + dpr )

]2

+
1
2

eℓ(cpt+dpr )

[
(c2 − a)p2

t + 2cdpr pt + (d2 + b)p2
r +

w2

r2

]
. (37)
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Circular orbits

• Method of calculation:
◦ Circular orbit characterized by ṙ = 0.

⇒ ∂̄r H = 0 becomes algebraic equation for pr = pr (r , E ,L).
⇒ Determine energy E = E(r ,L) from dispersion relation H = −m2.
⇒ Determine radius r = r(L) from ṗr = 0 ⇒ ∂r H = 0.

• Result for κ-Poincarè:
r =

3
2

rs +
ℓL
6

+O(ℓ2) . (38)
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Shapiro delay

• Method of calculation:
◦ Emitter / receiver at re, closest encounter at rc , mirror at rm.
◦ General formula of Shapiro delay:

∆T =

∫ rc

re

dt
dr

∣∣∣∣<0

in
dr +

∫ rm

rc

dt
dr

∣∣∣∣>0

out
dr +

∫ rc

rm

dt
dr

∣∣∣∣<0

in
dr +

∫ re

rc

dt
dr

∣∣∣∣>0

out
dr . (39)

◦ At r = rc : ṙ = 0 relates E ,L, rc ,prc by ∂̄r H = 0 and H = −m2.
◦ Parametrize trajectory by r and calculate

dt
dr

=
ṫ
ṙ
=

∂̄tH
∂̄r H

. (40)

• Result for κ-Poincarè:

∆T (r) ∼ rse−ℓE

[
ℓE

2(eℓE − 1)

√
r − rc

r + rc
+

(2 − ℓE)
2

ln

(
r +

√
r2 − r2

c

rc

)]
. (41)
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(2 − ℓE)
2

ln

(
r +

√
r2 − r2

c

rc

)]
. (41)
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Light deflection

• Method of calculation:
◦ Emitter / receiver at r → ∞, closest encounter at rc .
◦ Calculate deviation from straight line ∆φ = π.
◦ General formula of deflection angle:

∆φ =

∫ rc

∞

dφ
dr

∣∣∣∣<0

in
dr +

∫ ∞

rc

dφ
dr

∣∣∣∣>0

out
dr − π . (42)

◦ At r = rc : ṙ = 0 relates E ,L, rc ,prc by ∂̄r H = 0 and H = −m2.
◦ Parametrize trajectory by r and calculate

dt
dr

=
ṫ
ṙ
=

∂̄tH
∂̄r H

. (43)

• Result for κ-Poincarè:

∆φ =
rs

rc

eℓE − 1 + ℓE
eℓE − 1

. (44)
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Kinetic gas dynamics

• Kinetic gas modeled by phase space density ϕ(x ,p) ≥ 0.

• Spherically symmetric gas: phase space density of the form

ϕ = ϕ(r ,pt ,pr ,w) ∼= ϕ(r , E ,L,H(r , E ,pr ,L)) . (45)

• Hamiltonian dynamics applied to gas particle trajectories:

∂rϕ = 0 ⇒ ϕ = ϕ(E ,L,H(r , E ,pr ,L)) . (46)

⇒ ϕ is constant along trajectories and on level sets of E ,L,H.
• Consider monoenergetic ensemble of gas particles:

◦ Fix constant values E = E0,L = L0,H = H0.
◦ Particle density ϕ(E0,L0,H0) = C ̸= 0 on chosen level set.
◦ ϕ = 0 for all other values of E ,L,H.
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Orbiting gas: κ-Poincarè vs. Schwarzschild

• Example: orbiting particles with turnaround radii r1 = 3rs and r2 = 6rs.

• Calculate linear particle density normalized by total particle number:

1
N

dN
dr

. (47)

• Plot inverse since dN/dr → ∞ at turnaround radii r → r1,2.
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Radially inflowing gas: κ-Poincarè vs. Schwarzschild

• Example: radial inflow (L0 = 0) of marginally bound particles:

lim
r→∞

∂̄r H = 0 . (48)

• Calculate linear particle density normalized by inflow rate:(
dN
dt

)−1 dN
dr

. (49)
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Outline

1. Lorentz covariance and invariance

2. Teleparallel gravity

3. Finsler gravity

4. Conclusion
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Conclusion

• Possible signatures of local Lorentz invariance violation:
◦ Dependence of experiments on absolute velocity.
◦ Modified dispersion relation.
◦ Post-Newtonian parameters α1, α2, α3.

• Teleparallel gravity:
◦ Formulated via tetrad or metric and connection.
◦ Matter couples to metric only.
◦ No observable violation of LLI.

• Finsler-based gravity theories:
◦ Based on generalized length functional.
◦ Formulation as modified dispersion relation.
◦ Various effects to search for LLI violation.
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Extra: the associated bundle

π πρ

M
P P ×ρ F

x

p

(p, f ) 7→ p
(p, f ) 7→ [p, f ]

Px × F

Px

(P ×ρ F )x

{p} × F
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Extra: the many faces of connections

TeE

M

E

Tπ(e)M

VeE

HeE

v

η(e, v)

η(e, •)

v ′

σ∗(v ′)
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π π∗τ
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