How to (not) break local Lorentz invariance in gravity theory

Manuel Hohmann

Laboratory of Theoretical Physics - Institute of Physics - University of Tartu Center of Excellence "Fundamental Universe"

Theoretical Physics Seminar - 16. April 2024

Manuel Hohmann (University of Tartu)

Lorentz invariance and gravity

- 1. Lorentz covariance and invariance
- 2. Teleparallel gravity
- 3. Finsler gravity
- 4. Conclusion

1. Lorentz covariance and invariance

- 2. Teleparallel gravity
- 3. Finsler gravity
- 4. Conclusion

Manuel Hohmann (University of Tartu)

- So far unexplained cosmological observations:
 - Accelerating expansion of the universe.
 - Homogeneity of cosmic microwave background.

- So far unexplained cosmological observations:
 - Accelerating expansion of the universe.
 - Homogeneity of cosmic microwave background.
- Models for explaining these observations:
 - ACDM model / dark energy.
 - Inflation.

- So far unexplained cosmological observations:
 - Accelerating expansion of the universe.
 - Homogeneity of cosmic microwave background.
- Models for explaining these observations:
 - ACDM model / dark energy.
 - Inflation.
- Physical mechanisms are not understood:
 - o Unknown type of matter?
 - o Modification of the laws of gravity?
 - Scalar field in addition to metric mediating gravity?
 - Quantum gravity effects?

- So far unexplained cosmological observations:
 - Accelerating expansion of the universe.
 - Homogeneity of cosmic microwave background.
- Models for explaining these observations:
 - ACDM model / dark energy.
 - Inflation.
- Physical mechanisms are not understood:
 - Unknown type of matter?
 - Modification of the laws of gravity?
 - Scalar field in addition to metric mediating gravity?
 - Quantum gravity effects?
- Idea here: modification of the geometric structure of spacetime!
 - Study classical gravity theories based on modified geometry.
 - Consider geometries as effective models of quantum gravity.
 - Derive observable effects to test modified geometry.

- Consider simple particle detector:
 - Particles enter tracker chamber with constant magnetic field.
 - Particles hit calorimeter and emit photons until full stop.
 - Measure radius and direction of particle tracks: momentum.
 - Measure photon frequencies from particle impact: energy.

- Consider simple particle detector:
 - Particles enter tracker chamber with constant magnetic field.
 - Particles hit calorimeter and emit photons until full stop.
 - Measure radius and direction of particle tracks: momentum.
 - Measure photon frequencies from particle impact: energy.
- Units used by particle detector:
 - Measuring frequency requires standard clock.
 - Measuring radius (distance) requires standard ruler.
 - Measuring direction components requires orthogonal axes.
 - Relating magnetic field, momentum, Lorentz force gives orientation.

- Consider simple particle detector:
 - Particles enter tracker chamber with constant magnetic field.
 - Particles hit calorimeter and emit photons until full stop.
 - Measure radius and direction of particle tracks: momentum.
 - Measure photon frequencies from particle impact: energy.
- Units used by particle detector:
 - Measuring frequency requires standard clock.
 - Measuring radius (distance) requires standard ruler.
 - Measuring direction components requires orthogonal axes.
 - Relating magnetic field, momentum, Lorentz force gives orientation.
- Relating different measurements:
 - Particle detector establishes local reference frame.
 - Relatively moving detector at the same point has different frame.
 - Measured energy and momentum disagree between detectors.

- Consider simple particle detector:
 - Particles enter tracker chamber with constant magnetic field.
 - Particles hit calorimeter and emit photons until full stop.
 - Measure radius and direction of particle tracks: momentum.
 - Measure photon frequencies from particle impact: energy.
- Units used by particle detector:
 - Measuring frequency requires standard clock.
 - Measuring radius (distance) requires standard ruler.
 - Measuring direction components requires orthogonal axes.
 - Relating magnetic field, momentum, Lorentz force gives orientation.
- Relating different measurements:
 - Particle detector establishes local reference frame.
 - Relatively moving detector at the same point has different frame.
 - Measured energy and momentum disagree between detectors.
- Questions:
 - How are measurements between detectors at same point related?
 - o How does this relation depend on the location of detectors?

- Einstein equivalence principle:
 - 1. Freely falling test bodies move independent of their composition.
 - 2. Local non-gravitational experiments independent of velocity.
 - 3. Local non-gravitational experiments independent of position.

- Einstein equivalence principle:
 - 1. Freely falling test bodies move independent of their composition.
 - 2. Local non-gravitational experiments independent of velocity.
 - 3. Local non-gravitational experiments independent of position.
- Explanations:
 - Test body: sufficiently small, no charges, no self-gravitation.

- Einstein equivalence principle:
 - 1. Freely falling test bodies move independent of their composition.
 - 2. Local non-gravitational experiments independent of velocity.
 - 3. Local non-gravitational experiments independent of position.
- Explanations:
 - Test body: sufficiently small, no charges, no self-gravitation.
 - Gravity absent in sufficiently small, freely falling laboratory.

- Einstein equivalence principle:
 - 1. Freely falling test bodies move independent of their composition.
 - 2. Local non-gravitational experiments independent of velocity.
 - 3. Local non-gravitational experiments independent of position.
- Explanations:
 - Test body: sufficiently small, no charges, no self-gravitation.
 - Gravity absent in sufficiently small, freely falling laboratory.
 - Local freely falling laboratory with no external forces or fields.

- Einstein equivalence principle:
 - 1. Freely falling test bodies move independent of their composition.
 - 2. Local non-gravitational experiments independent of velocity.
 - 3. Local non-gravitational experiments independent of position.
- Explanations:
 - Test body: sufficiently small, no charges, no self-gravitation.
 - Gravity absent in sufficiently small, freely falling laboratory.
 - Local freely falling laboratory with no external forces or fields.
- Invariance of physical laws:
 - No preferred rest frame: local Lorentz invariance (LLI).

- Einstein equivalence principle:
 - 1. Freely falling test bodies move independent of their composition.
 - 2. Local non-gravitational experiments independent of velocity.
 - 3. Local non-gravitational experiments independent of position.
- Explanations:
 - Test body: sufficiently small, no charges, no self-gravitation.
 - Gravity absent in sufficiently small, freely falling laboratory.
 - Local freely falling laboratory with no external forces or fields.
- Invariance of physical laws:
 - No preferred rest frame: local Lorentz invariance (LLI).
 - No preferred locations: local position invariance (LPI).

- Einstein equivalence principle:
 - 1. Freely falling test bodies move independent of their composition.
 - 2. Local non-gravitational experiments independent of velocity.
 - 3. Local non-gravitational experiments independent of position.
- Explanations:
 - Test body: sufficiently small, no charges, no self-gravitation.
 - Gravity absent in sufficiently small, freely falling laboratory.
 - Local freely falling laboratory with no external forces or fields.
- Invariance of physical laws:
 - No preferred rest frame: local Lorentz invariance (LLI).
 - $\circ~$ No preferred locations: local position invariance (LPI).
- Consequences for gravitational theory:
 - Spacetime equipped with metric $g_{\mu\nu}$.
 - Freely falling particles follow geodesics of $g_{\mu\nu}$.
 - \circ Local, freely falling laboratories with $g_{\mu
 u} = \eta_{\mu
 u}$.
 - Local, non-gravitational physics respects special relativity.

Orthonormal frames and Lorentz transformations

- Establish orthonormal frame e_a^{μ} at spacetime point $x \in M$:
 - $\circ~$ Four-velocity of observer \rightsquigarrow direction of time component.
 - Clock showing proper time → normalization of time component.
 - $\circ~$ Light rays / radar experiment \rightsquigarrow direction of spatial components.
 - $\circ~$ Light turnaround time \rightsquigarrow normalization of spatial components.
 - $\circ~$ Parity-violating particles \rightsquigarrow orientation of frame.

Orthonormal frames and Lorentz transformations

- Establish orthonormal frame e_a^{μ} at spacetime point $x \in M$:
 - $\circ~$ Four-velocity of observer \rightsquigarrow direction of time component.
 - Clock showing proper time → normalization of time component.
 - $\circ~$ Light rays / radar experiment \rightsquigarrow direction of spatial components.
 - $\circ~$ Light turnaround time \rightsquigarrow normalization of spatial components.
 - $\circ~$ Parity-violating particles \leadsto orientation of frame.
- Comparing frames established by different observers:
 - Observers with different four-velocities $\dot{\gamma}^{\mu}, \dot{\gamma}'^{\mu}$ at same point *x*.
 - Each observer establishes an orthonormal frame $e_a^{\mu}, e_a^{\prime \mu}$.
 - LLI: observers' frames are related by Lorentz transformation:

$$e_a^{\prime \ \mu} = \Lambda_a{}^b e_b{}^\mu , \quad \Lambda_a{}^c \Lambda_b{}^d \eta_{cd} = \eta_{ab}$$

⇒ Observers find same metric components

$$g^{\mu
u}=\eta^{ab}e_{a}{}^{\mu}e_{b}{}^{
u}=\eta^{ab}e_{a}'{}^{\mu}e_{b}'{}^{
u}$$
 .

• Frames have same orientation and time-orientation.

(1)

(2)

Lorentz covariance of observables

- Relating observations made by different observers:
 - Observers measure quantities in their own frames e_a^{μ} , e'_a^{μ} .
 - Observers in general obtain different values Q', Q''.
 - Lorentz covariance: representation ρ of SO₀(1,3):

$$Q^{\prime I} = \rho^{I}{}_{J}(\Lambda)Q^{J} \,. \tag{3}$$

• Lorentz invariance if $Q'^{l} = Q^{l}$.

Lorentz covariance of observables

- Relating observations made by different observers:
 - Observers measure quantities in their own frames e_a^{μ} , e'_a^{μ} .
 - Observers in general obtain different values Q', Q''.
 - Lorentz covariance: representation ρ of SO₀(1,3):

$$Q^{\prime I} = \rho^{I}{}_{J}(\Lambda)Q^{J} \,. \tag{3}$$

- Lorentz invariance if $Q'^{I} = Q^{I}$.
- Example: energy-momentum of particles:
 - Observers measure $(p_a) = (E, \vec{p})$ and $(p'_a) = (E', \vec{p}')$.
 - Momentum components form covector: $p'_a = \Lambda_a{}^b p_b$.
 - \Rightarrow Physical, frame independent quantity p_{μ} gives observables:

$$p_a = e_a{}^{\mu}p_{\mu}, \quad p'_a = e'_a{}^{\mu}p_{\mu}.$$
 (4)

 \Rightarrow Mass *m* is Lorentz-invariant quantity:

$$\eta^{ab} p_a p_b = \eta^{ab} p'_a p'_b = g^{\mu\nu} p_\mu p_\nu = -m^2 \,. \tag{5}$$

Lorentz covariance of observables

- Relating observations made by different observers:
 - Observers measure quantities in their own frames e_a^{μ} , e'_a^{μ} .
 - Observers in general obtain different values Q', Q''.
 - Lorentz covariance: representation ρ of SO₀(1,3):

$$Q'^{I} = \rho^{I}{}_{J}(\Lambda)Q^{J} \,. \tag{3}$$

- Lorentz invariance if $Q'^{I} = Q^{I}$.
- Example: energy-momentum of particles:
 - Observers measure $(p_a) = (E, \vec{p})$ and $(p'_a) = (E', \vec{p}')$.
 - Momentum components form covector: $p'_a = \Lambda_a{}^b p_b$.
 - \Rightarrow Physical, frame independent quantity p_{μ} gives observables:

$$p_a = e_a{}^{\mu}p_{\mu}, \quad p'_a = e'_a{}^{\mu}p_{\mu}.$$
 (4)

 \Rightarrow Mass *m* is Lorentz-invariant quantity:

$$\eta^{ab} p_a p_b = \eta^{ab} p_a' p_b' = g^{\mu
u} p_\mu p_
u = -m^2 \,.$$

• Local Lorentz invariance manifest in dispersion relation.

Lorentz invariance and gravity

(5)

• Perturbative expansion of the metric:

$$g_{00}^{(2)} = 2\alpha U, \qquad (6a)$$

$$g_{\alpha\beta}^{(2)} = 2\gamma U \delta_{\alpha\beta}, \qquad (6b)$$

$$g_{0\alpha}^{(3)} = -\frac{1}{2} (3 + 4\gamma + \alpha_1 - \alpha_2 + \zeta_1 - 2\xi) V_{\alpha}$$

$$-\frac{1}{2} (1 + \alpha_2 - \zeta_1 + 2\xi) W_{\alpha}, \qquad (6c)$$

$$g_{00}^{(4)} = -2\beta U^2 - 2\xi \Phi_W + (2 + 2\gamma + \alpha_3 + \zeta_1 - 2\xi) \Phi_1$$

$$+ 2(1 + 3\gamma - 2\beta + \zeta_2 + \xi) \Phi_2 + 2(1 + \zeta_3) \Phi_3$$

$$+ 2(3\gamma + 3\zeta_4 - 2\xi) \Phi_4 - (\zeta_1 - 2\xi) \mathcal{A}. \qquad (6d)$$

• Perturbative expansion of the metric:

$$g_{00}^{(2)} = 2\alpha U, \qquad (6a)$$

$$g_{\alpha\beta}^{(2)} = 2\gamma U \delta_{\alpha\beta}, \qquad (6b)$$

$$g_{0\alpha}^{(3)} = -\frac{1}{2} (3 + 4\gamma + \alpha_1 - \alpha_2 + \zeta_1 - 2\xi) V_{\alpha}$$

$$-\frac{1}{2} (1 + \alpha_2 - \zeta_1 + 2\xi) W_{\alpha}, \qquad (6c)$$

$$g_{00}^{(4)} = -2\beta U^2 - 2\xi \Phi_W + (2 + 2\gamma + \alpha_3 + \zeta_1 - 2\xi) \Phi_1$$

$$+ 2(1 + 3\gamma - 2\beta + \zeta_2 + \xi) \Phi_2 + 2(1 + \zeta_3) \Phi_3$$

$$+ 2(3\gamma + 3\zeta_4 - 2\xi) \Phi_4 - (\zeta_1 - 2\xi) \mathcal{A}. \qquad (6d)$$

• PPN parameters $\alpha, \gamma, \beta, \alpha_1, \dots, \alpha_3, \zeta_1, \dots, \zeta_4, \xi$.

• Perturbative expansion of the metric:

$$g_{00}^{(2)} = 2\alpha U, \qquad (6a)$$

$$g_{\alpha\beta}^{(2)} = 2\gamma U \delta_{\alpha\beta}, \qquad (6b)$$

$$g_{0\alpha}^{(3)} = -\frac{1}{2} (3 + 4\gamma + \alpha_1 - \alpha_2 + \zeta_1 - 2\xi) V_{\alpha}$$

$$-\frac{1}{2} (1 + \alpha_2 - \zeta_1 + 2\xi) W_{\alpha}, \qquad (6c)$$

$$g_{00}^{(4)} = -2\beta U^2 - 2\xi \Phi_W + (2 + 2\gamma + \alpha_3 + \zeta_1 - 2\xi) \Phi_1$$

$$+ 2(1 + 3\gamma - 2\beta + \zeta_2 + \xi) \Phi_2 + 2(1 + \zeta_3) \Phi_3$$

$$+ 2(3\gamma + 3\zeta_4 - 2\xi) \Phi_4 - (\zeta_1 - 2\xi) \mathcal{A}. \qquad (6d)$$

PPN parameters α, γ, β, α₁,..., α₃, ζ₁,..., ζ₄, ξ.
PPN potentials U, V_α, W_α, Φ₁,..., Φ₄, Φ_W, A.

• Perturbative expansion of the metric:

$$g_{00}^{(2)} = 2\alpha U, \qquad (6a)$$

$$g_{\alpha\beta}^{(2)} = 2\gamma U \delta_{\alpha\beta}, \qquad (6b)$$

$$g_{0\alpha}^{(3)} = -\frac{1}{2} (3 + 4\gamma + \alpha_1 - \alpha_2 + \zeta_1 - 2\xi) V_{\alpha}$$

$$-\frac{1}{2} (1 + \alpha_2 - \zeta_1 + 2\xi) W_{\alpha}, \qquad (6c)$$

$$g_{00}^{(4)} = -2\beta U^2 - 2\xi \Phi_W + (2 + 2\gamma + \alpha_3 + \zeta_1 - 2\xi) \Phi_1$$

$$+ 2(1 + 3\gamma - 2\beta + \zeta_2 + \xi) \Phi_2 + 2(1 + \zeta_3) \Phi_3$$

$$+ 2(3\gamma + 3\zeta_4 - 2\xi) \Phi_4 - (\zeta_1 - 2\xi) \mathcal{A}. \qquad (6d)$$

• PPN parameters $\alpha, \gamma, \beta, \alpha_1, \ldots, \alpha_3, \zeta_1, \ldots, \zeta_4, \xi$.

- PPN potentials $U, V_{\alpha}, W_{\alpha}, \Phi_1, \dots, \Phi_4, \Phi_W, A$.
- LLI if $(\alpha_1, \alpha_2, \alpha_3) \neq (0, 0, 0)$.

- 1. Lorentz covariance and invariance
- 2. Teleparallel gravity
- 3. Finsler gravity
- 4. Conclusion

Field variables in teleparallel gravity

- Metric teleparallelism conventionally formulated using:
 - Tetrad / coframe: $\theta^a = \theta^a{}_\mu dx^\mu$ with inverse $e_a = e_a{}^\mu \partial_\mu$.
 - Spin connection: $\omega^{a}{}_{b} = \dot{\omega}^{a}{}_{b\mu} dx^{\mu}$.

Field variables in teleparallel gravity

- Metric teleparallelism conventionally formulated using:
 - Tetrad / coframe: $\theta^a = \theta^a{}_\mu dx^\mu$ with inverse $e_a = e_a{}^\mu \partial_\mu$.
 - Spin connection: $\omega^{a}{}_{b} = \omega^{a}{}_{b\mu} dx^{\mu}$.
- Induced metric-affine geometry:
 - Metric:

$$g_{\mu\nu} = \eta_{ab} \theta^a{}_{\mu} \theta^b{}_{\nu} \,. \tag{7}$$

• Affine connection:

$$\Gamma^{\mu}{}_{\nu\rho} = \boldsymbol{e}_{a}{}^{\mu} \left(\partial_{\rho} \theta^{a}{}_{\nu} + \omega^{a}{}_{b\rho} \theta^{b}{}_{\nu} \right) \,. \tag{8}$$

Field variables in teleparallel gravity

- Metric teleparallelism conventionally formulated using:
 - Tetrad / coframe: $\theta^a = \theta^a{}_\mu dx^\mu$ with inverse $e_a = e_a{}^\mu \partial_\mu$.
 - Spin connection: $\omega^{a}{}_{b} = \omega^{a}{}_{b\mu} dx^{\mu}$.
- Induced metric-affine geometry:
 - Metric:

$$g_{\mu\nu} = \eta_{ab} \theta^a{}_{\mu} \theta^b{}_{\nu} \,. \tag{7}$$

Affine connection:

$$\Gamma^{\mu}{}_{\nu\rho} = \boldsymbol{e}_{\boldsymbol{a}}{}^{\mu} \left(\partial_{\rho} \boldsymbol{\theta}^{\boldsymbol{a}}{}_{\nu} + \omega^{\boldsymbol{a}}{}_{\boldsymbol{b}\rho} \boldsymbol{\theta}^{\boldsymbol{b}}{}_{\nu} \right) \,. \tag{8}$$

- Conditions on the spin connection:
 - Flatness R = 0:

$$\partial_{\mu}\omega^{a}{}_{b\nu} - \partial_{\nu}\omega^{a}{}_{b\mu} + \omega^{a}{}_{c\mu}\omega^{c}{}_{b\nu} - \omega^{a}{}_{c\nu}\omega^{c}{}_{b\mu} = \mathbf{0}.$$
(9)

• Metric compatibility Q = 0:

$$\eta_{ac}\omega^{c}{}_{b\mu}+\eta_{bc}\omega^{c}{}_{a\mu}=0.$$
(10)

$$\theta^{a}{}_{\mu} \mapsto \theta^{\prime a}{}_{\mu} = \Lambda^{a}{}_{b}\theta^{b}{}_{\mu} \,. \tag{11}$$

- \checkmark
- Metric is invariant: $g'_{\mu\nu} = g_{\mu\nu}$. Connection is not invariant: ${\Gamma'}^{\mu}{}_{\nu\rho} \neq {\Gamma}^{\mu}{}_{\nu\rho}$. 4

$$\theta^{a}{}_{\mu} \mapsto \theta^{\prime a}{}_{\mu} = \Lambda^{a}{}_{b}\theta^{b}{}_{\mu} \,. \tag{11}$$

- \checkmark Metric is invariant: $g'_{\mu\nu} = g_{\mu\nu}$.
- \oint Connection is not invariant: $\Gamma'^{\mu}{}_{\nu\rho} \neq \Gamma^{\mu}{}_{\nu\rho}$.
- Perform also transformation of the spin connection:

$$\omega^{a}{}_{b\mu} \mapsto \omega^{\prime a}{}_{b\mu} = \Lambda^{a}{}_{c}(\Lambda^{-1})^{d}{}_{b}\omega^{c}{}_{d\mu} + \Lambda^{a}{}_{c}\partial_{\mu}(\Lambda^{-1})^{c}{}_{b}.$$
(12)

- \checkmark Metric is invariant: $g'_{\mu\nu} = g_{\mu\nu}$.
- ✓ Connection is invariant: $\Gamma'^{\mu}_{\nu\rho} = \Gamma^{\mu}_{\nu\rho}$.

$$\theta^{a}{}_{\mu} \mapsto \theta^{\prime a}{}_{\mu} = \Lambda^{a}{}_{b}\theta^{b}{}_{\mu} \,. \tag{11}$$

- \checkmark Metric is invariant: $g'_{\mu
 u} = g_{\mu
 u}$.
- \oint Connection is not invariant: $\Gamma'^{\mu}{}_{\nu\rho} \neq \Gamma^{\mu}{}_{\nu\rho}$.
- Perform also transformation of the spin connection:

$$\omega^{a}{}_{b\mu} \mapsto \omega^{\prime a}{}_{b\mu} = \Lambda^{a}{}_{c}(\Lambda^{-1})^{d}{}_{b}\omega^{c}{}_{d\mu} + \Lambda^{a}{}_{c}\partial_{\mu}(\Lambda^{-1})^{c}{}_{b}.$$
(12)

- \checkmark Metric is invariant: $g'_{\mu
 u}=g_{\mu
 u}.$
- \checkmark Connection is invariant: Γ^{*μ*}_{νρ} = Γ^{*μ*}_{νρ}.
- \Rightarrow Metric-affine geometry equivalently described by:
 - Metric $g_{\mu\nu}$ and affine connection $\Gamma^{\mu}{}_{\nu\rho}$.
 - Equivalence class of tetrad $\theta^a{}_\mu$ and spin connection $\omega^a{}_{b\mu}$.
 - Equivalence defined with respect to local Lorentz transformations.

$$\theta^{a}{}_{\mu} \mapsto \theta^{\prime a}{}_{\mu} = \Lambda^{a}{}_{b}\theta^{b}{}_{\mu} \,. \tag{11}$$

- \checkmark Metric is invariant: $g'_{\mu
 u} = g_{\mu
 u}$.
- \oint Connection is not invariant: $\Gamma'^{\mu}{}_{\nu\rho} \neq \Gamma^{\mu}{}_{\nu\rho}$.
- Perform also transformation of the spin connection:

$$\omega^{a}{}_{b\mu} \mapsto \omega^{\prime a}{}_{b\mu} = \Lambda^{a}{}_{c} (\Lambda^{-1})^{d}{}_{b} \omega^{c}{}_{d\mu} + \Lambda^{a}{}_{c} \partial_{\mu} (\Lambda^{-1})^{c}{}_{b}.$$
(12)

- \checkmark Metric is invariant: $g'_{\mu
 u} = g_{\mu
 u}$.
- ✓ Connection is invariant: Γ'^μ_{νρ} = Γ^μ_{νρ}.
- \Rightarrow Metric-affine geometry equivalently described by:
 - Metric $g_{\mu\nu}$ and affine connection $\Gamma^{\mu}{}_{\nu\rho}$.
 - Equivalence class of tetrad $\theta^a{}_\mu$ and spin connection $\omega^a{}_{b\mu}$.
 - Equivalence defined with respect to local Lorentz transformations.
- Is LLI broken if teleparallel gravity action depends on $\Gamma^{\mu}{}_{\nu\rho}$?

The Weitzenböck gauge

- Intuitive conclusion: One can always use the Weitzenböck gauge.
 - The spin connection is flat:

$$\partial_{\mu}\omega^{a}{}_{b\nu} - \partial_{\nu}\omega^{a}{}_{b\mu} + \omega^{a}{}_{c\mu}\omega^{c}{}_{b\nu} - \omega^{a}{}_{c\nu}\omega^{c}{}_{b\mu} \equiv 0.$$
⁽¹³⁾

 \Rightarrow The spin connection can always be written in the form

$$\omega^a{}_{b\mu} = \Lambda^a{}_c \partial_\mu (\Lambda^{-1})^c{}_b \,. \tag{14}$$

 \Rightarrow One can achieve the Weitzenböck gauge by $\theta^a{}_{\mu} = \Lambda^a{}_b \breve{\theta}^b{}_{\mu}$.

- Intuitive conclusion: One can always use the Weitzenböck gauge.
 - The spin connection is flat:

$$\partial_{\mu}\omega^{a}{}_{b\nu} - \partial_{\nu}\omega^{a}{}_{b\mu} + \omega^{a}{}_{c\mu}\omega^{c}{}_{b\nu} - \omega^{a}{}_{c\nu}\omega^{c}{}_{b\mu} \equiv 0.$$
⁽¹³⁾

 \Rightarrow The spin connection can always be written in the form

$$\omega^{a}{}_{b\mu} = \Lambda^{a}{}_{c}\partial_{\mu}(\Lambda^{-1})^{c}{}_{b}.$$
(14)

⇒ One can achieve the Weitzenböck gauge by $\theta^a{}_\mu = \Lambda^a{}_b \ddot{\theta}^b{}_\mu$. • $\Lambda^a{}_b$ and $\ddot{\theta}^a{}_\mu$ defined only up to global transform

$$\Lambda^{a}{}_{b} \mapsto \Lambda^{\prime a}{}_{b} = \Lambda^{a}{}_{c}\Omega^{c}{}_{b}, \quad \overset{\text{wa}}{\theta}{}^{a}{}_{\mu} \mapsto \overset{\text{wa}}{\theta}{}^{\prime a}{}_{\mu} = (\Omega^{-1})^{a}{}_{b}\overset{\text{wb}}{\theta}{}^{b}{}_{\mu}.$$
(15)

- Intuitive conclusion: One can always use the Weitzenböck gauge.
 - The spin connection is flat:

$$\partial_{\mu}\omega^{a}{}_{b\nu} - \partial_{\nu}\omega^{a}{}_{b\mu} + \omega^{a}{}_{c\mu}\omega^{c}{}_{b\nu} - \omega^{a}{}_{c\nu}\omega^{c}{}_{b\mu} \equiv 0.$$
(13)

 \Rightarrow The spin connection can always be written in the form

$$\omega^{a}{}_{b\mu} = \Lambda^{a}{}_{c}\partial_{\mu}(\Lambda^{-1})^{c}{}_{b}.$$
(14)

 \Rightarrow One can achieve the Weitzenböck gauge by $\theta^a{}_\mu = \Lambda^a{}_b \ddot{\theta}^b{}_\mu$.

• $\Lambda^a{}_b$ and ${\breve{\theta}}^a{}_\mu$ defined only up to global transform

$$\Lambda^{a}{}_{b} \mapsto \Lambda^{\prime a}{}_{b} = \Lambda^{a}{}_{c}\Omega^{c}{}_{b}, \quad \overset{\text{wa}}{\theta}{}^{a}{}_{\mu} \mapsto \overset{\text{wa}}{\theta}{}^{\prime a}{}_{\mu} = (\Omega^{-1})^{a}{}_{b}\overset{\text{wb}}{\theta}{}^{b}{}_{\mu}.$$
(15)

• Questions posed by the adept of geometry:

1. How can we determine the transformation $\Lambda^a{}_b$?

- Intuitive conclusion: One can always use the Weitzenböck gauge.
 - The spin connection is flat:

$$\partial_{\mu}\omega^{a}{}_{b\nu} - \partial_{\nu}\omega^{a}{}_{b\mu} + \omega^{a}{}_{c\mu}\omega^{c}{}_{b\nu} - \omega^{a}{}_{c\nu}\omega^{c}{}_{b\mu} \equiv 0.$$
(13)

 \Rightarrow The spin connection can always be written in the form

$$\omega^{a}{}_{b\mu} = \Lambda^{a}{}_{c}\partial_{\mu}(\Lambda^{-1})^{c}{}_{b}.$$
(14)

 \Rightarrow One can achieve the Weitzenböck gauge by $\theta^a{}_{\mu} = \Lambda^a{}_b \ddot{\theta}^b{}_{\mu}$.

• $\Lambda^{a}{}_{b}$ and $\ddot{\theta}^{a}{}_{\mu}$ defined only up to global transform

$$\Lambda^{a}{}_{b} \mapsto \Lambda^{\prime a}{}_{b} = \Lambda^{a}{}_{c}\Omega^{c}{}_{b}, \quad \overset{\text{wa}}{\theta}{}^{a}{}_{\mu} \mapsto \overset{\text{wa}}{\theta}{}^{\prime a}{}_{\mu} = (\Omega^{-1})^{a}{}_{b}\overset{\text{wb}}{\theta}{}^{b}{}_{\mu}. \tag{15}$$

- Questions posed by the adept of geometry:
 - 1. How can we determine the transformation $\Lambda^a{}_b$?
 - 2. Is this even true?

- Intuitive conclusion: One can always use the Weitzenböck gauge.
 - $\circ~$ The spin connection is flat:

$$\partial_{\mu}\omega^{a}{}_{b\nu} - \partial_{\nu}\omega^{a}{}_{b\mu} + \omega^{a}{}_{c\mu}\omega^{c}{}_{b\nu} - \omega^{a}{}_{c\nu}\omega^{c}{}_{b\mu} \equiv 0.$$
(13)

 \Rightarrow The spin connection can always be written in the form

$$\omega^{a}{}_{b\mu} = \Lambda^{a}{}_{c}\partial_{\mu}(\Lambda^{-1})^{c}{}_{b}.$$
(14)

 \Rightarrow One can achieve the Weitzenböck gauge by $\theta^{a}_{\mu} = \Lambda^{a}_{b} \ddot{\theta}^{b}_{\mu}$.

• $\Lambda^{a}{}_{b}$ and $\overset{\scriptscriptstyle W}{\theta}{}^{a}{}_{\mu}$ defined only up to global transform

$$\Lambda^{a}{}_{b} \mapsto \Lambda^{\prime a}{}_{b} = \Lambda^{a}{}_{c}\Omega^{c}{}_{b}, \quad \overset{\text{wa}}{\theta}{}^{a}{}_{\mu} \mapsto \overset{\text{wa}}{\theta}{}^{\prime a}{}_{\mu} = (\Omega^{-1})^{a}{}_{b}\overset{\text{wb}}{\theta}{}^{b}{}_{\mu}.$$
(15)

- Questions posed by the adept of geometry:
 - 1. How can we determine the transformation $\Lambda^a{}_b$?
 - 2. Is this even true?
- Remark: this holds also in symmetric and general teleparallelism.

- Recall that we have gauge invariant quantities:
 - The metric $g_{\mu\nu} = \eta_{ab} \theta^a{}_{\mu} \theta^b{}_{\nu}$.
 - The teleparallel affine connection $\Gamma^{\mu}{}_{\nu\rho} = e_{a}{}^{\mu} \left(\partial_{\rho} \theta^{a}{}_{\nu} + \omega^{a}{}_{b\rho} \theta^{b}{}_{\nu} \right).$

- Recall that we have gauge invariant quantities:
 - The metric $g_{\mu\nu} = \eta_{ab} \theta^a{}_{\mu} \theta^b{}_{\nu}$.
 - The teleparallel affine connection $\Gamma^{\mu}{}_{\nu\rho} = e_{a}{}^{\mu} \left(\partial_{\rho} \theta^{a}{}_{\nu} + \omega^{a}{}_{b\rho} \theta^{b}{}_{\nu} \right).$
- The tetrad and connection satisfy the "tetrad postulate":

$$\partial_{\mu}\theta^{a}{}_{\nu} + \omega^{a}{}_{b\mu}\theta^{b}{}_{\nu} - \Gamma^{\rho}{}_{\nu\mu}\theta^{a}{}_{\rho} = 0.$$
(16)

- Recall that we have gauge invariant quantities:
 - The metric $g_{\mu\nu} = \eta_{ab} \theta^a{}_{\mu} \theta^b{}_{\nu}$.
 - The teleparallel affine connection $\Gamma^{\mu}{}_{\nu\rho} = e_{a}{}^{\mu} \left(\partial_{\rho} \theta^{a}{}_{\nu} + \omega^{a}{}_{b\rho} \theta^{b}{}_{\nu} \right).$
- The tetrad and connection satisfy the "tetrad postulate":

$$\partial_{\mu} \overset{\omega}{\theta}{}^{a}{}_{\nu} - \Gamma^{\rho}{}_{\nu\mu} \overset{\omega}{\theta}{}^{a}{}_{\rho} = \mathbf{0}.$$
 (16)

• The tetrad postulate also holds in the Weitzenböck gauge.

- Recall that we have gauge invariant quantities:
 - The metric $g_{\mu\nu} = \eta_{ab} \theta^a{}_{\mu} \theta^b{}_{\nu}$.
 - The teleparallel affine connection $\Gamma^{\mu}{}_{\nu\rho} = e_{a}{}^{\mu} \left(\partial_{\rho} \theta^{a}{}_{\nu} + \omega^{a}{}_{b\rho} \theta^{b}{}_{\nu} \right).$
- The tetrad and connection satisfy the "tetrad postulate":

$$\partial_{\mu} \overset{\mathsf{w}}{\theta}{}^{a}{}_{\nu} - \Gamma^{\rho}{}_{\nu\mu} \overset{\mathsf{w}}{\theta}{}^{a}{}_{\rho} = \mathbf{0}.$$
 (16)

- The tetrad postulate also holds in the Weitzenböck gauge.
- \Rightarrow Each component $\ddot{\theta}^{a}_{\mu}dx^{\mu}$ is a covariantly constant covector field.

- Recall that we have gauge invariant quantities:
 - The metric $g_{\mu\nu} = \eta_{ab} \theta^a{}_{\mu} \theta^b{}_{\nu}$.
 - The teleparallel affine connection $\Gamma^{\mu}{}_{\nu\rho} = e_{a}{}^{\mu} \left(\partial_{\rho} \theta^{a}{}_{\nu} + \omega^{a}{}_{b\rho} \theta^{b}{}_{\nu} \right).$
- The tetrad and connection satisfy the "tetrad postulate":

$$\partial_{\mu} \overset{\omega}{\theta}{}^{a}{}_{\nu} - \Gamma^{\rho}{}_{\nu\mu} \overset{\omega}{\theta}{}^{a}{}_{\rho} = \mathbf{0}.$$
(16)

- The tetrad postulate also holds in the Weitzenböck gauge.
- \Rightarrow Each component $\ddot{ heta}_{\mu}^{\mu}dx^{\mu}$ is a covariantly constant covector field.
- \Rightarrow Recipe for integrating the connection:
 - 1. Choose $\ddot{ heta}^{a}_{\mu}(x)$ at some $x \in M$ to fit with the metric.

- Recall that we have gauge invariant quantities:
 - The metric $g_{\mu\nu} = \eta_{ab} \theta^a{}_{\mu} \theta^b{}_{\nu}$.
 - The teleparallel affine connection $\Gamma^{\mu}{}_{\nu\rho} = e_{a}{}^{\mu} \left(\partial_{\rho} \theta^{a}{}_{\nu} + \omega^{a}{}_{b\rho} \theta^{b}{}_{\nu} \right).$
- The tetrad and connection satisfy the "tetrad postulate":

$$\partial_{\mu} \overset{\omega}{\theta}{}^{a}{}_{\nu} - \Gamma^{\rho}{}_{\nu\mu} \overset{\omega}{\theta}{}^{a}{}_{\rho} = \mathbf{0}.$$
(16)

- The tetrad postulate also holds in the Weitzenböck gauge.
- \Rightarrow Each component $\ddot{ heta}_{\mu}^{\mu}dx^{\mu}$ is a covariantly constant covector field.
- \Rightarrow Recipe for integrating the connection:
 - 1. Choose $\ddot{\theta}^{a}{}_{\mu}(x)$ at some $x \in M$ to fit with the metric.
 - 2. For any other $y \in M$, choose path $x \rightsquigarrow y$, and parallel transport.

- Recall that we have gauge invariant quantities:
 - The metric $g_{\mu\nu} = \eta_{ab} \theta^a{}_{\mu} \theta^b{}_{\nu}$.
 - The teleparallel affine connection $\Gamma^{\mu}{}_{\nu\rho} = e_{a}{}^{\mu} \left(\partial_{\rho} \theta^{a}{}_{\nu} + \omega^{a}{}_{b\rho} \theta^{b}{}_{\nu} \right).$
- The tetrad and connection satisfy the "tetrad postulate":

$$\partial_{\mu} \overset{\mathsf{w}}{\theta}{}^{a}{}_{\nu} - \Gamma^{\rho}{}_{\nu\mu} \overset{\mathsf{w}}{\theta}{}^{a}{}_{\rho} = \mathbf{0}.$$
(16)

- The tetrad postulate also holds in the Weitzenböck gauge.
- \Rightarrow Each component $\ddot{ heta}_{\mu} dx^{\mu}$ is a covariantly constant covector field.
- \Rightarrow Recipe for integrating the connection:
 - 1. Choose $\ddot{\theta}^{a}{}_{\mu}(x)$ at some $x \in M$ to fit with the metric.
 - 2. For any other $y \in M$, choose path $x \rightsquigarrow y$, and parallel transport.
- Obtained tetrad satisfies required properties:
 - $\checkmark \ \ddot{\theta}^a{}_\mu$ gives correct metric, since connection is metric-compatible.

- Recall that we have gauge invariant quantities:
 - The metric $g_{\mu\nu} = \eta_{ab} \theta^a{}_{\mu} \theta^b{}_{\nu}$.
 - The teleparallel affine connection $\Gamma^{\mu}{}_{\nu\rho} = e_a{}^{\mu} \left(\partial_{\rho} \theta^a{}_{\nu} + \omega^a{}_{b\rho} \theta^b{}_{\nu} \right).$
- The tetrad and connection satisfy the "tetrad postulate":

$$\partial_{\mu} \ddot{\theta}^{a}{}_{\nu} - \Gamma^{\rho}{}_{\nu\mu} \ddot{\theta}^{a}{}_{\rho} = 0.$$
 (16)

- The tetrad postulate also holds in the Weitzenböck gauge.
- \Rightarrow Each component $\ddot{\theta}^{a}{}_{\mu}dx^{\mu}$ is a covariantly constant covector field.
- \Rightarrow Recipe for integrating the connection:
 - 1. Choose $\ddot{\theta}^{a}{}_{\mu}(x)$ at some $x \in M$ to fit with the metric.
 - 2. For any other $y \in M$, choose path $x \rightsquigarrow y$, and parallel transport.
- Obtained tetrad satisfies required properties:

 - \checkmark Global Lorentz invariance encoded in freedom of choice for $\overset{\text{w}}{\theta}{}^{a}{}_{\mu}(x)$.

- Recipe for integrating the connection:
 - 1. At some $\mathbf{x} \in \mathbf{M}$,

- Recipe for integrating the connection:
 - 1. At some $x \in M$, choose $\tilde{\theta}^a{}_{\mu}(x)$ to fit with the metric.

- Recipe for integrating the connection:
 - 1. At some $x \in M$, choose $\overset{\forall a}{\theta}_{\mu}(x)$ to fit with the metric.
 - 2. For any other $y \in M$,

Manuel Hohmann (University of Tartu)

- Recipe for integrating the connection:
 - 1. At some $x \in M$, choose $\frac{\ddot{\theta}^a}{\mu}(x)$ to fit with the metric.
 - 2. For any other $y \in M$, choose path $x \stackrel{\gamma}{\leadsto} y$,

- Recipe for integrating the connection:
 - 1. At some $x \in M$, choose $\frac{\ddot{\theta}^a}{\mu}(x)$ to fit with the metric.
 - 2. For any other $y \in M$, choose path $x \stackrel{\gamma}{\rightarrow} y$, and parallel transport.

- Recipe for integrating the connection:
 - 1. At some $x \in M$, choose $\frac{\ddot{\theta}^a}{\mu}(x)$ to fit with the metric.
 - 2. For any other $y \in M$, choose path $x \stackrel{\gamma}{\leadsto} y$, and parallel transport.
- What happens if we choose another path $x \stackrel{\gamma'}{\rightarrow} y$?

- Recipe for integrating the connection:
 - 1. At some $x \in M$, choose $\frac{\ddot{\theta}^a}{\mu}(x)$ to fit with the metric.
 - 2. For any other $y \in M$, choose path $x \stackrel{\gamma}{\rightarrow} y$, and parallel transport.
- What happens if we choose another path $x \stackrel{\gamma'}{\rightarrow} y$?
 - \checkmark Vanishing curvature: parallel transport along both path agrees.

- Recipe for integrating the connection:
 - 1. At some $x \in M$, choose $\tilde{\theta}^{a}{}_{\mu}(x)$ to fit with the metric.
 - 2. For any other $y \in M$, choose path $x \stackrel{\gamma}{\rightarrow} y$, and parallel transport.
- What happens if we choose another path $x \stackrel{\gamma'}{\rightsquigarrow} y$?
 - \checkmark Vanishing curvature: parallel transport along both path agrees.
 - \oint But only if γ and γ' are homotopic paths!

- Starting from an arbitrary tetrad and flat spin connection:
 - One may always locally transform into Weitzenböck gauge.
 - One may not always globally transform into Weitzenböck gauge.

- Starting from an arbitrary tetrad and flat spin connection:
 - · One may always locally transform into Weitzenböck gauge.
 - One may not always globally transform into Weitzenböck gauge.
- Is there always some global tetrad and flat spin connection?

- Starting from an arbitrary tetrad and flat spin connection:
 - · One may always locally transform into Weitzenböck gauge.
 - One may not always globally transform into Weitzenböck gauge.
- Is there always some global tetrad and flat spin connection?
- The case of the tetrad:
 - We want to be able to describe spinor fields on spacetime.

- Starting from an arbitrary tetrad and flat spin connection:
 - · One may always locally transform into Weitzenböck gauge.
 - One may not always globally transform into Weitzenböck gauge.
- Is there always some global tetrad and flat spin connection?
- The case of the tetrad:
 - We want to be able to describe spinor fields on spacetime.
 - \Rightarrow Physical spacetime manifold must admit a spin structure.

- Starting from an arbitrary tetrad and flat spin connection:
 - · One may always locally transform into Weitzenböck gauge.
 - One may not always globally transform into Weitzenböck gauge.
- Is there always some global tetrad and flat spin connection?
- The case of the tetrad:
 - We want to be able to describe spinor fields on spacetime.
 - \Rightarrow Physical spacetime manifold must admit a spin structure.
 - \circ Spacetime admits a spin structure \Leftrightarrow it is parallelizable. [Geroch '68]

- Starting from an arbitrary tetrad and flat spin connection:
 - · One may always locally transform into Weitzenböck gauge.
 - One may not always globally transform into Weitzenböck gauge.
- Is there always some global tetrad and flat spin connection?
- The case of the tetrad: \checkmark
 - We want to be able to describe spinor fields on spacetime.
 - \Rightarrow Physical spacetime manifold must admit a spin structure.
 - \circ Spacetime admits a spin structure \Leftrightarrow it is parallelizable. [Geroch '68]
 - \Rightarrow Physical spacetime possesses global frame bundle sections.

- Starting from an arbitrary tetrad and flat spin connection:
 - · One may always locally transform into Weitzenböck gauge.
 - One may not always globally transform into Weitzenböck gauge.
- Is there always some global tetrad and flat spin connection?
- The case of the tetrad: \checkmark
 - $\circ~$ We want to be able to describe spinor fields on spacetime.
 - \Rightarrow Physical spacetime manifold must admit a spin structure.
 - \circ Spacetime admits a spin structure \Leftrightarrow it is parallelizable. [Geroch '68]
 - \Rightarrow Physical spacetime possesses global frame bundle sections.
- The case of the spin connection:
 - $\circ~$ Parallelizable manifold always admits flat affine connection $\Gamma.$

- Starting from an arbitrary tetrad and flat spin connection:
 - · One may always locally transform into Weitzenböck gauge.
 - One may not always globally transform into Weitzenböck gauge.
- Is there always some global tetrad and flat spin connection?
- The case of the tetrad: \checkmark
 - $\circ~$ We want to be able to describe spinor fields on spacetime.
 - \Rightarrow Physical spacetime manifold must admit a spin structure.
 - \circ Spacetime admits a spin structure \Leftrightarrow it is parallelizable. [Geroch '68]
 - \Rightarrow Physical spacetime possesses global frame bundle sections.
- The case of the spin connection: \checkmark
 - Parallelizable manifold always admits flat affine connection Γ.
 - \Rightarrow A spin connection can be constructed from the "tetrad postulate".

- Starting from an arbitrary tetrad and flat spin connection:
 - · One may always locally transform into Weitzenböck gauge.
 - One may not always globally transform into Weitzenböck gauge.
- Is there always some global tetrad and flat spin connection?
- The case of the tetrad: \checkmark
 - $\circ~$ We want to be able to describe spinor fields on spacetime.
 - \Rightarrow Physical spacetime manifold must admit a spin structure.
 - \circ Spacetime admits a spin structure \Leftrightarrow it is parallelizable. [Geroch '68]
 - \Rightarrow Physical spacetime possesses global frame bundle sections.
- The case of the spin connection: \checkmark
 - Parallelizable manifold always admits flat affine connection Γ.
 - \Rightarrow A spin connection can be constructed from the "tetrad postulate".

 \Rightarrow Physical spacetime always has global tetrad and spin connection.

- Consider local Lorentz transformations $\Lambda: M \to O(1,3)$:
 - Simultaneous action on tetrad and spin connection:

$$(\theta,\omega)\mapsto (\Lambda\theta,\Lambda\omega\Lambda^{-1}+\Lambda d\Lambda^{-1}).$$
(17)

- $\circ (\theta, \omega) \stackrel{\wedge}{\sim} (\theta', \omega')$ if and only if $(g, \Gamma) = (g', \Gamma')$.
- \Rightarrow Orbits parametrized by metric and teleparallel affine connection.

- Consider local Lorentz transformations $\Lambda: M \to O(1,3)$:
 - $\circ~$ Simultaneous action on tetrad and spin connection:

$$(\theta,\omega)\mapsto (\Lambda\theta,\Lambda\omega\Lambda^{-1}+\Lambda d\Lambda^{-1}).$$
(17)

- $\circ (\theta, \omega) \stackrel{\wedge}{\sim} (\theta', \omega')$ if and only if $(g, \Gamma) = (g', \Gamma')$.
- $\Rightarrow~$ Orbits parametrized by metric and teleparallel affine connection.
- Consider locally O(1,3)-invariant teleparallel gravity theory:
 - $\Lambda: M \to O(1,3)$ maps solutions to solutions.
 - \Rightarrow Only metric and affine connection become dynamical variables.

- Consider local Lorentz transformations $\Lambda: M \to O(1,3)$:
 - $\circ~$ Simultaneous action on tetrad and spin connection:

$$(heta,\omega)\mapsto (\Lambda heta,\Lambda\omega\Lambda^{-1}+\Lambda d\Lambda^{-1})$$
 .

- $\circ (\theta, \omega) \stackrel{\wedge}{\sim} (\theta', \omega')$ if and only if $(g, \Gamma) = (g', \Gamma')$.
- $\Rightarrow~$ Orbits parametrized by metric and teleparallel affine connection.
- Consider locally O(1,3)-invariant teleparallel gravity theory:
 - $\Lambda: M \to O(1,3)$ maps solutions to solutions.
 - \Rightarrow Only metric and affine connection become dynamical variables.
- Decomposition of the Lorentz group:
 - $\circ~$ Proper Lorentz group $SO_0(1,3)\subset O(1,3),\,\mathfrak{T},\mathfrak{P}\in O(1,3).$
 - \circ Standard model of particle physics only invariant under SO₀(1,3).
 - \Rightarrow Need orientation and time orientation in addition to g and Γ .
 - \Rightarrow Physical geometries parametrized by orbits of SO₀(1,3).

(17)

- Consider local Lorentz transformations $\Lambda: M \to O(1,3)$:
 - $\circ~$ Simultaneous action on tetrad and spin connection:

$$(heta,\omega)\mapsto (\Lambda heta,\Lambda\omega\Lambda^{-1}+\Lambda d\Lambda^{-1})$$
 .

- $\circ \ (heta,\omega) \stackrel{\wedge}{\sim} (heta',\omega')$ if and only if $(g,\Gamma)=(g',\Gamma').$
- $\Rightarrow~$ Orbits parametrized by metric and teleparallel affine connection.
- Consider locally O(1,3)-invariant teleparallel gravity theory:
 - $\Lambda: M \to O(1,3)$ maps solutions to solutions.
 - \Rightarrow Only metric and affine connection become dynamical variables.
- Decomposition of the Lorentz group:
 - $\circ~$ Proper Lorentz group $SO_0(1,3)\subset O(1,3), \mathfrak{T}, \mathfrak{P}\in O(1,3).$
 - $\,\circ\,$ Standard model of particle physics only invariant under SO_0(1,3).
 - \Rightarrow Need orientation and time orientation in addition to g and Γ .
 - \Rightarrow Physical geometries parametrized by orbits of SO₀(1,3).
- Physical geometry: $SO_0(1,3)$ reduction of the frame bundle & Γ .

(17)

What about the teleparallel affine connection?

- Coupling of the teleparallel affine connection Γ:
 - No direct coupling with matter (commonly considered consistent).
 - Possible coupling to metric through gravity (vanishes in TEGR).

What about the teleparallel affine connection?

- Coupling of the teleparallel affine connection Γ:
 - No direct coupling with matter (commonly considered consistent).
 - Possible coupling to metric through gravity (vanishes in TEGR).
- \Rightarrow Teleparallel connection becomes just (another) "dark" field:
 - Scalar fields / dark energy in scalar-tensor theories.
 - "Dark" vector fields, "dark" photons in generalized Proca theories.
 - Second metric in bimetric theories.

What about the teleparallel affine connection?

- Coupling of the teleparallel affine connection Γ:
 - No direct coupling with matter (commonly considered consistent).
 - Possible coupling to metric through gravity (vanishes in TEGR).
- \Rightarrow Teleparallel connection becomes just (another) "dark" field:
 - Scalar fields / dark energy in scalar-tensor theories.
 - "Dark" vector fields, "dark" photons in generalized Proca theories.
 - Second metric in bimetric theories.
- \Rightarrow The "usual rules" for playing with "dark" fields apply:
 - Find out which degrees of freedom couple to physical observables.
 - "Remnant symmetries" may yield gauge degrees of freedom.
 - Make sure physical degrees of freedom obey healthy evolution.
 - # Pay attention to possible pathologies:
 - · Is the evolution of physical degrees of freedom determined?
 - · Are the physical degrees of freedom stable under perturbations?
 - Does the theory remain healthy under quantization?

- What are the dynamical field variables in teleparallel gravity?
 - 1. Only a tetrad.

- What are the dynamical field variables in teleparallel gravity?
 - 1. Only a tetrad.
 - 2. A tetrad and a flat, antisymmetric spin connection.
- Problems encountered with choice of variables:
 - 1. Does not reflect observed local Lorentz invariance.

- What are the dynamical field variables in teleparallel gravity?
 - 1. Only a tetrad.
 - 2. A tetrad and a flat, antisymmetric spin connection.
 - 3. A metric and a flat, metric-compatible affine connection.
- Problems encountered with choice of variables:
 - 1. Does not reflect observed local Lorentz invariance.
 - 2. Contains unphysical gauge degrees of freedom as variables.

- What are the dynamical field variables in teleparallel gravity?
 - 1. Only a tetrad.
 - 2. A tetrad and a flat, antisymmetric spin connection.
 - 3. A metric and a flat, metric-compatible affine connection.
 - 4. A flat connection on a $SO_0(1,3)$ -reduction of the frame bundle.
- Problems encountered with choice of variables:
 - 1. Does not reflect observed local Lorentz invariance.
 - 2. Contains unphysical gauge degrees of freedom as variables.
 - 3. Does not contain information on orientation and time orientation.

- What are the dynamical field variables in teleparallel gravity?
 - 1. Only a tetrad.
 - 2. A tetrad and a flat, antisymmetric spin connection.
 - 3. A metric and a flat, metric-compatible affine connection.
 - 4. A flat connection on a $SO_0(1,3)$ -reduction of the frame bundle.
- Problems encountered with choice of variables:
 - 1. Does not reflect observed local Lorentz invariance.
 - 2. Contains unphysical gauge degrees of freedom as variables.
 - 3. Does not contain information on orientation and time orientation.
- Can we still use any of the other field variables?
- $4 \rightarrow 3$: If (time) orientation is fixed, metric and connection are sufficient.

- What are the dynamical field variables in teleparallel gravity?
 - 1. Only a tetrad.
 - 2. A tetrad and a flat, antisymmetric spin connection.
 - 3. A metric and a flat, metric-compatible affine connection.
 - 4. A flat connection on a $SO_0(1,3)$ -reduction of the frame bundle.
- Problems encountered with choice of variables:
 - 1. Does not reflect observed local Lorentz invariance.
 - 2. Contains unphysical gauge degrees of freedom as variables.
 - 3. Does not contain information on orientation and time orientation.
- Can we still use any of the other field variables?
- $4 \rightarrow 3$: If (time) orientation is fixed, metric and connection are sufficient.
- $3 \rightarrow 2$: Possible to choose tetrad and spin connection as representatives.

- What are the dynamical field variables in teleparallel gravity?
 - 1. Only a tetrad.
 - 2. A tetrad and a flat, antisymmetric spin connection.
 - 3. A metric and a flat, metric-compatible affine connection.
 - 4. A flat connection on a $SO_0(1,3)$ -reduction of the frame bundle.
- Problems encountered with choice of variables:
 - 1. Does not reflect observed local Lorentz invariance.
 - 2. Contains unphysical gauge degrees of freedom as variables.
 - 3. Does not contain information on orientation and time orientation.
- Can we still use any of the other field variables?
- $4 \rightarrow 3$: If (time) orientation is fixed, metric and connection are sufficient.
- $3 \rightarrow 2$: Possible to choose tetrad and spin connection as representatives.
- $2 \rightarrow 1$: Locally possible to transform into Weitzenböck gauge.

- What are the dynamical field variables in teleparallel gravity?
 - 1. Only a tetrad.
 - 2. A tetrad and a flat, antisymmetric spin connection.
 - 3. A metric and a flat, metric-compatible affine connection.
 - 4. A flat connection on a $SO_0(1,3)$ -reduction of the frame bundle.
- Problems encountered with choice of variables:
 - 1. Does not reflect observed local Lorentz invariance.
 - 2. Contains unphysical gauge degrees of freedom as variables.
 - 3. Does not contain information on orientation and time orientation.
- Can we still use any of the other field variables?
- $4 \rightarrow 3$: If (time) orientation is fixed, metric and connection are sufficient.
- $3 \rightarrow 2$: Possible to choose tetrad and spin connection as representatives.
- $2 \rightarrow 1$: Locally possible to transform into Weitzenböck gauge.

\Rightarrow Most fundamental variables found in geometric picture.

1. Start with the general linear frame bundle $\pi : GL(M) \rightarrow M$.

- 1. Start with the general linear frame bundle $\pi : GL(M) \rightarrow M$.
- 2. Metric reduces bundle to orthonormal frame bundle \tilde{P} .

- 1. Start with the general linear frame bundle $\pi : GL(M) \rightarrow M$.
- 2. Metric reduces bundle to orthonormal frame bundle \tilde{P} .
- 3. Orientation and time orientation select oriented frame bundle P.

- 1. Start with the general linear frame bundle $\pi : GL(M) \rightarrow M$.
- 2. Metric reduces bundle to orthonormal frame bundle \tilde{P} .
- 3. Orientation and time orientation select oriented frame bundle P.
- 4. Connection specifies horizontal directions $TP = VP \oplus HP$ in P.

Tetrads and spin structure

- How to obtain a spin structure from a tetrad $e: M \rightarrow P$?
 - 1. Spin structure obtained from trivial bundle $Q = M \times SL(2, \mathbb{C})$.
 - 2. Use covering map $\sigma : SL(2, \mathbb{C}) \rightarrow SO_0(1, 3)$.
 - 3. Define spin structure $\varphi : \mathbf{Q} \rightarrow \mathbf{P}$ as map

$$\varphi(\mathbf{x}, \mathbf{z}) = \mathbf{e}(\mathbf{x}) \cdot \sigma(\mathbf{z}) \,. \tag{18}$$

Tetrads and spin structure

- How to obtain a spin structure from a tetrad $e: M \rightarrow P$?
 - 1. Spin structure obtained from trivial bundle $Q = M \times SL(2, \mathbb{C})$.
 - 2. Use covering map $\sigma : SL(2, \mathbb{C}) \rightarrow SO_0(1, 3)$.
 - 3. Define spin structure $\varphi : \mathbf{Q} \rightarrow \mathbf{P}$ as map

$$\varphi(\mathbf{x}, \mathbf{z}) = \mathbf{e}(\mathbf{x}) \cdot \sigma(\mathbf{z}) \,. \tag{18}$$

- Do different tetrads e, e' define the same spin structure?
 - Consider non-simply connected manifold *M*.
 - Let $\gamma : [0, 1] \rightarrow M$ with $\gamma(0) = \gamma(1)$ non-contractible.
 - Let $\Lambda : M \to SO_0(1,3)$ such that $\Lambda \circ \gamma$ has odd winding.
 - Tetrads $e = e' \cdot \Lambda$ define spin structures φ, φ' .
 - Assume existence of bundle isomorphism $\mu : \mathbf{Q} \rightarrow \mathbf{Q}, \varphi = \varphi' \circ \mu$.
 - \Rightarrow Curve connects antipodes: $\mu(\gamma(1), \mathbb{1}) = -\mu(\gamma(0), \mathbb{1})$.
 - 4 Contradicts $\gamma(0) = \gamma(1)$.
 - \Rightarrow Spin structures φ, φ' are inequivalent.

Clash of two notions of orthonormal frames:

- 1. Tetrad $e: M \rightarrow P$ solving teleparallel field equation.
- 2. Observer frame $\tilde{e} : \mathbb{R} \to \gamma^* P$ along trajectory γ .

- Clash of two notions of orthonormal frames:
 - 1. Tetrad $e: M \rightarrow P$ solving teleparallel field equation.
 - 2. Observer frame $\tilde{e} : \mathbb{R} \to \gamma^* P$ along trajectory γ .
- Parallel transport properties of frames:

$$\mathbf{0} = \dot{\gamma}^{\mu} (\partial_{\mu} \tilde{\boldsymbol{e}}_{\boldsymbol{a}}^{\nu} + \mathring{\Gamma}^{\nu}{}_{\rho\mu} \tilde{\boldsymbol{e}}_{\boldsymbol{a}}^{\rho}) = \dot{\gamma}^{\mu} (\partial_{\mu} \boldsymbol{e}_{\boldsymbol{a}}^{\nu} - \omega^{b}{}_{\boldsymbol{a}\mu} \boldsymbol{e}_{\boldsymbol{b}}^{\nu} + \Gamma^{\nu}{}_{\rho\mu} \boldsymbol{e}_{\boldsymbol{a}}^{\rho}) \,. \tag{19}$$

- Clash of two notions of orthonormal frames:
 - 1. Tetrad $e: M \rightarrow P$ solving teleparallel field equation.
 - 2. Observer frame $\tilde{\boldsymbol{e}} : \mathbb{R} \to \gamma^* \boldsymbol{P}$ along trajectory γ .
- Parallel transport properties of frames in Weitzenböck gauge:

$$\mathbf{0} = \dot{\gamma}^{\mu} (\partial_{\mu} \tilde{\boldsymbol{e}}_{\boldsymbol{a}}^{\nu} + \mathring{\Gamma}^{\nu}{}_{\rho\mu} \tilde{\boldsymbol{e}}_{\boldsymbol{a}}^{\rho}) = \dot{\gamma}^{\mu} (\partial_{\mu} \boldsymbol{e}_{\boldsymbol{a}}^{\nu} + \Gamma^{\nu}{}_{\rho\mu} \boldsymbol{e}_{\boldsymbol{a}}^{\rho}) \,. \tag{19}$$

- Possible to identify teleparallel as observer frames?
 - 1. *e* forms congruence, transported with flat connection.
 - 2. *ẽ* only defined on worldline, no congruences.

- Clash of two notions of orthonormal frames:
 - 1. Tetrad $e: M \rightarrow P$ solving teleparallel field equation.
 - 2. Observer frame $\tilde{\boldsymbol{e}} : \mathbb{R} \to \gamma^* \boldsymbol{P}$ along trajectory γ .
- Parallel transport properties of frames in Weitzenböck gauge:

$$\mathbf{0} = \dot{\gamma}^{\mu} (\partial_{\mu} \tilde{\boldsymbol{e}}_{\boldsymbol{a}}^{\nu} + \mathring{\Gamma}^{\nu}{}_{\rho\mu} \tilde{\boldsymbol{e}}_{\boldsymbol{a}}^{\rho}) = \dot{\gamma}^{\mu} (\partial_{\mu} \boldsymbol{e}_{\boldsymbol{a}}^{\nu} + \Gamma^{\nu}{}_{\rho\mu} \boldsymbol{e}_{\boldsymbol{a}}^{\rho}) \,. \tag{19}$$

- Possible to identify teleparallel as observer frames?
 - 1. *e* forms congruence, transported with flat connection.
 - 2. ē only defined on worldline, no congruences.
- e and \tilde{e} only agree up to local Lorentz transformation.

- Clash of two notions of orthonormal frames:
 - 1. Tetrad $e: M \rightarrow P$ solving teleparallel field equation.
 - 2. Observer frame $\tilde{\boldsymbol{e}} : \mathbb{R} \to \gamma^* \boldsymbol{P}$ along trajectory γ .
- Parallel transport properties of frames in Weitzenböck gauge:

$$\mathbf{0} = \dot{\gamma}^{\mu} (\partial_{\mu} \tilde{\boldsymbol{e}}_{\boldsymbol{a}}^{\nu} + \mathring{\Gamma}^{\nu}{}_{\rho\mu} \tilde{\boldsymbol{e}}_{\boldsymbol{a}}^{\rho}) = \dot{\gamma}^{\mu} (\partial_{\mu} \boldsymbol{e}_{\boldsymbol{a}}^{\nu} + \Gamma^{\nu}{}_{\rho\mu} \boldsymbol{e}_{\boldsymbol{a}}^{\rho}) \,. \tag{19}$$

- Possible to identify teleparallel as observer frames?
 - 1. *e* forms congruence, transported with flat connection.
 - 2. ē only defined on worldline, no congruences.
- e and \tilde{e} only agree up to local Lorentz transformation.
- \Rightarrow Observer geometry defined by metric: LLI holds.

• Split Levi-Civita connection coefficients:

$$\overset{\circ}{\Gamma}^{\mu}{}_{\nu\rho} = \Gamma^{\mu}{}_{\nu\rho} - \mathcal{K}^{\mu}{}_{\nu\rho} \,. \tag{20}$$

• Split Levi-Civita connection coefficients:

$$\overset{\circ}{\Gamma}^{\mu}{}_{\nu\rho} = \Gamma^{\mu}{}_{\nu\rho} - \mathcal{K}^{\mu}{}_{\nu\rho} \,. \tag{20}$$

 \Rightarrow Possible to rewrite geodesic equation:

$$\ddot{x}^{\mu} + \Gamma^{\mu}{}_{\nu\rho}\dot{x}^{\nu}\dot{x}^{\rho} = \mathcal{K}^{\mu}{}_{\nu\rho}\dot{x}^{\nu}\dot{x}^{\rho} \,. \tag{21}$$

• Split Levi-Civita connection coefficients:

$${}^{2\mu}{}_{\nu\rho} = \Gamma^{\mu}{}_{\nu\rho} - \mathcal{K}^{\mu}{}_{\nu\rho} \,.$$
 (20)

 \Rightarrow Possible to rewrite geodesic equation:

$$\dot{x}^{\mu} + \Gamma^{\mu}{}_{\nu\rho}\dot{x}^{\nu}\dot{x}^{\rho} = \mathcal{K}^{\mu}{}_{\nu\rho}\dot{x}^{\nu}\dot{x}^{\rho}.$$
⁽²¹⁾

• Interpretation: "Separate gravity $K^{\mu}{}_{\nu\rho}$ from inertia $\Gamma^{\mu}{}_{\nu\rho}$."

• Split Levi-Civita connection coefficients:

$$\overset{\circ}{\Gamma}^{\mu}{}_{\nu\rho} = \Gamma^{\mu}{}_{\nu\rho} - \mathcal{K}^{\mu}{}_{\nu\rho} \,. \tag{20}$$

 \Rightarrow Possible to rewrite geodesic equation:

$$\ddot{\mathbf{x}}^{\mu} + \Gamma^{\mu}{}_{\nu\rho}\dot{\mathbf{x}}^{\nu}\dot{\mathbf{x}}^{\rho} = \mathbf{K}^{\mu}{}_{\nu\rho}\dot{\mathbf{x}}^{\nu}\dot{\mathbf{x}}^{\rho} \,. \tag{21}$$

- Interpretation: "Separate gravity $K^{\mu}{}_{\nu\rho}$ from inertia $\Gamma^{\mu}{}_{\nu\rho}$."
- Fully equivalent to standard form (teleparallel connection cancels):

$$\ddot{x}^{\mu} + \mathring{\Gamma}^{\mu}{}_{\nu\rho}\dot{x}^{\nu}\dot{x}^{\rho} = 0.$$
⁽²²⁾

• Split Levi-Civita connection coefficients:

$$\overset{\circ}{\Gamma}^{\mu}{}_{\nu\rho} = \Gamma^{\mu}{}_{\nu\rho} - \mathcal{K}^{\mu}{}_{\nu\rho} \,. \tag{20}$$

 \Rightarrow Possible to rewrite geodesic equation:

$$\ddot{x}^{\mu} + \Gamma^{\mu}{}_{\nu\rho}\dot{x}^{\nu}\dot{x}^{\rho} = \mathcal{K}^{\mu}{}_{\nu\rho}\dot{x}^{\nu}\dot{x}^{\rho} . \tag{21}$$

- Interpretation: "Separate gravity $K^{\mu}{}_{\nu\rho}$ from inertia $\Gamma^{\mu}{}_{\nu\rho}$."
- Fully equivalent to standard form (teleparallel connection cancels):

$$\ddot{x}^{\mu} + \mathring{\Gamma}^{\mu}{}_{\nu\rho}\dot{x}^{\nu}\dot{x}^{\rho} = 0.$$
⁽²²⁾

• Matter coupled to metric only insensitive to $\Gamma^{\mu}{}_{\nu\rho}$.

• Split Levi-Civita connection coefficients:

$$\overset{\circ}{\Gamma}^{\mu}{}_{\nu\rho} = \Gamma^{\mu}{}_{\nu\rho} - \mathcal{K}^{\mu}{}_{\nu\rho} \,. \tag{20}$$

 \Rightarrow Possible to rewrite geodesic equation:

$$\ddot{x}^{\mu} + \Gamma^{\mu}{}_{\nu\rho}\dot{x}^{\nu}\dot{x}^{\rho} = K^{\mu}{}_{\nu\rho}\dot{x}^{\nu}\dot{x}^{\rho}.$$
(21)

- Interpretation: "Separate gravity $K^{\mu}{}_{\nu\rho}$ from inertia $\Gamma^{\mu}{}_{\nu\rho}$."
- Fully equivalent to standard form (teleparallel connection cancels):

$$\ddot{x}^{\mu} + \mathring{\Gamma}^{\mu}{}_{\nu\rho}\dot{x}^{\nu}\dot{x}^{\rho} = 0.$$
⁽²²⁾

- Matter coupled to metric only insensitive to $\Gamma^{\mu}{}_{\nu\rho}$.
- Connection appears only as "dark" field coupling to gravity:

$$S = S_{g}[g, \Gamma] + S_{m}[g, \chi].$$
(23)

• Study teleparallel gravity theories:

- 1. New General Relativity [Ualikhanova, MH '19]
- 2. Scalar-torsion gravity [Emtsova, MH '19]
- 3. Generalized scalar-torsion gravity [Flathmann, MH '19]

• Study teleparallel gravity theories:

- 1. New General Relativity [Ualikhanova, MH '19]
- 2. Scalar-torsion gravity [Emtsova, MH '19]
- 3. Generalized scalar-torsion gravity [Flathmann, MH '19]

• PPN parameters:

 $\circ~\beta\approx\gamma\approx$ 1: bounds on theory parameters.

•
$$\xi = \alpha_1 = \alpha_2 = \alpha_3 = \zeta_1 = \zeta_2 = \zeta_3 = \zeta_4 = 0.$$

• Study teleparallel gravity theories:

- 1. New General Relativity [Ualikhanova, MH '19]
- 2. Scalar-torsion gravity [Emtsova, MH '19]
- 3. Generalized scalar-torsion gravity [Flathmann, MH '19]

• PPN parameters:

 $\circ~\beta\approx\gamma\approx$ 1: bounds on theory parameters.

•
$$\xi = \alpha_1 = \alpha_2 = \alpha_3 = \zeta_1 = \zeta_2 = \zeta_3 = \zeta_4 = 0.$$

 \Rightarrow No violation of LLI.

- 1. Lorentz covariance and invariance
- 2. Teleparallel gravity
- 3. Finsler gravity
- 4. Conclusion

• Proper time along a curve in Lorentzian spacetime:

$$\tau = \int_{t_1}^{t_2} \sqrt{-g_{ab}(x(t))\dot{x}^a(t)\dot{x}^b(t)} dt.$$
(24)

• Proper time along a curve in Lorentzian spacetime:

$$au = \int_{t_1}^{t_2} \sqrt{-g_{ab}(x(t))\dot{x}^a(t)\dot{x}^b(t)} \mathrm{d}t \,.$$

• Finsler geometry: use a more general length functional:

$$au = \int_{t_1}^{t_2} F(x(t), \dot{x}(t)) \mathrm{d}t$$

Manuel Hohmann (University of Tartu)

(24)

(25)

• Proper time along a curve in Lorentzian spacetime:

$$au = \int_{t_1}^{t_2} \sqrt{-g_{ab}(x(t))\dot{x}^a(t)\dot{x}^b(t)} \mathrm{d}t\,.$$

• Finsler geometry: use a more general length functional:

$$au = \int_{t_1}^{t_2} F(x(t), \dot{x}(t)) \mathrm{d}t$$

• Finsler function $F : TM \to \mathbb{R}^+$.

(24)

(25)

• Proper time along a curve in Lorentzian spacetime:

$$au = \int_{t_1}^{t_2} \sqrt{-g_{ab}(x(t))\dot{x}^a(t)\dot{x}^b(t)} \mathrm{d}t\,.$$

• Finsler geometry: use a more general length functional:

$$au = \int_{t_1}^{t_2} F(x(t), \dot{x}(t)) \mathrm{d}t$$

- Finsler function $F : TM \to \mathbb{R}^+$.
- Parametrization invariance requires homogeneity:

$$F(x, \lambda y) = \lambda F(x, y) \quad \forall \lambda > 0.$$
(26)

(24)

(25)

• Proper time along a curve in Lorentzian spacetime:

$$au = \int_{t_1}^{t_2} \sqrt{-g_{ab}(x(t))\dot{x}^a(t)\dot{x}^b(t)} \mathsf{d}t\,.$$

• Finsler geometry: use a more general length functional:

$$\tau = \int_{t_1}^{t_2} F(x(t), \dot{x}(t)) dt.$$
(25)

- Finsler function $F : TM \to \mathbb{R}^+$.
- Parametrization invariance requires homogeneity:

$$F(x, \lambda y) = \lambda F(x, y) \quad \forall \lambda > 0.$$
(26)

• Cartan non-linear connection:

$$N^{a}{}_{b} = \frac{1}{4} \bar{\partial}_{b} \left[g^{Fac} (y^{d} \partial_{d} \bar{\partial}_{c} F^{2} - \partial_{c} F^{2}) \right] .$$
⁽²⁷⁾

(24)

Motion of test particles

• Finsler geodesic: extremal of length functional:

$$\delta \int_{t_1}^{t_2} F(\boldsymbol{x}(t), \dot{\boldsymbol{x}}(t)) \mathrm{d}t = 0.$$
⁽²⁸⁾

Motion of test particles

• Finsler geodesic: extremal of length functional:

$$\delta \int_{t_1}^{t_2} F(\boldsymbol{x}(t), \dot{\boldsymbol{x}}(t)) \mathrm{d}t = 0.$$
⁽²⁸⁾

 \Rightarrow Geodesic equation for curve $x(\tau)$ on spacetime *M*:

$$\ddot{x}^{a} + N^{a}{}_{b}(x, \dot{x})\dot{x}^{b} = 0.$$
 (29)

• Finsler geodesic: extremal of length functional:

$$\delta \int_{t_1}^{t_2} F(\boldsymbol{x}(t), \dot{\boldsymbol{x}}(t)) \mathrm{d}t = 0.$$
⁽²⁸⁾

 \Rightarrow Geodesic equation for curve $x(\tau)$ on spacetime *M*:

$$\ddot{x}^a + {N^a}_b(x,\dot{x})\dot{x}^b = 0$$
 .

• Finsler Lagrangian: $L(x, \dot{x}) = F^2$.

(29)

• Finsler geodesic: extremal of length functional:

$$\delta \int_{t_1}^{t_2} F(\boldsymbol{x}(t), \dot{\boldsymbol{x}}(t)) \mathrm{d}t = 0.$$
⁽²⁸⁾

 \Rightarrow Geodesic equation for curve $x(\tau)$ on spacetime *M*:

$$\ddot{x}^a + N^a{}_b(x,\dot{x})\dot{x}^b = 0$$
 .

- Finsler Lagrangian: $L(x, \dot{x}) = F^2$.
- Legendre transformation: Finsler Hamiltonian H(x, p).

(29)

• Finsler geodesic: extremal of length functional:

$$\delta \int_{t_1}^{t_2} F(\boldsymbol{x}(t), \dot{\boldsymbol{x}}(t)) \mathrm{d}t = 0.$$
⁽²⁸⁾

 \Rightarrow Geodesic equation for curve $x(\tau)$ on spacetime *M*:

$$\ddot{x}^a + {N^a}_b(x,\dot{x})\dot{x}^b = 0$$
 .

- Finsler Lagrangian: $L(x, \dot{x}) = F^2$.
- Legendre transformation: Finsler Hamiltonian H(x, p).
- Modified dispersion relation:

$$H(x,p) = -m^2. \tag{30}$$

(29)

• Finsler geodesic: extremal of length functional:

$$\delta \int_{t_1}^{t_2} F(\boldsymbol{x}(t), \dot{\boldsymbol{x}}(t)) \mathrm{d}t = 0.$$
⁽²⁸⁾

 \Rightarrow Geodesic equation for curve $x(\tau)$ on spacetime *M*:

$$\ddot{x}^{a} + N^{a}{}_{b}(x,\dot{x})\dot{x}^{b} = 0.$$
 (29)

- Finsler Lagrangian: $L(x, \dot{x}) = F^2$.
- Legendre transformation: Finsler Hamiltonian H(x, p).
- Modified dispersion relation:

$$H(x,p) = -m^2.$$
(30)

• Hamilton equations of motion:

$$\dot{\mathbf{p}}_{\mu} = -\partial_{\mu}H, \quad \dot{\mathbf{x}}^{\mu} = \bar{\partial}^{\mu}H.$$
 (31)

• General spherically symmetric MDR:

$$-m^{2} = H(t, r, p_{t}, p_{r}, w), \quad w^{2} = p_{\vartheta}^{2} + \frac{p_{\varphi}^{2}}{\sin^{2} \vartheta}.$$
 (32)

• General spherically symmetric MDR:

$$-m^{2} = H(r, p_{t}, p_{r}, w), \quad w^{2} = p_{\vartheta}^{2} + \frac{p_{\varphi}^{2}}{\sin^{2} \vartheta}.$$
(32)

• Static spherically symmetric: energy conservation

$$\dot{p}_t = -\partial_t H = 0 \quad \Rightarrow \quad p_t = \mathcal{E} = \text{const.}$$
 (33)

• General spherically symmetric MDR:

$$-m^{2} = H(r, p_{t}, p_{r}, w), \quad w^{2} = p_{\vartheta}^{2} + \frac{p_{\varphi}^{2}}{\sin^{2} \vartheta}.$$
(32)

~

• Static spherically symmetric: energy conservation

$$\dot{p}_t = -\partial_t H = 0 \quad \Rightarrow \quad p_t = \mathcal{E} = \text{const}.$$
 (33)

• Polar angle:

$$\dot{\vartheta} = \bar{\partial}^{\vartheta} H = \frac{\partial H}{\partial w} \frac{1}{2w} \bar{\partial}^{\vartheta} w^{2} = \frac{\partial H}{\partial w} \frac{1}{w} p_{\vartheta} , \qquad (34a)$$
$$\dot{p}_{\vartheta} = -\partial_{\vartheta} H = -\frac{\partial H}{\partial w} \frac{1}{2w} \partial_{\vartheta} w^{2} = \frac{\partial H}{\partial w} \frac{1}{w} \frac{\cos \vartheta}{\sin^{3} \vartheta} p_{\varphi}^{2} . \qquad (34b)$$

• General spherically symmetric MDR:

$$-m^{2} = H(r, p_{t}, p_{r}, w), \quad w^{2} = p_{\vartheta}^{2} + \frac{p_{\varphi}^{2}}{\sin^{2} \vartheta}.$$
(32)

~

• Static spherically symmetric: energy conservation

$$\dot{p}_t = -\partial_t H = 0 \quad \Rightarrow \quad p_t = \mathcal{E} = \text{const}.$$
 (33)

• Polar angle:

$$\dot{\vartheta} = \bar{\partial}^{\vartheta} H = \frac{\partial H}{\partial w} \frac{1}{2w} \bar{\partial}^{\vartheta} w^{2} = \frac{\partial H}{\partial w} \frac{1}{w} p_{\vartheta}, \qquad (34a)$$
$$\dot{p}_{\vartheta} = -\partial_{\vartheta} H = -\frac{\partial H}{\partial w} \frac{1}{2w} \partial_{\vartheta} w^{2} = \frac{\partial H}{\partial w} \frac{1}{w} \frac{\cos \vartheta}{\sin^{3} \vartheta} p_{\varphi}^{2}. \qquad (34b)$$

 \Rightarrow Planar motion in equatorial plane: $\vartheta = \frac{\pi}{2}$, $p_{\vartheta} = 0$.

• General spherically symmetric MDR:

$$-m^{2} = H(r, p_{t}, p_{r}, w), \quad w^{2} = p_{\vartheta}^{2} + \frac{p_{\varphi}^{2}}{\sin^{2} \vartheta}.$$
(32)

~

Static spherically symmetric: energy conservation

$$\dot{p}_t = -\partial_t H = 0 \quad \Rightarrow \quad p_t = \mathcal{E} = \text{const}.$$
 (33)

• Polar angle:

$$\dot{\vartheta} = \bar{\partial}^{\vartheta} H = \frac{\partial H}{\partial w} \frac{1}{2w} \bar{\partial}^{\vartheta} w^{2} = \frac{\partial H}{\partial w} \frac{1}{w} p_{\vartheta}, \qquad (34a)$$
$$\dot{p}_{\vartheta} = -\partial_{\vartheta} H = -\frac{\partial H}{\partial w} \frac{1}{2w} \partial_{\vartheta} w^{2} = \frac{\partial H}{\partial w} \frac{1}{w} \frac{\cos \vartheta}{\sin^{3} \vartheta} p_{\varphi}^{2}. \qquad (34b)$$

- \Rightarrow Planar motion in equatorial plane: $\vartheta = \frac{\pi}{2}$, $p_{\vartheta} = 0$.
- Angular momentum conservation:

$$\dot{p}_{\varphi} = -\partial_{\varphi}H = 0 \quad \Rightarrow \quad w = p_{\varphi} = \mathcal{L} = \text{const}.$$
 (35)

Example: *k*-Poincarè dispersion relation

• General form of *k*-Poincarè dispersion relation:

$$H(x,p) = -\frac{2}{\ell^2} \sinh^2\left(\frac{\ell}{2} Z^{\mu} p_{\mu}\right) + \frac{1}{2} e^{\ell Z^{\mu} p_{\mu}} [g^{\mu\nu} p_{\mu} p_{\nu} + (Z^{\mu} p_{\mu})^2].$$
(36)

Example: *k*-Poincarè dispersion relation

• General form of *k*-Poincarè dispersion relation:

$$H(x,p) = -\frac{2}{\ell^2} \sinh^2\left(\frac{\ell}{2} Z^{\mu} p_{\mu}\right) + \frac{1}{2} e^{\ell Z^{\mu} p_{\mu}} [g^{\mu\nu} p_{\mu} p_{\nu} + (Z^{\mu} p_{\mu})^2].$$
(36)

- Ingredients and properties:
 - Lorentzian metric $g_{\mu\nu}$.
 - Unit timelike vector field Z^{μ} : $g_{\mu\nu}Z^{\mu}Z^{\nu} = -1$.
 - Planck length ℓ as perturbation parameter.
 - $\circ \hspace{0.2cm} H
 ightarrow g^{\mu
 u} p_{\mu} p_{
 u} \hspace{0.2cm} ext{for} \hspace{0.2cm} \ell
 ightarrow 0.$

Example: *k*-Poincarè dispersion relation

• General form of *k*-Poincarè dispersion relation:

$$H(x,p) = -\frac{2}{\ell^2} \sinh^2\left(\frac{\ell}{2} Z^{\mu} p_{\mu}\right) + \frac{1}{2} e^{\ell Z^{\mu} p_{\mu}} [g^{\mu\nu} p_{\mu} p_{\nu} + (Z^{\mu} p_{\mu})^2].$$
(36)

- Ingredients and properties:
 - Lorentzian metric $g_{\mu\nu}$.
 - Unit timelike vector field Z^{μ} : $g_{\mu\nu}Z^{\mu}Z^{\nu} = -1$.
 - Planck length ℓ as perturbation parameter.
 - $\circ \hspace{0.2cm} H
 ightarrow g^{\mu
 u} p_{\mu} p_{
 u} \hspace{0.2cm} ext{for} \hspace{0.2cm} \ell
 ightarrow 0.$
- Spherically symmetric dispersion relation:

$$H = -\frac{2}{\ell^2} \sinh^2 \left[\frac{\ell}{2} (cp_t + dp_r) \right]^2 + \frac{1}{2} e^{\ell (cp_t + dp_r)} \left[(c^2 - a)p_t^2 + 2cdp_r p_t + (d^2 + b)p_r^2 + \frac{w^2}{r^2} \right].$$
 (37)

• Method of calculation:

- Circular orbit characterized by $\dot{r} = 0$.
- $\Rightarrow \bar{\partial}^r H = 0$ becomes algebraic equation for $p_r = p_r(r, \mathcal{E}, \mathcal{L})$.
- \Rightarrow Determine energy $\mathcal{E} = \mathcal{E}(r, \mathcal{L})$ from dispersion relation $H = -m^2$.
- \Rightarrow Determine radius $r = r(\mathcal{L})$ from $\dot{p}_r = 0 \Rightarrow \partial_r H = 0$.

• Method of calculation:

- Circular orbit characterized by $\dot{r} = 0$.
- $\Rightarrow \bar{\partial}^r H = 0$ becomes algebraic equation for $p_r = p_r(r, \mathcal{E}, \mathcal{L})$.
- \Rightarrow Determine energy $\mathcal{E} = \mathcal{E}(r, \mathcal{L})$ from dispersion relation $H = -m^2$.
- \Rightarrow Determine radius $r = r(\mathcal{L})$ from $\dot{p}_r = 0 \Rightarrow \partial_r H = 0$.
- Result for κ -Poincarè:

$$r = \frac{3}{2}r_s + \frac{\ell \mathcal{L}}{6} + \mathcal{O}(\ell^2).$$
 (38)

Shapiro delay

- Method of calculation:
 - Emitter / receiver at r_e , closest encounter at r_c , mirror at r_m .
 - General formula of Shapiro delay:

$$\Delta T = \int_{r_e}^{r_c} \left. \frac{\mathrm{d}t}{\mathrm{d}r} \right|_{\mathrm{in}}^{<0} \mathrm{d}r + \int_{r_c}^{r_m} \left. \frac{\mathrm{d}t}{\mathrm{d}r} \right|_{\mathrm{out}}^{>0} \mathrm{d}r + \int_{r_m}^{r_c} \left. \frac{\mathrm{d}t}{\mathrm{d}r} \right|_{\mathrm{in}}^{<0} \mathrm{d}r + \int_{r_c}^{r_e} \left. \frac{\mathrm{d}t}{\mathrm{d}r} \right|_{\mathrm{out}}^{>0} \mathrm{d}r \,. \tag{39}$$

- At $r = r_c$: $\dot{r} = 0$ relates $\mathcal{E}, \mathcal{L}, r_c, p_{rc}$ by $\bar{\partial}^r H = 0$ and $H = -m^2$.
- Parametrize trajectory by *r* and calculate

$$\frac{\mathrm{d}t}{\mathrm{d}r} = \frac{\dot{t}}{\dot{r}} = \frac{\bar{\partial}^t H}{\bar{\partial}^r H} \,. \tag{40}$$

Shapiro delay

- Method of calculation:
 - Emitter / receiver at r_e , closest encounter at r_c , mirror at r_m .
 - General formula of Shapiro delay:

$$\Delta T = \int_{r_e}^{r_c} \left. \frac{\mathrm{d}t}{\mathrm{d}r} \right|_{\mathrm{in}}^{<0} \mathrm{d}r + \int_{r_c}^{r_m} \left. \frac{\mathrm{d}t}{\mathrm{d}r} \right|_{\mathrm{out}}^{>0} \mathrm{d}r + \int_{r_m}^{r_c} \left. \frac{\mathrm{d}t}{\mathrm{d}r} \right|_{\mathrm{in}}^{<0} \mathrm{d}r + \int_{r_c}^{r_e} \left. \frac{\mathrm{d}t}{\mathrm{d}r} \right|_{\mathrm{out}}^{>0} \mathrm{d}r \,. \tag{39}$$

• At $r = r_c$: $\dot{r} = 0$ relates $\mathcal{E}, \mathcal{L}, r_c, p_{rc}$ by $\bar{\partial}^r H = 0$ and $H = -m^2$.

• Parametrize trajectory by *r* and calculate

$$\frac{\mathrm{d}t}{\mathrm{d}r} = \frac{\dot{t}}{\dot{r}} = \frac{\bar{\partial}^{t}H}{\bar{\partial}^{r}H}.$$
(40)

• Result for κ -Poincarè:

$$\Delta T(r) \sim r_{s} e^{-\ell \mathcal{E}} \left[\frac{\ell \mathcal{E}}{2(e^{\ell \mathcal{E}} - 1)} \sqrt{\frac{r - r_{c}}{r + r_{c}}} + \frac{(2 - \ell \mathcal{E})}{2} \ln \left(\frac{r + \sqrt{r^{2} - r_{c}^{2}}}{r_{c}} \right) \right].$$
(41)

Light deflection

- Method of calculation:
 - Emitter / receiver at $r \to \infty$, closest encounter at r_c .
 - Calculate deviation from straight line $\Delta \varphi = \pi$.
 - General formula of deflection angle:

$$\Delta \varphi = \int_{\infty}^{r_c} \left. \frac{\mathrm{d}\varphi}{\mathrm{d}r} \right|_{\mathrm{in}}^{<0} \mathrm{d}r + \int_{r_c}^{\infty} \left. \frac{\mathrm{d}\varphi}{\mathrm{d}r} \right|_{\mathrm{out}}^{>0} \mathrm{d}r - \pi \,.$$
(42)

• At $r = r_c$: $\dot{r} = 0$ relates $\mathcal{E}, \mathcal{L}, r_c, p_{rc}$ by $\bar{\partial}^r H = 0$ and $H = -m^2$.

• Parametrize trajectory by *r* and calculate

$$\frac{\mathrm{d}t}{\mathrm{d}r} = \frac{\dot{t}}{\dot{r}} = \frac{\bar{\partial}^t H}{\bar{\partial}^r H} \,. \tag{43}$$

Light deflection

- Method of calculation:
 - Emitter / receiver at $r \to \infty$, closest encounter at r_c .
 - Calculate deviation from straight line $\Delta \varphi = \pi$.
 - General formula of deflection angle:

$$\Delta \varphi = \int_{\infty}^{r_c} \left. \frac{\mathrm{d}\varphi}{\mathrm{d}r} \right|_{\mathrm{in}}^{<0} \mathrm{d}r + \int_{r_c}^{\infty} \left. \frac{\mathrm{d}\varphi}{\mathrm{d}r} \right|_{\mathrm{out}}^{>0} \mathrm{d}r - \pi \,. \tag{42}$$

• At $r = r_c$: $\dot{r} = 0$ relates $\mathcal{E}, \mathcal{L}, r_c, p_{rc}$ by $\bar{\partial}^r H = 0$ and $H = -m^2$.

• Parametrize trajectory by *r* and calculate

$$\frac{\mathrm{d}t}{\mathrm{d}r} = \frac{\dot{t}}{\dot{r}} = \frac{\bar{\partial}^t H}{\bar{\partial}^r H} \,. \tag{43}$$

• Result for κ -Poincarè:

$$\Delta \varphi = \frac{r_s}{r_c} \frac{e^{\ell \mathcal{E}} - 1 + \ell \mathcal{E}}{e^{\ell \mathcal{E}} - 1}.$$

(44)

• Kinetic gas modeled by phase space density $\phi(x, p) \ge 0$.

- Kinetic gas modeled by phase space density φ(x, p) ≥ 0.
- Spherically symmetric gas: phase space density of the form

$$\phi = \phi(\mathbf{r}, \mathbf{p}_t, \mathbf{p}_r, \mathbf{w}) \cong \phi(\mathbf{r}, \mathcal{E}, \mathcal{L}, \mathcal{H}(\mathbf{r}, \mathcal{E}, \mathbf{p}_r, \mathcal{L})).$$
(45)

- Kinetic gas modeled by phase space density *φ*(*x*, *p*) ≥ 0.
- Spherically symmetric gas: phase space density of the form

$$\phi = \phi(\mathbf{r}, \mathbf{p}_t, \mathbf{p}_r, \mathbf{w}) \cong \phi(\mathbf{r}, \mathcal{E}, \mathcal{L}, \mathcal{H}(\mathbf{r}, \mathcal{E}, \mathbf{p}_r, \mathcal{L})).$$
(45)

• Hamiltonian dynamics applied to gas particle trajectories:

$$\partial_r \phi = \mathbf{0} \quad \Rightarrow \quad \phi = \phi(\mathcal{E}, \mathcal{L}, H(r, \mathcal{E}, p_r, \mathcal{L})).$$
 (46)

- Kinetic gas modeled by phase space density *φ*(*x*, *p*) ≥ 0.
- Spherically symmetric gas: phase space density of the form

$$\phi = \phi(\mathbf{r}, \mathbf{p}_t, \mathbf{p}_r, \mathbf{w}) \cong \phi(\mathbf{r}, \mathcal{E}, \mathcal{L}, H(\mathbf{r}, \mathcal{E}, \mathbf{p}_r, \mathcal{L})).$$
(45)

• Hamiltonian dynamics applied to gas particle trajectories:

$$\partial_r \phi = \mathbf{0} \quad \Rightarrow \quad \phi = \phi(\mathcal{E}, \mathcal{L}, H(r, \mathcal{E}, \mathbf{p}_r, \mathcal{L})).$$
(46)

 $\Rightarrow \phi$ is constant along trajectories and on level sets of $\mathcal{E}, \mathcal{L}, \mathcal{H}$.

- Kinetic gas modeled by phase space density *φ*(*x*, *p*) ≥ 0.
- Spherically symmetric gas: phase space density of the form

$$\phi = \phi(\mathbf{r}, \mathbf{p}_t, \mathbf{p}_r, \mathbf{w}) \cong \phi(\mathbf{r}, \mathcal{E}, \mathcal{L}, \mathcal{H}(\mathbf{r}, \mathcal{E}, \mathbf{p}_r, \mathcal{L})).$$
(45)

• Hamiltonian dynamics applied to gas particle trajectories:

$$\partial_r \phi = \mathbf{0} \quad \Rightarrow \quad \phi = \phi(\mathcal{E}, \mathcal{L}, H(r, \mathcal{E}, \mathbf{p}_r, \mathcal{L})).$$
 (46)

- $\Rightarrow \phi$ is constant along trajectories and on level sets of $\mathcal{E}, \mathcal{L}, \mathcal{H}$.
- Consider monoenergetic ensemble of gas particles:
 - Fix constant values $\mathcal{E} = \mathcal{E}_0, \mathcal{L} = \mathcal{L}_0, H = H_0.$
 - Particle density $\phi(\mathcal{E}_0, \mathcal{L}_0, \mathcal{H}_0) = C \neq 0$ on chosen level set.
 - $\phi = 0$ for all other values of $\mathcal{E}, \mathcal{L}, \mathcal{H}$.

• Example: orbiting particles with turnaround radii $r_1 = 3r_s$ and $r_2 = 6r_s$.

- Example: orbiting particles with turnaround radii $r_1 = 3r_s$ and $r_2 = 6r_s$.
- Calculate linear particle density normalized by total particle number:

$$\frac{1}{N} \frac{\mathrm{d}N}{\mathrm{d}r}$$

(47)

- Example: orbiting particles with turnaround radii $r_1 = 3r_s$ and $r_2 = 6r_s$.
- Calculate linear particle density normalized by total particle number:

 $\frac{1}{N}\frac{\mathrm{d}N}{\mathrm{d}r}$.

• Plot inverse since $dN/dr \rightarrow \infty$ at turnaround radii $r \rightarrow r_{1,2}$.

(47)

- Example: orbiting particles with turnaround radii $r_1 = 3r_s$ and $r_2 = 6r_s$.
- Calculate linear particle density normalized by total particle number:

• Plot inverse since $dN/dr \rightarrow \infty$ at turnaround radii $r \rightarrow r_{1,2}$.

1 dN

 $\overline{N} \overline{dr}$.

(47)

Radially inflowing gas: κ -Poincarè vs. Schwarzschild

• Example: radial inflow ($\mathcal{L}_0 = 0$) of marginally bound particles:

$$\lim_{r \to \infty} \bar{\partial}^r H = 0.$$
(48)

Radially inflowing gas: κ -Poincarè vs. Schwarzschild

• Example: radial inflow ($\mathcal{L}_0 = 0$) of marginally bound particles:

$$\lim_{r \to \infty} \bar{\partial}^r H = 0.$$
(48)

• Calculate linear particle density normalized by inflow rate:

$$\left(\frac{\mathrm{d}N}{\mathrm{d}t}\right)^{-1}\frac{\mathrm{d}N}{\mathrm{d}r}\,.\tag{49}$$

Radially inflowing gas: κ -Poincarè vs. Schwarzschild

• Example: radial inflow ($\mathcal{L}_0 = 0$) of marginally bound particles:

$$\lim_{r \to \infty} \bar{\partial}^r H = 0.$$
(48)

Calculate linear particle density normalized by inflow rate:

$$\left(\frac{\mathrm{d}N}{\mathrm{d}t}\right)^{-1}\frac{\mathrm{d}N}{\mathrm{d}r}\,.\tag{49}$$

Manuel Hohmann (University of Tartu)

Theoretical Physics Seminar - 16. April 2024 35/40

- 1. Lorentz covariance and invariance
- 2. Teleparallel gravity
- 3. Finsler gravity
- 4. Conclusion

• Possible signatures of local Lorentz invariance violation:

- Dependence of experiments on absolute velocity.
- Modified dispersion relation.
- Post-Newtonian parameters $\alpha_1, \alpha_2, \alpha_3$.

- Possible signatures of local Lorentz invariance violation:
 - Dependence of experiments on absolute velocity.
 - Modified dispersion relation.
 - Post-Newtonian parameters $\alpha_1, \alpha_2, \alpha_3$.
- Teleparallel gravity:
 - Formulated via tetrad or metric and connection.
 - Matter couples to metric only.
 - No observable violation of LLI.

- Possible signatures of local Lorentz invariance violation:
 - Dependence of experiments on absolute velocity.
 - Modified dispersion relation.
 - Post-Newtonian parameters $\alpha_1, \alpha_2, \alpha_3$.
- Teleparallel gravity:
 - Formulated via tetrad or metric and connection.
 - Matter couples to metric only.
 - No observable violation of LLI.
- Finsler-based gravity theories:
 - Based on generalized length functional.
 - Formulation as modified dispersion relation.
 - Various effects to search for LLI violation.

- [1] MH, "A geometric view on local Lorentz transformations in teleparallel gravity," Int. J. Geom. Meth. Mod. Phys. **19** (2022) no.Supp01, 2240001 [arXiv:2112.15173 [gr-qc]].
- [2] MH, C. Pfeifer and N. Voicu, "Mathematical foundations for field theories on Finsler spacetimes," J. Math. Phys. 63 (2022) no.3, 032503 [arXiv:2106.14965 [math-ph]].
- [3] D. Läänemets, MH and C. Pfeifer, "Observables from spherically symmetric modified dispersion relations," Int. J. Geom. Meth. Mod. Phys. 19 (2022) no.10, 2250155 [arXiv:2201.04694 [gr-qc]].
- [4] MH, "Kinetic gases in static spherically symmetric modified dispersion relations," Class. Quant. Grav. **41** (2024) no.1, 015025 [arXiv:2310.01487 [gr-qc]].

Extra: the associated bundle

Manuel Hohmann (University of Tartu)

Lorentz invariance and gravity

Theoretical Physics Seminar - 16. April 2024 39/40

Extra: the many faces of connections

Manuel Hohmann (University of Tartu)

Lorentz invariance and gravity

Theoretical Physics Seminar - 16. April 2024 40/40