How to (not) break local Lorentz invariance in gravity theory

Manuel Hohmann

Laboratory of Theoretical Physics - Institute of Physics - University of Tartu Center of Excellence "The Dark Side of the Universe"

European Union European Regional Development Fund

in your future
781. WE-Heraeus-Seminar: Time and Clocks - 3. March 2023

Outline

(1) Lorentz covariance and invariance
(2) Teleparallel gravity
(3) Finsler gravity
(4) Conclusion

Outline

(1) Lorentz covariance and invariance

(2) Teleparallel gravity

(3) Finsler gravity

4 Conclusion

Motivation: problems to solve

- So far unexplained cosmological observations:
- Accelerating expansion of the universe.
- Homogeneity of cosmic microwave background.

Motivation: problems to solve

- So far unexplained cosmological observations:
- Accelerating expansion of the universe.
- Homogeneity of cosmic microwave background.
- Models for explaining these observations:
- ^CDM model / dark energy.
- Inflation.

Motivation: problems to solve

- So far unexplained cosmological observations:
- Accelerating expansion of the universe.
- Homogeneity of cosmic microwave background.
- Models for explaining these observations:
- ^CDM model / dark energy.
- Inflation.
- Physical mechanisms are not understood:
- Unknown type of matter?
- Modification of the laws of gravity?
- Scalar field in addition to metric mediating gravity?
- Quantum gravity effects?

Motivation: problems to solve

- So far unexplained cosmological observations:
- Accelerating expansion of the universe.
- Homogeneity of cosmic microwave background.
- Models for explaining these observations:
- ^CDM model / dark energy.
- Inflation.
- Physical mechanisms are not understood:
- Unknown type of matter?
- Modification of the laws of gravity?
- Scalar field in addition to metric mediating gravity?
- Quantum gravity effects?
- Idea here: modification of the geometric structure of spacetime!
- Study classical gravity theories based on modified geometry.
- Consider geometries as effective models of quantum gravity.
- Derive observable effects to test modified geometry.

Motivation: observation of particles

- Consider simple particle detector:
- Particles enter tracker chamber with constant magnetic field.
- Particles hit calorimeter and emit photons until full stop.
- Measure radius and direction of particle tracks: momentum.
- Measure photon frequencies from particle impact: energy.

Motivation: observation of particles

- Consider simple particle detector:
- Particles enter tracker chamber with constant magnetic field.
- Particles hit calorimeter and emit photons until full stop.
- Measure radius and direction of particle tracks: momentum.
- Measure photon frequencies from particle impact: energy.
- Units used by particle detector:
- Measuring frequency requires standard clock.
- Measuring radius (distance) requires standard ruler.
- Measuring direction components requires orthogonal axes.
- Relating magnetic field, momentum, Lorentz force gives orientation.

Motivation: observation of particles

- Consider simple particle detector:
- Particles enter tracker chamber with constant magnetic field.
- Particles hit calorimeter and emit photons until full stop.
- Measure radius and direction of particle tracks: momentum.
- Measure photon frequencies from particle impact: energy.
- Units used by particle detector:
- Measuring frequency requires standard clock.
- Measuring radius (distance) requires standard ruler.
- Measuring direction components requires orthogonal axes.
- Relating magnetic field, momentum, Lorentz force gives orientation.
- Relating different measurements:
- Particle detector establishes local reference frame.
- Relatively moving detector at the same point has different frame.
- Measured energy and momentum disagree between detectors.

Motivation: observation of particles

- Consider simple particle detector:
- Particles enter tracker chamber with constant magnetic field.
- Particles hit calorimeter and emit photons until full stop.
- Measure radius and direction of particle tracks: momentum.
- Measure photon frequencies from particle impact: energy.
- Units used by particle detector:
- Measuring frequency requires standard clock.
- Measuring radius (distance) requires standard ruler.
- Measuring direction components requires orthogonal axes.
- Relating magnetic field, momentum, Lorentz force gives orientation.
- Relating different measurements:
- Particle detector establishes local reference frame.
- Relatively moving detector at the same point has different frame.
- Measured energy and momentum disagree between detectors.
- Questions:
- How are measurements between detectors at same point related?
- How does this relation depend on the location of detectors?

The Einstein equivalence principle

- Einstein equivalence principle:

1. Freely falling test bodies move independent of their composition.
2. Local non-gravitational experiments independent of velocity.
3. Local non-gravitational experiments independent of position.

The Einstein equivalence principle

- Einstein equivalence principle:

1. Freely falling test bodies move independent of their composition.
2. Local non-gravitational experiments independent of velocity.
3. Local non-gravitational experiments independent of position.

- Explanations:
- Test body: sufficiently small, no charges, no self-gravitation.

The Einstein equivalence principle

- Einstein equivalence principle:

1. Freely falling test bodies move independent of their composition.
2. Local non-gravitational experiments independent of velocity.
3. Local non-gravitational experiments independent of position.

- Explanations:
- Test body: sufficiently small, no charges, no self-gravitation.
- Gravity absent in sufficiently small, freely falling laboratory.

The Einstein equivalence principle

- Einstein equivalence principle:

1. Freely falling test bodies move independent of their composition.
2. Local non-gravitational experiments independent of velocity.
3. Local non-gravitational experiments independent of position.

- Explanations:
- Test body: sufficiently small, no charges, no self-gravitation.
- Gravity absent in sufficiently small, freely falling laboratory.
- Local freely falling laboratory with no external forces or fields.

The Einstein equivalence principle

- Einstein equivalence principle:

1. Freely falling test bodies move independent of their composition.
2. Local non-gravitational experiments independent of velocity.
3. Local non-gravitational experiments independent of position.

- Explanations:
- Test body: sufficiently small, no charges, no self-gravitation.
- Gravity absent in sufficiently small, freely falling laboratory.
- Local freely falling laboratory with no external forces or fields.
- Invariance of physical laws:
- No preferred rest frame: local Lorentz invariance (LLI).

The Einstein equivalence principle

- Einstein equivalence principle:

1. Freely falling test bodies move independent of their composition.
2. Local non-gravitational experiments independent of velocity.
3. Local non-gravitational experiments independent of position.

- Explanations:
- Test body: sufficiently small, no charges, no self-gravitation.
- Gravity absent in sufficiently small, freely falling laboratory.
- Local freely falling laboratory with no external forces or fields.
- Invariance of physical laws:
- No preferred rest frame: local Lorentz invariance (LLI).
- No preferred locations: local position invariance (LPI).

The Einstein equivalence principle

- Einstein equivalence principle:

1. Freely falling test bodies move independent of their composition.
2. Local non-gravitational experiments independent of velocity.
3. Local non-gravitational experiments independent of position.

- Explanations:
- Test body: sufficiently small, no charges, no self-gravitation.
- Gravity absent in sufficiently small, freely falling laboratory.
- Local freely falling laboratory with no external forces or fields.
- Invariance of physical laws:
- No preferred rest frame: local Lorentz invariance (LLI).
- No preferred locations: local position invariance (LPI).
- Consequences for gravitational theory:
- Spacetime equipped with metric $g_{\mu \nu}$.
- Freely falling particles follow geodesics of $g_{\mu \nu}$.
- Local, freely falling laboratories with $g_{\mu \nu}=\eta_{\mu \nu}$.
- Local, non-gravitational physics respects special relativity.

Orthonormal frames and Lorentz transformations

- Establish orthonormal frame $e_{a}{ }^{\mu}$ at spacetime point $x \in M$:
- Four-velocity of observer \rightsquigarrow direction of time component.
- Clock showing proper time \rightsquigarrow normalization of time component.
- Light rays / radar experiment \rightsquigarrow direction of spatial components.
- Light turnaround time \rightsquigarrow normalization of spatial components.
- Parity-violating particles \rightsquigarrow orientation of frame.

Orthonormal frames and Lorentz transformations

- Establish orthonormal frame $e_{a}{ }^{\mu}$ at spacetime point $x \in M$:
- Four-velocity of observer \rightsquigarrow direction of time component.
- Clock showing proper time \rightsquigarrow normalization of time component.
- Light rays / radar experiment \rightsquigarrow direction of spatial components.
- Light turnaround time \rightsquigarrow normalization of spatial components.
- Parity-violating particles \rightsquigarrow orientation of frame.
- Comparing frames established by different observers:
- Observers with different four-velocities $\dot{\gamma}^{\mu}, \dot{\gamma}^{\prime \mu}$ at same point x.
- Each observer establishes an orthonormal frame $e_{a}{ }^{\mu}, e_{a}^{\prime}{ }^{\mu}$.
- LLI: observers' frames are related by Lorentz transformation:

$$
\begin{equation*}
e_{a}^{\prime \mu}=\Lambda_{a}^{b} e_{b}^{\mu}, \quad \Lambda_{a}^{c} \Lambda_{b}^{d} \eta_{c d}=\eta_{a b} \tag{1}
\end{equation*}
$$

\Rightarrow Observers find same metric components

$$
\begin{equation*}
g^{\mu \nu}=\eta^{a b} \boldsymbol{e}_{a}^{\mu} \boldsymbol{e}_{b}^{\nu}=\eta^{a b} \boldsymbol{e}_{a}^{\prime \mu} \boldsymbol{e}_{b}^{\prime \nu} . \tag{2}
\end{equation*}
$$

- Frames have same orientation and time-orientation.

Lorentz covariance of observables

- Relating observations made by different observers:
- Observers measure quantities in their own frames $e_{a}{ }^{\mu}, e_{a}^{\prime \mu}$.
- Observers in general obtain different values $Q^{\prime}, Q^{\prime \prime}$.
- Lorentz covariance: representation ρ of $\mathrm{SO}_{0}(1,3)$:

$$
\begin{equation*}
Q^{\prime \prime}=\rho^{\prime}{ }_{J}(\Lambda) Q^{J} \tag{3}
\end{equation*}
$$

- Lorentz invariance if $Q^{\prime \prime}=Q^{\prime}$.

Lorentz covariance of observables

- Relating observations made by different observers:
- Observers measure quantities in their own frames $e_{a}{ }^{\mu}, e_{a}^{\prime \mu}$.
- Observers in general obtain different values $Q^{\prime}, Q^{\prime \prime}$.
- Lorentz covariance: representation ρ of $\mathrm{SO}_{0}(1,3)$:

$$
\begin{equation*}
Q^{\prime \prime}=\rho^{\prime}{ }_{J}(\Lambda) Q^{J} \tag{3}
\end{equation*}
$$

- Lorentz invariance if $Q^{\prime \prime}=Q^{\prime}$.
- Example: energy-momentum of particles:
- Observers measure $\left(p_{a}\right)=(E, \vec{p})$ and $\left(p_{a}^{\prime}\right)=\left(E^{\prime}, \vec{p}^{\prime}\right)$.
- Momentum components form covector: $p_{a}^{\prime}=\Lambda_{a}^{b} p_{b}$.
\Rightarrow Physical, frame independent quantity p_{μ} gives observables:

$$
\begin{equation*}
p_{a}=e_{a}{ }^{\mu} p_{\mu}, \quad p_{a}^{\prime}=e_{a}^{\prime}{ }^{\mu} p_{\mu} . \tag{4}
\end{equation*}
$$

\Rightarrow Mass m is Lorentz-invariant quantity:

$$
\begin{equation*}
\eta^{a b} p_{a} p_{b}=\eta^{a b} p_{a}^{\prime} p_{b}^{\prime}=g^{\mu \nu} p_{\mu} p_{\nu}=-m^{2} \tag{5}
\end{equation*}
$$

Lorentz covariance of observables

- Relating observations made by different observers:
- Observers measure quantities in their own frames $e_{a}{ }^{\mu}, e_{a}^{\prime \mu}$.
- Observers in general obtain different values $Q^{\prime}, Q^{\prime \prime}$.
- Lorentz covariance: representation ρ of $\mathrm{SO}_{0}(1,3)$:

$$
\begin{equation*}
Q^{\prime \prime}=\rho^{\prime}{ }_{J}(\Lambda) Q^{J} \tag{3}
\end{equation*}
$$

- Lorentz invariance if $Q^{\prime \prime}=Q^{\prime}$.
- Example: energy-momentum of particles:
- Observers measure $\left(p_{a}\right)=(E, \vec{p})$ and $\left(p_{a}^{\prime}\right)=\left(E^{\prime}, \vec{p}^{\prime}\right)$.
- Momentum components form covector: $p_{a}^{\prime}=\Lambda_{a}^{b} p_{b}$.
\Rightarrow Physical, frame independent quantity p_{μ} gives observables:

$$
\begin{equation*}
p_{a}=e_{a}{ }^{\mu} p_{\mu}, \quad p_{a}^{\prime}=e_{a}^{\prime}{ }^{\mu} p_{\mu} . \tag{4}
\end{equation*}
$$

\Rightarrow Mass m is Lorentz-invariant quantity:

$$
\begin{equation*}
\eta^{a b} p_{a} p_{b}=\eta^{a b} p_{a}^{\prime} p_{b}^{\prime}=g^{\mu \nu} p_{\mu} p_{\nu}=-m^{2} \tag{5}
\end{equation*}
$$

- Local Lorentz invariance manifest in dispersion relation.

LLI in the PPN formalism

- Perturbative expansion of the metric:

$$
\begin{align*}
g_{00}^{(2)}= & 2 \alpha U, \tag{6a}\\
g_{\alpha \beta}^{(2)}= & 2 \gamma U \delta_{\alpha \beta}, \tag{6b}\\
g_{0 \alpha}^{(3)}= & -\frac{1}{2}\left(3+4 \gamma+\alpha_{1}-\alpha_{2}+\zeta_{1}-2 \xi\right) V_{\alpha} \\
& -\frac{1}{2}\left(1+\alpha_{2}-\zeta_{1}+2 \xi\right) W_{\alpha}, \tag{6c}\\
g_{00}^{(4)}= & -2 \beta U^{2}-2 \xi \Phi_{W}+\left(2+2 \gamma+\alpha_{3}+\zeta_{1}-2 \xi\right) \Phi_{1} \\
& +2\left(1+3 \gamma-2 \beta+\zeta_{2}+\xi\right) \Phi_{2}+2\left(1+\zeta_{3}\right) \Phi_{3} \\
& +2\left(3 \gamma+3 \zeta_{4}-2 \xi\right) \Phi_{4}-\left(\zeta_{1}-2 \xi\right) \mathcal{A} . \tag{6d}
\end{align*}
$$

LLI in the PPN formalism

- Perturbative expansion of the metric:

$$
\begin{align*}
g_{00}^{(2)}= & 2 \alpha U, \tag{6a}\\
g_{\alpha \beta}^{(2)}= & 2 \gamma U \delta_{\alpha \beta}, \tag{6b}\\
g_{0 \alpha}^{(3)}= & -\frac{1}{2}\left(3+4 \gamma+\alpha_{1}-\alpha_{2}+\zeta_{1}-2 \xi\right) V_{\alpha} \tag{6c}\\
& -\frac{1}{2}\left(1+\alpha_{2}-\zeta_{1}+2 \xi\right) W_{\alpha}, \\
g_{00}^{(4)}= & -2 \beta U^{2}-2 \xi \Phi_{W}+\left(2+2 \gamma+\alpha_{3}+\zeta_{1}-2 \xi\right) \Phi_{1} \\
& +2\left(1+3 \gamma-2 \beta+\zeta_{2}+\xi\right) \Phi_{2}+2\left(1+\zeta_{3}\right) \Phi_{3} \tag{6d}\\
& +2\left(3 \gamma+3 \zeta_{4}-2 \xi\right) \Phi_{4}-\left(\zeta_{1}-2 \xi\right) \mathcal{A} .
\end{align*}
$$

- PPN parameters $\alpha, \gamma, \beta, \alpha_{1}, \ldots, \alpha_{3}, \zeta_{1}, \ldots, \zeta_{4}, \xi$.

LLI in the PPN formalism

- Perturbative expansion of the metric:

$$
\begin{align*}
g_{00}^{(2)}= & 2 \alpha U, \tag{6a}\\
g_{\alpha \beta}^{(2)}= & 2 \gamma U \delta_{\alpha \beta}, \tag{6b}\\
g_{0 \alpha}^{(3)}= & -\frac{1}{2}\left(3+4 \gamma+\alpha_{1}-\alpha_{2}+\zeta_{1}-2 \xi\right) V_{\alpha} \tag{6c}\\
& -\frac{1}{2}\left(1+\alpha_{2}-\zeta_{1}+2 \xi\right) W_{\alpha}, \\
g_{00}^{(4)}= & -2 \beta U^{2}-2 \xi \Phi_{W}+\left(2+2 \gamma+\alpha_{3}+\zeta_{1}-2 \xi\right) \Phi_{1} \\
& +2\left(1+3 \gamma-2 \beta+\zeta_{2}+\xi\right) \Phi_{2}+2\left(1+\zeta_{3}\right) \Phi_{3} \tag{6d}\\
& +2\left(3 \gamma+3 \zeta_{4}-2 \xi\right) \Phi_{4}-\left(\zeta_{1}-2 \xi\right) \mathcal{A} .
\end{align*}
$$

- PPN parameters $\alpha, \gamma, \beta, \alpha_{1}, \ldots, \alpha_{3}, \zeta_{1}, \ldots, \zeta_{4}, \xi$.
- PPN potentials $U, V_{\alpha}, W_{\alpha}, \Phi_{1}, \ldots, \Phi_{4}, \Phi_{W}, \mathcal{A}$.

LLI in the PPN formalism

- Perturbative expansion of the metric:

$$
\begin{align*}
g_{00}^{(2)}= & 2 \alpha U, \tag{6a}\\
g_{\alpha \beta}^{(2)}= & 2 \gamma U \delta_{\alpha \beta}, \tag{6b}\\
g_{0 \alpha}^{(3)}= & -\frac{1}{2}\left(3+4 \gamma+\alpha_{1}-\alpha_{2}+\zeta_{1}-2 \xi\right) V_{\alpha} \tag{6c}\\
& -\frac{1}{2}\left(1+\alpha_{2}-\zeta_{1}+2 \xi\right) W_{\alpha}, \\
g_{00}^{(4)}= & -2 \beta U^{2}-2 \xi \Phi_{W}+\left(2+2 \gamma+\alpha_{3}+\zeta_{1}-2 \xi\right) \Phi_{1} \\
& +2\left(1+3 \gamma-2 \beta+\zeta_{2}+\xi\right) \Phi_{2}+2\left(1+\zeta_{3}\right) \Phi_{3} \tag{6d}\\
& +2\left(3 \gamma+3 \zeta_{4}-2 \xi\right) \Phi_{4}-\left(\zeta_{1}-2 \xi\right) \mathcal{A} .
\end{align*}
$$

- PPN parameters $\alpha, \gamma, \beta, \alpha_{1}, \ldots, \alpha_{3}, \zeta_{1}, \ldots, \zeta_{4}, \xi$.
- PPN potentials $U, V_{\alpha}, W_{\alpha}, \Phi_{1}, \ldots, \Phi_{4}, \Phi_{W}, \mathcal{A}$.
- LLI if $\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right) \neq(0,0,0)$.

Outline

(1) Lorentz covariance and invariance

(2) Teleparallel gravity

3 Finsler gravity

4 Conclusion

Field variables in teleparallel gravity

- Metric teleparallelism conventionally formulated using:
- Tetrad / coframe: $\theta^{a}=\theta^{a}{ }_{\mu} \mathrm{d} x^{\mu}$ with inverse $e_{a}=e_{a}{ }^{\mu} \partial_{\mu}$.
- Spin connection: $\omega^{a}{ }_{b}=\omega^{a}{ }_{b \mu} \mathrm{~d} x^{\mu}$.

Field variables in teleparallel gravity

- Metric teleparallelism conventionally formulated using:
- Tetrad / coframe: $\theta^{a}=\theta^{a}{ }_{\mu} \mathrm{d} x^{\mu}$ with inverse $e_{a}=e_{a}{ }^{\mu} \partial_{\mu}$.
- Spin connection: $\omega^{a}{ }_{b}=\omega^{a}{ }_{b \mu} \mathrm{~d} x^{\mu}$.
- Induced metric-affine geometry:
- Metric:

$$
\begin{equation*}
g_{\mu \nu}=\eta_{a b} \theta^{a}{ }_{\mu} \theta^{b}{ }_{\nu} . \tag{7}
\end{equation*}
$$

- Affine connection:

$$
\begin{equation*}
\Gamma^{\mu}{ }_{\nu \rho}=e_{a}{ }^{\mu}\left(\partial_{\rho} \theta^{a}{ }_{\nu}+\omega^{a}{ }_{b \rho} \theta^{b}{ }_{\nu}\right) . \tag{8}
\end{equation*}
$$

Field variables in teleparallel gravity

- Metric teleparallelism conventionally formulated using:
- Tetrad / coframe: $\theta^{a}=\theta^{a}{ }_{\mu} \mathrm{d} x^{\mu}$ with inverse $e_{a}=e_{a}{ }^{\mu} \partial_{\mu}$.
- Spin connection: $\omega^{a}{ }_{b}=\omega^{a}{ }_{b \mu} \mathrm{~d} x^{\mu}$.
- Induced metric-affine geometry:
- Metric:

$$
\begin{equation*}
g_{\mu \nu}=\eta_{a b} \theta^{a}{ }_{\mu} \theta^{b}{ }_{\nu} . \tag{7}
\end{equation*}
$$

- Affine connection:

$$
\begin{equation*}
\Gamma^{\mu}{ }_{\nu \rho}=e_{a}{ }^{\mu}\left(\partial_{\rho} \theta^{a}{ }_{\nu}+\omega^{a}{ }_{b \rho} \theta^{b}{ }_{\nu}\right) . \tag{8}
\end{equation*}
$$

- Conditions on the spin connection:
- Flatness $R=0$:

$$
\begin{equation*}
\partial_{\mu} \omega^{a}{ }_{b \nu}-\partial_{\nu} \omega^{a}{ }_{b \mu}+\omega^{a}{ }_{c \mu} \omega^{c}{ }_{b \nu}-\omega^{a}{ }_{c \nu} \omega^{c}{ }_{b \mu}=0 . \tag{9}
\end{equation*}
$$

- Metric compatibility $Q=0$:

$$
\begin{equation*}
\eta_{a c} \omega^{c}{ }_{b \mu}+\eta_{b c} \omega^{c}{ }_{a \mu}=0 \tag{10}
\end{equation*}
$$

Local Lorentz transformations

- Local Lorentz transformation of the tetrad only:

$$
\begin{equation*}
\theta^{a}{ }_{\mu} \mapsto \theta^{\prime a}{ }_{\mu}=\Lambda^{a}{ }_{b} \theta^{b}{ }_{\mu} . \tag{11}
\end{equation*}
$$

\checkmark Metric is invariant: $g_{\mu \nu}^{\prime}=g_{\mu \nu}$.
\& Connection is not invariant: $\Gamma^{\mu}{ }_{\nu \rho} \neq \Gamma^{\mu}{ }_{\nu \rho}$.

Local Lorentz transformations

- Local Lorentz transformation of the tetrad only:

$$
\begin{equation*}
\theta_{\mu}^{a} \mapsto \theta_{\mu}^{\prime a}=\Lambda_{b}^{a} \theta_{\mu}^{b} \tag{11}
\end{equation*}
$$

\checkmark Metric is invariant: $g_{\mu \nu}^{\prime}=g_{\mu \nu}$.
文 Connection is not invariant: $\Gamma^{\prime \mu}{ }_{\nu \rho} \neq \Gamma^{\mu}{ }_{\nu \rho}$.

- Perform also transformation of the spin connection:

$$
\begin{equation*}
\omega_{b \mu}^{a} \mapsto \omega^{\prime a}{ }_{b \mu}=\Lambda_{c}^{a}\left(\Lambda^{-1}\right)^{d}{ }_{b} \omega^{c}{ }_{d \mu}+\Lambda_{c}^{a}{ }_{c} \partial_{\mu}\left(\Lambda^{-1}\right)^{c}{ }_{b} \tag{12}
\end{equation*}
$$

\checkmark Metric is invariant: $g_{\mu \nu}^{\prime}=g_{\mu \nu}$.
\checkmark Connection is invariant: $\Gamma^{\prime \mu}{ }_{\nu \rho}=\Gamma^{\mu}{ }_{\nu \rho}$.

Local Lorentz transformations

- Local Lorentz transformation of the tetrad only:

$$
\begin{equation*}
\theta^{a}{ }_{\mu} \mapsto \theta^{\prime a}{ }_{\mu}=\Lambda^{a}{ }_{b} \theta^{b}{ }_{\mu} \tag{11}
\end{equation*}
$$

\checkmark Metric is invariant: $g_{\mu \nu}^{\prime}=g_{\mu \nu}$.
2 Connection is not invariant: $\Gamma^{\mu}{ }_{\nu \rho} \neq \Gamma^{\mu}{ }_{\nu \rho}$.

- Perform also transformation of the spin connection:

$$
\begin{equation*}
\omega_{b \mu}^{a} \mapsto \omega^{\prime a}{ }_{b \mu}=\Lambda_{c}^{a}\left(\Lambda^{-1}\right)^{d}{ }_{b} \omega^{c}{ }_{d \mu}+\Lambda_{c}^{a} \partial_{\mu}\left(\Lambda^{-1}\right)^{c}{ }_{b} \tag{12}
\end{equation*}
$$

\checkmark Metric is invariant: $g_{\mu \nu}^{\prime}=g_{\mu \nu}$.
\checkmark Connection is invariant: $\Gamma^{\prime \mu}{ }_{\nu \rho}=\Gamma^{\mu}{ }_{\nu \rho}$.
\Rightarrow Metric-affine geometry equivalently described by:

- Metric $g_{\mu \nu}$ and affine connection $\Gamma^{\mu}{ }_{\nu \rho}$.
- Equivalence class of tetrad $\theta^{a}{ }_{\mu}$ and spin connection $\omega^{a}{ }_{b \mu}$.
- Equivalence defined with respect to local Lorentz transformations.

Local Lorentz transformations

- Local Lorentz transformation of the tetrad only:

$$
\begin{equation*}
\theta_{\mu}^{a} \mapsto \theta_{\mu}^{\prime a}=\Lambda_{b}^{a} \theta_{\mu}^{b} \tag{11}
\end{equation*}
$$

\checkmark Metric is invariant: $g_{\mu \nu}^{\prime}=g_{\mu \nu}$.
文 Connection is not invariant: $\Gamma^{\prime \mu}{ }_{\nu \rho} \neq \Gamma^{\mu}{ }_{\nu \rho}$.

- Perform also transformation of the spin connection:

$$
\begin{equation*}
\omega^{a}{ }_{b \mu} \mapsto \omega^{\prime a}{ }_{b \mu}=\Lambda_{c}^{a}\left(\Lambda^{-1}\right)^{d}{ }_{b} \omega^{c}{ }_{d \mu}+\Lambda^{a}{ }_{c} \partial_{\mu}\left(\Lambda^{-1}\right)^{c}{ }_{b} \tag{12}
\end{equation*}
$$

\checkmark Metric is invariant: $g_{\mu \nu}^{\prime}=g_{\mu \nu}$.
\checkmark Connection is invariant: $\Gamma^{\prime \mu}{ }_{\nu \rho}=\Gamma^{\mu}{ }_{\nu \rho}$.
\Rightarrow Metric-affine geometry equivalently described by:

- Metric $g_{\mu \nu}$ and affine connection $\Gamma^{\mu}{ }_{\nu \rho}$.
- Equivalence class of tetrad $\theta^{a}{ }_{\mu}$ and spin connection $\omega^{a}{ }_{b \mu}$.
- Equivalence defined with respect to local Lorentz transformations.
- Is LLI broken if teleparallel gravity action depends on $\Gamma^{\mu}{ }_{\nu \rho}$?

The Weitzenböck gauge

- Intuitive conclusion: One can always use the Weitzenböck gauge.
- The spin connection is flat:

$$
\begin{equation*}
\partial_{\mu} \omega^{a}{ }_{b \nu}-\partial_{\nu} \omega^{a}{ }_{b \mu}+\omega^{a}{ }_{c \mu} \omega^{c}{ }_{b \nu}-\omega^{a}{ }_{c \nu} \omega^{c}{ }_{b \mu} \equiv 0 . \tag{13}
\end{equation*}
$$

\Rightarrow The spin connection can always be written in the form

$$
\begin{equation*}
\omega^{a}{ }_{b \mu}=\Lambda^{a}{ }_{c} \partial_{\mu}\left(\Lambda^{-1}\right)^{c}{ }_{b} . \tag{14}
\end{equation*}
$$

\Rightarrow One can achieve the Weitzenböck gauge by $\theta^{a}{ }_{\mu}=\Lambda^{a}{ }_{b}{ }^{\omega}{ }^{b}{ }_{\mu}$.

The Weitzenböck gauge

- Intuitive conclusion: One can always use the Weitzenböck gauge.
- The spin connection is flat:

$$
\begin{equation*}
\partial_{\mu} \omega^{a}{ }_{b \nu}-\partial_{\nu} \omega^{a}{ }_{b \mu}+\omega^{a}{ }_{c \mu} \omega^{c}{ }_{b \nu}-\omega^{a}{ }_{c \nu} \omega^{c}{ }_{b \mu} \equiv 0 . \tag{13}
\end{equation*}
$$

\Rightarrow The spin connection can always be written in the form

$$
\begin{equation*}
\omega^{a}{ }_{b \mu}=\Lambda^{a}{ }_{c} \partial_{\mu}\left(\Lambda^{-1}\right)^{c}{ }_{b} . \tag{14}
\end{equation*}
$$

\Rightarrow One can achieve the Weitzenböck gauge by $\theta^{a}{ }_{\mu}=\Lambda^{a}{ }_{b}{ }^{w}{ }^{b}{ }_{\mu}$.

- $\Lambda^{a}{ }_{b}$ and ${ }^{w}{ }^{a}{ }_{\mu}$ defined only up to global transform

$$
\begin{equation*}
\Lambda_{b}^{a} \mapsto \Lambda^{\prime a}{ }_{b}=\Lambda_{c}^{a}{ }_{c} \Omega_{b}^{c}, \quad{ }_{\theta}{ }^{w}{ }_{\mu} \mapsto \stackrel{\omega}{\theta}^{\prime a}{ }_{\mu}=\left(\Omega^{-1}\right)^{a}{ }_{b}{ }^{w}{ }^{b}{ }_{\mu} . \tag{15}
\end{equation*}
$$

The Weitzenböck gauge

- Intuitive conclusion: One can always use the Weitzenböck gauge.
- The spin connection is flat:

$$
\begin{equation*}
\partial_{\mu} \omega^{a}{ }_{b \nu}-\partial_{\nu} \omega^{a}{ }_{b \mu}+\omega^{a}{ }_{c \mu} \omega^{c}{ }_{b \nu}-\omega^{a}{ }_{c \nu} \omega^{c}{ }_{b \mu} \equiv 0 . \tag{13}
\end{equation*}
$$

\Rightarrow The spin connection can always be written in the form

$$
\begin{equation*}
\omega^{a}{ }_{b \mu}=\Lambda^{a}{ }_{c} \partial_{\mu}\left(\Lambda^{-1}\right)^{c}{ }_{b} . \tag{14}
\end{equation*}
$$

\Rightarrow One can achieve the Weitzenböck gauge by $\theta^{a}{ }_{\mu}=\Lambda^{a}{ }_{b}{ }^{\omega}{ }^{b}{ }_{\mu}$.

- $\Lambda^{a}{ }_{b}$ and ${ }^{w}{ }^{a}{ }_{\mu}$ defined only up to global transform

$$
\begin{equation*}
\Lambda_{b}^{a} \mapsto \Lambda^{\prime a}{ }_{b}=\Lambda^{a}{ }_{c} \Omega^{c}{ }_{b}, \quad \stackrel{\omega}{\theta}^{a}{ }_{\mu} \mapsto \stackrel{\omega}{\theta}^{\prime a}{ }_{\mu}=\left(\Omega^{-1}\right)^{a}{ }_{b}{ }_{\theta}^{w}{ }_{\mu} . \tag{15}
\end{equation*}
$$

- Questions posed by the adept of geometry:

1. How can we determine the transformation $\wedge^{a}{ }_{b}$?

The Weitzenböck gauge

- Intuitive conclusion: One can always use the Weitzenböck gauge.
- The spin connection is flat:

$$
\begin{equation*}
\partial_{\mu} \omega^{a}{ }_{b \nu}-\partial_{\nu} \omega^{a}{ }_{b \mu}+\omega^{a}{ }_{c \mu} \omega^{c}{ }_{b \nu}-\omega^{a}{ }_{c \nu} \omega^{c}{ }_{b \mu} \equiv 0 . \tag{13}
\end{equation*}
$$

\Rightarrow The spin connection can always be written in the form

$$
\begin{equation*}
\omega^{a}{ }_{b \mu}=\Lambda^{a}{ }_{c} \partial_{\mu}\left(\Lambda^{-1}\right)^{c}{ }_{b} . \tag{14}
\end{equation*}
$$

\Rightarrow One can achieve the Weitzenböck gauge by $\theta^{a}{ }_{\mu}=\Lambda^{a}{ }_{b}{ }^{w}{ }^{b}{ }_{\mu}$.

- $\Lambda^{a}{ }_{b}$ and ${ }^{\omega}{ }^{a}{ }_{\mu}$ defined only up to global transform

$$
\begin{equation*}
\Lambda_{b}^{a} \mapsto \Lambda^{\prime a}{ }_{b}=\Lambda^{a}{ }_{c} \Omega^{c}{ }_{b}, \quad \stackrel{\omega}{\theta}^{a}{ }_{\mu} \mapsto \stackrel{\omega}{\theta}^{\prime a}{ }_{\mu}=\left(\Omega^{-1}\right)^{a}{ }_{b}{ }_{\theta}^{w}{ }_{\mu} . \tag{15}
\end{equation*}
$$

- Questions posed by the adept of geometry:

1. How can we determine the transformation $\Lambda^{a}{ }_{b}$?
2. Is this even true?

The Weitzenböck gauge

- Intuitive conclusion: One can always use the Weitzenböck gauge.
- The spin connection is flat:

$$
\begin{equation*}
\partial_{\mu} \omega^{a}{ }_{b \nu}-\partial_{\nu} \omega^{a}{ }_{b \mu}+\omega^{a}{ }_{c \mu} \omega^{c}{ }_{b \nu}-\omega^{a}{ }_{c \nu} \omega^{c}{ }_{b \mu} \equiv 0 . \tag{13}
\end{equation*}
$$

\Rightarrow The spin connection can always be written in the form

$$
\begin{equation*}
\omega^{a}{ }_{b \mu}=\Lambda^{a}{ }_{c} \partial_{\mu}\left(\Lambda^{-1}\right)^{c}{ }_{b} . \tag{14}
\end{equation*}
$$

\Rightarrow One can achieve the Weitzenböck gauge by $\theta^{a}{ }_{\mu}=\Lambda^{a}{ }_{b}{ }^{w}{ }^{b}{ }_{\mu}$.

- $\Lambda^{a}{ }_{b}$ and $\stackrel{\omega}{\theta}^{a}{ }_{\mu}$ defined only up to global transform

$$
\begin{equation*}
\Lambda^{a}{ }_{b} \mapsto \Lambda^{\prime a}{ }_{b}=\Lambda^{a}{ }_{c} \Omega^{c}{ }_{b}, \quad \stackrel{w}{\theta}^{a}{ }_{\mu} \mapsto \stackrel{W}{\theta}^{\prime a}{ }_{\mu}=\left(\Omega^{-1}\right)^{a}{ }_{b}{ }^{w}{ }^{b}{ }_{\mu} . \tag{15}
\end{equation*}
$$

- Questions posed by the adept of geometry:

1. How can we determine the transformation $\Lambda^{a}{ }_{b}$?
2. Is this even true?

- Remark: this holds also in symmetric and general teleparallelism.

How to obtain the Weitzenböck gauge?

- Recall that we have gauge invariant quantities:
- The metric $g_{\mu \nu}=\eta_{a b} \theta^{a}{ }_{\mu} \theta^{b}{ }_{\nu}$.
- The teleparallel affine connection $\Gamma^{\mu}{ }_{\nu \rho}=e_{a}{ }^{\mu}\left(\partial_{\rho} \theta^{a}{ }_{\nu}+\omega^{a}{ }_{b \rho} \theta^{b}{ }_{\nu}\right)$.

How to obtain the Weitzenböck gauge?

- Recall that we have gauge invariant quantities:
- The metric $g_{\mu \nu}=\eta_{a b} \theta^{a}{ }_{\mu} \theta^{b}{ }_{\nu}$.
- The teleparallel affine connection $\Gamma^{\mu}{ }_{\nu \rho}=e_{a}{ }^{\mu}\left(\partial_{\rho} \theta^{a}{ }_{\nu}+\omega^{a}{ }_{b \rho} \theta^{b}{ }_{\nu}\right)$.
- The tetrad and connection satisfy the "tetrad postulate":

$$
\begin{equation*}
\partial_{\mu} \theta^{a}{ }_{\nu}+\omega^{a}{ }_{b \mu} \theta^{b}{ }_{\nu}-\Gamma^{\rho}{ }_{\nu \mu} \theta^{a}{ }_{\rho}=0 . \tag{16}
\end{equation*}
$$

How to obtain the Weitzenböck gauge?

- Recall that we have gauge invariant quantities:
- The metric $g_{\mu \nu}=\eta_{a b} \theta^{a}{ }_{\mu} \theta^{b}{ }_{\nu}$.
- The teleparallel affine connection $\Gamma^{\mu}{ }_{\nu \rho}=e_{a}{ }^{\mu}\left(\partial_{\rho} \theta^{a}{ }_{\nu}+\omega^{a}{ }_{b \rho} \theta^{b}{ }_{\nu}\right)$.
- The tetrad and connection satisfy the "tetrad postulate":

$$
\begin{equation*}
\partial_{\mu}{ }^{\omega}{ }^{a}{ }_{\nu}-\Gamma^{\rho}{ }_{\nu \mu}{ }^{\omega}{ }^{a}{ }_{\rho}=0 . \tag{16}
\end{equation*}
$$

- The tetrad postulate also holds in the Weitzenböck gauge.

How to obtain the Weitzenböck gauge?

- Recall that we have gauge invariant quantities:
- The metric $g_{\mu \nu}=\eta_{a b} \theta^{a}{ }_{\mu} \theta^{b}{ }_{\nu}$.
- The teleparallel affine connection $\Gamma^{\mu}{ }_{\nu \rho}=e_{a}{ }^{\mu}\left(\partial_{\rho} \theta^{a}{ }_{\nu}+\omega^{a}{ }_{b \rho} \theta^{b}{ }_{\nu}\right)$.
- The tetrad and connection satisfy the "tetrad postulate":

$$
\begin{equation*}
\partial_{\mu}{ }^{\omega}{ }^{a}{ }_{\nu}-\Gamma^{\rho}{ }_{\nu \mu}{ }^{\omega}{ }^{a}{ }_{\rho}=0 . \tag{16}
\end{equation*}
$$

- The tetrad postulate also holds in the Weitzenböck gauge.
\Rightarrow Each component ${ }_{\theta}{ }^{2}{ }_{\mu} \mathrm{d} x^{\mu}$ is a covariantly constant covector field.

How to obtain the Weitzenböck gauge?

- Recall that we have gauge invariant quantities:
- The metric $g_{\mu \nu}=\eta_{a b} \theta^{a}{ }_{\mu} \theta^{b}{ }_{\nu}$.
- The teleparallel affine connection $\Gamma^{\mu}{ }_{\nu \rho}=e_{a}{ }^{\mu}\left(\partial_{\rho} \theta^{a}{ }_{\nu}+\omega^{a}{ }_{b \rho} \theta^{b}{ }_{\nu}\right)$.
- The tetrad and connection satisfy the "tetrad postulate":

$$
\begin{equation*}
\partial_{\mu} \stackrel{w}{\theta}^{a}{ }_{\nu}-\Gamma^{\rho}{ }_{\nu \mu}{ }^{\omega} \theta^{a}{ }_{\rho}=0 . \tag{16}
\end{equation*}
$$

- The tetrad postulate also holds in the Weitzenböck gauge.
\Rightarrow Each component ${ }_{\theta}{ }^{w}{ }_{\mu} \mathrm{d} x^{\mu}$ is a covariantly constant covector field.
\Rightarrow Recipe for integrating the connection:

1. Choose ${ }^{w}{ }^{a}{ }_{\mu}(x)$ at some $x \in M$ to fit with the metric.

How to obtain the Weitzenböck gauge?

- Recall that we have gauge invariant quantities:
- The metric $g_{\mu \nu}=\eta_{a b} \theta^{a}{ }_{\mu} \theta^{b}{ }_{\nu}$.
- The teleparallel affine connection $\Gamma^{\mu}{ }_{\nu \rho}=e_{a}{ }^{\mu}\left(\partial_{\rho} \theta^{a}{ }_{\nu}+\omega^{a}{ }_{b \rho} \theta^{b}{ }_{\nu}\right)$.
- The tetrad and connection satisfy the "tetrad postulate":

$$
\begin{equation*}
\partial_{\mu} \stackrel{w}{\theta}^{a}{ }_{\nu}-\Gamma^{\rho}{ }_{\nu \mu}{ }^{\omega} \theta^{a}{ }_{\rho}=0 . \tag{16}
\end{equation*}
$$

- The tetrad postulate also holds in the Weitzenböck gauge.
\Rightarrow Each component ${ }_{\theta}{ }^{w}{ }_{\mu} \mathrm{d} x^{\mu}$ is a covariantly constant covector field.
\Rightarrow Recipe for integrating the connection:

1. Choose ${ }^{\prime \prime}{ }_{\mu}(x)$ at some $x \in M$ to fit with the metric.
2. For any other $y \in M$, choose path $x \rightsquigarrow y$, and parallel transport.

How to obtain the Weitzenböck gauge?

- Recall that we have gauge invariant quantities:
- The metric $g_{\mu \nu}=\eta_{a b} \theta^{a}{ }_{\mu} \theta^{b}{ }_{\nu}$.
- The teleparallel affine connection $\Gamma^{\mu}{ }_{\nu \rho}=e_{a}{ }^{\mu}\left(\partial_{\rho} \theta^{a}{ }_{\nu}+\omega^{a}{ }_{b \rho} \theta^{b}{ }_{\nu}\right)$.
- The tetrad and connection satisfy the "tetrad postulate":

$$
\begin{equation*}
\partial_{\mu} \stackrel{w}{\theta}^{a}{ }_{\nu}-\Gamma^{\rho}{ }_{\nu \mu}{ }^{\omega} \theta^{a}{ }_{\rho}=0 . \tag{16}
\end{equation*}
$$

- The tetrad postulate also holds in the Weitzenböck gauge.
\Rightarrow Each component ${ }_{\theta}{ }^{w}{ }_{\mu} \mathrm{d} x^{\mu}$ is a covariantly constant covector field.
\Rightarrow Recipe for integrating the connection:

1. Choose ${ }^{w}{ }_{\mu}{ }_{\mu}(x)$ at some $x \in M$ to fit with the metric.
2. For any other $y \in M$, choose path $x \rightsquigarrow y$, and parallel transport.

- Obtained tetrad satisfies required properties:
$\checkmark{ }^{\omega}{ }^{a}{ }_{\mu}$ gives correct metric, since connection is metric-compatible.

How to obtain the Weitzenböck gauge?

- Recall that we have gauge invariant quantities:
- The metric $g_{\mu \nu}=\eta_{a b} \theta^{a}{ }_{\mu} \theta^{b}{ }_{\nu}$.
- The teleparallel affine connection $\Gamma^{\mu}{ }_{\nu \rho}=e_{a}{ }^{\mu}\left(\partial_{\rho} \theta^{a}{ }_{\nu}+\omega^{a}{ }_{b \rho} \theta^{b}{ }_{\nu}\right)$.
- The tetrad and connection satisfy the "tetrad postulate":

$$
\begin{equation*}
\partial_{\mu} \stackrel{\omega}{\theta}^{a}{ }_{\nu}-\Gamma^{\rho}{ }_{\nu \mu}{ }^{\omega}{ }^{a}{ }_{\rho}=0 . \tag{16}
\end{equation*}
$$

- The tetrad postulate also holds in the Weitzenböck gauge.
\Rightarrow Each component ${ }_{\theta}{ }^{w}{ }_{\mu} \mathrm{d} x^{\mu}$ is a covariantly constant covector field.
\Rightarrow Recipe for integrating the connection:

1. Choose ${ }^{w}{ }^{a}{ }_{\mu}(x)$ at some $x \in M$ to fit with the metric.
2. For any other $y \in M$, choose path $x \rightsquigarrow y$, and parallel transport.

- Obtained tetrad satisfies required properties:
$\checkmark{ }^{\omega}{ }^{2}{ }_{\mu}$ gives correct metric, since connection is metric-compatible.
\checkmark Global Lorentz invariance encoded in freedom of choice for ${ }^{⿲ ㇒}{ }^{\text {a }}{ }_{\mu}(x)$.

Can we always use the Weitzenböck gauge?

- Recipe for integrating the connection:

1. At some $x \in M$,

Can we always use the Weitzenböck gauge?

- Recipe for integrating the connection:

1. At some $x \in M$, choose ${ }^{\prime \prime}{ }_{\mu}{ }_{\mu}(x)$ to fit with the metric.

Can we always use the Weitzenböck gauge?

- Recipe for integrating the connection:

1. At some $x \in M$, choose ${ }^{\prime \prime}{ }_{\mu}(x)$ to fit with the metric.
2. For any other $y \in M$,

Can we always use the Weitzenböck gauge?

- Recipe for integrating the connection:

1. At some $x \in M$, choose ${ }^{\prime 2}{ }_{\mu}(x)$ to fit with the metric.
2. For any other $y \in M$, choose path $x \stackrel{\gamma}{\sim} y$,

Can we always use the Weitzenböck gauge?

- Recipe for integrating the connection:

1. At some $x \in M$, choose ${ }^{\prime \prime}{ }_{\mu}{ }_{\mu}(x)$ to fit with the metric.
2. For any other $y \in M$, choose path $x \stackrel{\gamma}{\sim} y$, and parallel transport.

Can we always use the Weitzenböck gauge?

- Recipe for integrating the connection:

1. At some $x \in M$, choose ${ }^{w}{ }^{a}{ }_{\mu}(x)$ to fit with the metric.
2. For any other $y \in M$, choose path $x \stackrel{\gamma}{\sim} y$, and parallel transport.

- What happens if we choose another path $x \stackrel{\gamma^{\prime}}{\sim} y$?

Can we always use the Weitzenböck gauge?

- Recipe for integrating the connection:

1. At some $x \in M$, choose ${ }^{w}{ }^{a}{ }_{\mu}(x)$ to fit with the metric.
2. For any other $y \in M$, choose path $x \stackrel{\gamma}{\sim} y$, and parallel transport.

- What happens if we choose another path $x \stackrel{\gamma^{\prime}}{\sim} y$?
\checkmark Vanishing curvature: parallel transport along both path agrees.

Can we always use the Weitzenböck gauge?

- Recipe for integrating the connection:

1. At some $x \in M$, choose ${ }^{w}{ }^{a}{ }_{\mu}(x)$ to fit with the metric.
2. For any other $y \in M$, choose path $x \stackrel{\gamma}{\sim} y$, and parallel transport.

- What happens if we choose another path $x \stackrel{\gamma^{\prime}}{\sim} y$?
\checkmark Vanishing curvature: parallel transport along both path agrees.
\& But only if γ and γ^{\prime} are homotopic paths!

M

Trouble with the tetrad?

- Starting from an arbitrary tetrad and flat spin connection:
- One may always locally transform into Weitzenböck gauge.
- One may not always globally transform into Weitzenböck gauge.

Trouble with the tetrad?

- Starting from an arbitrary tetrad and flat spin connection:
- One may always locally transform into Weitzenböck gauge.
- One may not always globally transform into Weitzenböck gauge.
- Is there always some global tetrad and flat spin connection?

Trouble with the tetrad?

- Starting from an arbitrary tetrad and flat spin connection:
- One may always locally transform into Weitzenböck gauge.
- One may not always globally transform into Weitzenböck gauge.
- Is there always some global tetrad and flat spin connection?
- The case of the tetrad:
- We want to be able to describe spinor fields on spacetime.

Trouble with the tetrad?

- Starting from an arbitrary tetrad and flat spin connection:
- One may always locally transform into Weitzenböck gauge.
- One may not always globally transform into Weitzenböck gauge.
- Is there always some global tetrad and flat spin connection?
- The case of the tetrad:
- We want to be able to describe spinor fields on spacetime.
\Rightarrow Physical spacetime manifold must admit a spin structure.

Trouble with the tetrad?

- Starting from an arbitrary tetrad and flat spin connection:
- One may always locally transform into Weitzenböck gauge.
- One may not always globally transform into Weitzenböck gauge.
- Is there always some global tetrad and flat spin connection?
- The case of the tetrad:
- We want to be able to describe spinor fields on spacetime.
\Rightarrow Physical spacetime manifold must admit a spin structure.
- Spacetime admits a spin structure \Leftrightarrow it is parallelizable. [Geroch '68]

Trouble with the tetrad?

- Starting from an arbitrary tetrad and flat spin connection:
- One may always locally transform into Weitzenböck gauge.
- One may not always globally transform into Weitzenböck gauge.
- Is there always some global tetrad and flat spin connection?
- The case of the tetrad: \checkmark
- We want to be able to describe spinor fields on spacetime.
\Rightarrow Physical spacetime manifold must admit a spin structure.
- Spacetime admits a spin structure \Leftrightarrow it is parallelizable. [Geroch '68]
\Rightarrow Physical spacetime possesses global frame bundle sections.

Trouble with the tetrad?

- Starting from an arbitrary tetrad and flat spin connection:
- One may always locally transform into Weitzenböck gauge.
- One may not always globally transform into Weitzenböck gauge.
- Is there always some global tetrad and flat spin connection?
- The case of the tetrad: \checkmark
- We want to be able to describe spinor fields on spacetime.
\Rightarrow Physical spacetime manifold must admit a spin structure.
- Spacetime admits a spin structure \Leftrightarrow it is parallelizable. [Geroch '68]
\Rightarrow Physical spacetime possesses global frame bundle sections.
- The case of the spin connection:
- Parallelizable manifold always admits flat affine connection 「.

Trouble with the tetrad?

- Starting from an arbitrary tetrad and flat spin connection:
- One may always locally transform into Weitzenböck gauge.
- One may not always globally transform into Weitzenböck gauge.
- Is there always some global tetrad and flat spin connection?
- The case of the tetrad: \checkmark
- We want to be able to describe spinor fields on spacetime.
\Rightarrow Physical spacetime manifold must admit a spin structure.
- Spacetime admits a spin structure \Leftrightarrow it is parallelizable. [Geroch '68]
\Rightarrow Physical spacetime possesses global frame bundle sections.
- The case of the spin connection:
- Parallelizable manifold always admits flat affine connection Γ.
\Rightarrow A spin connection can be constructed from the "tetrad postulate".

Trouble with the tetrad?

- Starting from an arbitrary tetrad and flat spin connection:
- One may always locally transform into Weitzenböck gauge.
- One may not always globally transform into Weitzenböck gauge.
- Is there always some global tetrad and flat spin connection?
- The case of the tetrad: \checkmark
- We want to be able to describe spinor fields on spacetime.
\Rightarrow Physical spacetime manifold must admit a spin structure.
- Spacetime admits a spin structure \Leftrightarrow it is parallelizable. [Geroch '68]
\Rightarrow Physical spacetime possesses global frame bundle sections.
- The case of the spin connection:
- Parallelizable manifold always admits flat affine connection Г.
\Rightarrow A spin connection can be constructed from the "tetrad postulate".
\Rightarrow Physical spacetime always has global tetrad and spin connection.

Palatini and the space of orbits

- Consider local Lorentz transformations $\Lambda: M \rightarrow O(1,3)$:
- Simultaneous action on tetrad and spin connection:

$$
\begin{equation*}
(\theta, \omega) \mapsto\left(\Lambda \theta, \Lambda \omega \Lambda^{-1}+\Lambda \mathrm{d} \Lambda^{-1}\right) . \tag{17}
\end{equation*}
$$

- $(\theta, \omega) \wedge\left(\theta^{\prime}, \omega^{\prime}\right)$ if and only if $(g, \Gamma)=\left(g^{\prime}, \Gamma^{\prime}\right)$.
\Rightarrow Orbits parametrized by metric and teleparallel affine connection.

Palatini and the space of orbits

- Consider local Lorentz transformations $\Lambda: M \rightarrow O(1,3)$:
- Simultaneous action on tetrad and spin connection:

$$
\begin{equation*}
(\theta, \omega) \mapsto\left(\Lambda \theta, \Lambda \omega \Lambda^{-1}+\Lambda \mathrm{d} \Lambda^{-1}\right) . \tag{17}
\end{equation*}
$$

- $(\theta, \omega) \wedge\left(\theta^{\prime}, \omega^{\prime}\right)$ if and only if $(g, \Gamma)=\left(g^{\prime}, \Gamma^{\prime}\right)$.
\Rightarrow Orbits parametrized by metric and teleparallel affine connection.
- Consider locally $\mathrm{O}(1,3)$-invariant teleparallel gravity theory:
- $\Lambda: M \rightarrow \mathrm{O}(1,3)$ maps solutions to solutions.
\Rightarrow Only metric and affine connection become dynamical variables.

Palatini and the space of orbits

- Consider local Lorentz transformations $\Lambda: M \rightarrow O(1,3)$:
- Simultaneous action on tetrad and spin connection:

$$
\begin{equation*}
(\theta, \omega) \mapsto\left(\Lambda \theta, \Lambda \omega \Lambda^{-1}+\Lambda \mathrm{d} \Lambda^{-1}\right) . \tag{17}
\end{equation*}
$$

- $(\theta, \omega) \hat{\sim}\left(\theta^{\prime}, \omega^{\prime}\right)$ if and only if $(g, \Gamma)=\left(g^{\prime}, \Gamma^{\prime}\right)$.
\Rightarrow Orbits parametrized by metric and teleparallel affine connection.
- Consider locally $\mathrm{O}(1,3)$-invariant teleparallel gravity theory:
- $\Lambda: M \rightarrow O(1,3)$ maps solutions to solutions.
\Rightarrow Only metric and affine connection become dynamical variables.
- Decomposition of the Lorentz group:
- Proper Lorentz group $\mathrm{SO}_{0}(1,3) \subset \mathrm{O}(1,3), \mathfrak{T}, \mathfrak{P} \in \mathrm{O}(1,3)$.
- Standard model of particle physics only invariant under $\mathrm{SO}_{0}(1,3)$.
\Rightarrow Need orientation and time orientation in addition to g and Γ.
\Rightarrow Physical geometries parametrized by orbits of $\mathrm{SO}_{0}(1,3)$.

Palatini and the space of orbits

- Consider local Lorentz transformations $\Lambda: M \rightarrow O(1,3)$:
- Simultaneous action on tetrad and spin connection:

$$
\begin{equation*}
(\theta, \omega) \mapsto\left(\Lambda \theta, \Lambda \omega \Lambda^{-1}+\Lambda \mathrm{d} \Lambda^{-1}\right) . \tag{17}
\end{equation*}
$$

- $(\theta, \omega) \wedge\left(\theta^{\prime}, \omega^{\prime}\right)$ if and only if $(g, \Gamma)=\left(g^{\prime}, \Gamma^{\prime}\right)$.
\Rightarrow Orbits parametrized by metric and teleparallel affine connection.
- Consider locally $\mathrm{O}(1,3)$-invariant teleparallel gravity theory:
- $\Lambda: M \rightarrow O(1,3)$ maps solutions to solutions.
\Rightarrow Only metric and affine connection become dynamical variables.
- Decomposition of the Lorentz group:
- Proper Lorentz group $\mathrm{SO}_{0}(1,3) \subset \mathrm{O}(1,3), \mathfrak{T}, \mathfrak{P} \in \mathrm{O}(1,3)$.
- Standard model of particle physics only invariant under $\mathrm{SO}_{0}(1,3)$.
\Rightarrow Need orientation and time orientation in addition to g and Γ.
\Rightarrow Physical geometries parametrized by orbits of $\mathrm{SO}_{0}(1,3)$.
- Physical geometry: $\mathrm{SO}_{0}(1,3)$ reduction of the frame bundle $\& \Gamma$.

What about the teleparallel affine connection?

- Coupling of the teleparallel affine connection Γ :
- No direct coupling with matter (commonly considered consistent).
- Possible coupling to metric through gravity (vanishes in TEGR).

What about the teleparallel affine connection?

- Coupling of the teleparallel affine connection Γ :
- No direct coupling with matter (commonly considered consistent).
- Possible coupling to metric through gravity (vanishes in TEGR).
\Rightarrow Teleparallel connection becomes just (another) "dark" field:
- Scalar fields / dark energy in scalar-tensor theories.
- "Dark" vector fields, "dark" photons in generalized Proca theories.
- Second metric in bimetric theories.

What about the teleparallel affine connection?

- Coupling of the teleparallel affine connection Г:
- No direct coupling with matter (commonly considered consistent).
- Possible coupling to metric through gravity (vanishes in TEGR).
\Rightarrow Teleparallel connection becomes just (another) "dark" field:
- Scalar fields / dark energy in scalar-tensor theories.
- "Dark" vector fields, "dark" photons in generalized Proca theories.
- Second metric in bimetric theories.
\Rightarrow The "usual rules" for playing with "dark" fields apply:
- Find out which degrees of freedom couple to physical observables.
- "Remnant symmetries" may yield gauge degrees of freedom.
- Make sure physical degrees of freedom obey healthy evolution.
\& Pay attention to possible pathologies:
Is the evolution of physical degrees of freedom determined?
Are the physical degrees of freedom stable under perturbations?
Does the theory remain healthy under quantization?

Dynamical field variables in teleparallel gravity

-What are the dynamical field variables in teleparallel gravity?

1. Only a tetrad.

Dynamical field variables in teleparallel gravity

- What are the dynamical field variables in teleparallel gravity?

1. Only a tetrad.
2. A tetrad and a flat, antisymmetric spin connection.

- Problems encountered with choice of variables:

1. Does not reflect observed local Lorentz invariance.

Dynamical field variables in teleparallel gravity

- What are the dynamical field variables in teleparallel gravity?

1. Only a tetrad.
2. A tetrad and a flat, antisymmetric spin connection.
3. A metric and a flat, metric-compatible affine connection.

- Problems encountered with choice of variables:

1. Does not reflect observed local Lorentz invariance.
2. Contains unphysical gauge degrees of freedom as variables.

Dynamical field variables in teleparallel gravity

-What are the dynamical field variables in teleparallel gravity?

1. Only a tetrad.
2. A tetrad and a flat, antisymmetric spin connection.
3. A metric and a flat, metric-compatible affine connection.
4. A flat connection on a $\mathrm{SO}_{0}(1,3)$-reduction of the frame bundle.

- Problems encountered with choice of variables:

1. Does not reflect observed local Lorentz invariance.
2. Contains unphysical gauge degrees of freedom as variables.
3. Does not contain information on orientation and time orientation.

Dynamical field variables in teleparallel gravity

-What are the dynamical field variables in teleparallel gravity?

1. Only a tetrad.
2. A tetrad and a flat, antisymmetric spin connection.
3. A metric and a flat, metric-compatible affine connection.
4. A flat connection on a $\mathrm{SO}_{0}(1,3)$-reduction of the frame bundle.

- Problems encountered with choice of variables:

1. Does not reflect observed local Lorentz invariance.
2. Contains unphysical gauge degrees of freedom as variables.
3. Does not contain information on orientation and time orientation.

- Can we still use any of the other field variables?
$4 \rightarrow 3$: If (time) orientation is fixed, metric and connection are sufficient.

Dynamical field variables in teleparallel gravity

- What are the dynamical field variables in teleparallel gravity?

1. Only a tetrad.
2. A tetrad and a flat, antisymmetric spin connection.
3. A metric and a flat, metric-compatible affine connection.
4. A flat connection on a $\mathrm{SO}_{0}(1,3)$-reduction of the frame bundle.

- Problems encountered with choice of variables:

1. Does not reflect observed local Lorentz invariance.
2. Contains unphysical gauge degrees of freedom as variables.
3. Does not contain information on orientation and time orientation.

- Can we still use any of the other field variables?
$4 \rightarrow 3$: If (time) orientation is fixed, metric and connection are sufficient.
$3 \rightarrow 2$: Possible to choose tetrad and spin connection as representatives.

Dynamical field variables in teleparallel gravity

- What are the dynamical field variables in teleparallel gravity?

1. Only a tetrad.
2. A tetrad and a flat, antisymmetric spin connection.
3. A metric and a flat, metric-compatible affine connection.
4. A flat connection on a $\mathrm{SO}_{0}(1,3)$-reduction of the frame bundle.

- Problems encountered with choice of variables:

1. Does not reflect observed local Lorentz invariance.
2. Contains unphysical gauge degrees of freedom as variables.
3. Does not contain information on orientation and time orientation.

- Can we still use any of the other field variables?
$4 \rightarrow 3$: If (time) orientation is fixed, metric and connection are sufficient.
$3 \rightarrow 2$: Possible to choose tetrad and spin connection as representatives.
$2 \rightarrow 1$: Locally possible to transform into Weitzenböck gauge.

Dynamical field variables in teleparallel gravity

- What are the dynamical field variables in teleparallel gravity?

1. Only a tetrad.
2. A tetrad and a flat, antisymmetric spin connection.
3. A metric and a flat, metric-compatible affine connection.
4. A flat connection on a $\mathrm{SO}_{0}(1,3)$-reduction of the frame bundle.

- Problems encountered with choice of variables:

1. Does not reflect observed local Lorentz invariance.
2. Contains unphysical gauge degrees of freedom as variables.
3. Does not contain information on orientation and time orientation.

- Can we still use any of the other field variables?
$4 \rightarrow 3$: If (time) orientation is fixed, metric and connection are sufficient.
$3 \rightarrow 2$: Possible to choose tetrad and spin connection as representatives.
$2 \rightarrow 1$: Locally possible to transform into Weitzenböck gauge.
\Rightarrow Most fundamental variables found in geometric picture.

The geometric picture

1. Start with the general linear frame bundle $\pi: \mathrm{GL}(M) \rightarrow M$.

The geometric picture

1. Start with the general linear frame bundle $\pi: \mathrm{GL}(M) \rightarrow M$.
2. Metric reduces bundle to orthonormal frame bundle \tilde{P}.

The geometric picture

1. Start with the general linear frame bundle $\pi: \mathrm{GL}(M) \rightarrow M$.
2. Metric reduces bundle to orthonormal frame bundle \tilde{P}.
3. Orientation and time orientation select oriented frame bundle P.

The geometric picture

1. Start with the general linear frame bundle $\pi: \mathrm{GL}(M) \rightarrow M$.
2. Metric reduces bundle to orthonormal frame bundle \tilde{P}.
3. Orientation and time orientation select oriented frame bundle P.
4. Connection specifies horizontal directions $T P=V P \oplus H P$ in P.

Tetrads and spin structure

- How to obtain a spin structure from a tetrad $e: M \rightarrow P$?

1. Spin structure obtained from trivial bundle $Q=M \times \operatorname{SL}(2, \mathbb{C})$.
2. Use covering map $\sigma: \mathrm{SL}(2, \mathbb{C}) \rightarrow \mathrm{SO}_{0}(1,3)$.
3. Define spin structure $\varphi: Q \rightarrow P$ as map

$$
\begin{equation*}
\varphi(x, z)=e(x) \cdot \sigma(z) \tag{18}
\end{equation*}
$$

Tetrads and spin structure

- How to obtain a spin structure from a tetrad $e: M \rightarrow P$?

1. Spin structure obtained from trivial bundle $Q=M \times \operatorname{SL}(2, \mathbb{C})$.
2. Use covering map $\sigma: \mathrm{SL}(2, \mathbb{C}) \rightarrow \mathrm{SO}_{0}(1,3)$.
3. Define spin structure $\varphi: Q \rightarrow P$ as map

$$
\begin{equation*}
\varphi(x, z)=e(x) \cdot \sigma(z) \tag{18}
\end{equation*}
$$

- Do different tetrads e, e^{\prime} define the same spin structure?
- Consider non-simply connected manifold M.
- Let $\gamma:[0,1] \rightarrow M$ with $\gamma(0)=\gamma(1)$ non-contractible.
- Let $\Lambda: M \rightarrow \mathrm{SO}_{0}(1,3)$ such that $\Lambda \circ \gamma$ has odd winding.
- Tetrads $e=e^{\prime} \cdot \wedge$ define spin structures $\varphi, \varphi^{\prime}$.
- Assume existence of bundle isomorphism $\mu: Q \rightarrow Q, \varphi=\varphi^{\prime} \circ \mu$.
\Rightarrow Curve connects antipodes: $\mu(\gamma(1), \mathbb{1})=-\mu(\gamma(0), \mathbb{1})$.
\& Contradicts $\gamma(0)=\gamma(1)$.
\Rightarrow Spin structures $\varphi, \varphi^{\prime}$ are inequivalent.

Tetrads vs observers

- Clash of two notions of orthonormal frames:

1. Tetrad $e: M \rightarrow P$ solving teleparallel field equation.
2. Observer frame $\tilde{e}: \mathbb{R} \rightarrow \gamma^{*} P$ along trajectory γ.

Tetrads vs observers

- Clash of two notions of orthonormal frames:

1. Tetrad $e: M \rightarrow P$ solving teleparallel field equation.
2. Observer frame $\tilde{e}: \mathbb{R} \rightarrow \gamma^{*} P$ along trajectory γ.

- Parallel transport properties of frames ${ }^{1}$:

$$
\begin{equation*}
0=\dot{\gamma}^{\mu}\left(\partial_{\mu} \tilde{\boldsymbol{e}}_{a}^{\nu}+\dot{\Gamma}^{\nu}{ }_{\rho \mu} \tilde{\boldsymbol{e}}_{a}^{\rho}\right)=\dot{\gamma}^{\mu}\left(\partial_{\mu} \boldsymbol{e}_{a}^{\nu}-\omega^{b}{ }_{a \mu} \boldsymbol{e}_{b}^{\nu}+\Gamma^{\nu}{ }_{\rho \mu} \boldsymbol{e}_{a}^{\rho}\right) \tag{19}
\end{equation*}
$$

${ }^{1}$ Dynamical frame; see talk by Philipp Höhn.

Tetrads vs observers

- Clash of two notions of orthonormal frames:

1. Tetrad $e: M \rightarrow P$ solving teleparallel field equation.
2. Observer frame ẽ : $\mathbb{R} \rightarrow \gamma^{*} P$ along trajectory γ.

- Parallel transport properties of frames in Weitzenböck gauge ${ }^{1}$:

$$
\begin{equation*}
0=\dot{\gamma}^{\mu}\left(\partial_{\mu} \tilde{e}_{a}{ }^{\nu}+\dot{\Gamma}^{\nu}{ }_{\rho \mu} \tilde{e}_{a}^{\rho}\right)=\dot{\gamma}^{\mu}\left(\partial_{\mu} \boldsymbol{e}_{a}{ }^{\nu}+\Gamma^{\nu}{ }_{\rho \mu} e_{a}^{\rho}\right) . \tag{19}
\end{equation*}
$$

- Possible to identify teleparallel as observer frames?

1. e forms congruence, transported with flat connection.
2. ẽ only defined on worldline, no congruences.
${ }^{1}$ Dynamical frame; see talk by Philipp Höhn.

Tetrads vs observers

- Clash of two notions of orthonormal frames:

1. Tetrad $e: M \rightarrow P$ solving teleparallel field equation.
2. Observer frame ẽ : $\mathbb{R} \rightarrow \gamma^{*} P$ along trajectory γ.

- Parallel transport properties of frames in Weitzenböck gauge ${ }^{1}$:

$$
\begin{equation*}
0=\dot{\gamma}^{\mu}\left(\partial_{\mu} \tilde{e}_{a}^{\nu}+\dot{\Gamma}^{\nu}{ }_{\rho \mu} \tilde{e}_{a}^{\rho}\right)=\dot{\gamma}^{\mu}\left(\partial_{\mu} \boldsymbol{e}_{a}{ }^{\nu}+\Gamma^{\nu}{ }_{\rho \mu} e_{a}^{\rho}\right) . \tag{19}
\end{equation*}
$$

- Possible to identify teleparallel as observer frames?

1. e forms congruence, transported with flat connection.
2. ẽ only defined on worldline, no congruences.

- e and ẽ only agree up to local Lorentz transformation.
${ }^{1}$ Dynamical frame; see talk by Philipp Höhn.

Tetrads vs observers

- Clash of two notions of orthonormal frames:

1. Tetrad $e: M \rightarrow P$ solving teleparallel field equation.
2. Observer frame ẽ : $\mathbb{R} \rightarrow \gamma^{*} P$ along trajectory γ.

- Parallel transport properties of frames in Weitzenböck gauge ${ }^{1}$:

$$
\begin{equation*}
0=\dot{\gamma}^{\mu}\left(\partial_{\mu} \tilde{e}_{a}^{\nu}+\dot{\Gamma}^{\nu}{ }_{\rho \mu} \tilde{e}_{a}^{\rho}\right)=\dot{\gamma}^{\mu}\left(\partial_{\mu} \boldsymbol{e}_{a}{ }^{\nu}+\Gamma^{\nu}{ }_{\rho \mu} \boldsymbol{e}_{a}{ }^{\rho}\right) . \tag{19}
\end{equation*}
$$

- Possible to identify teleparallel as observer frames?

1. e forms congruence, transported with flat connection.
2. ẽ only defined on worldline, no congruences.

- e and ẽ only agree up to local Lorentz transformation.
\Rightarrow Observer geometry defined by metric: LLI holds.
${ }^{1}$ Dynamical frame; see talk by Philipp Höhn.

Relevance of the connection

- Split Levi-Civita connection coefficients:

$$
\begin{equation*}
\dot{\Gamma}^{\mu}{ }_{\nu \rho}=\Gamma^{\mu}{ }_{\nu \rho}-K^{\mu}{ }_{\nu \rho} . \tag{20}
\end{equation*}
$$

Relevance of the connection

- Split Levi-Civita connection coefficients:

$$
\begin{equation*}
\stackrel{\circ}{\Gamma}^{\mu}{ }_{\nu \rho}=\Gamma^{\mu}{ }_{\nu \rho}-K^{\mu}{ }_{\nu \rho} . \tag{20}
\end{equation*}
$$

\Rightarrow Possible to rewrite geodesic equation:

$$
\begin{equation*}
\ddot{x}^{\mu}+\Gamma^{\mu}{ }_{\nu \rho} \dot{x}^{\nu} \dot{x}^{\rho}=K^{\mu}{ }_{\nu \rho} \dot{x}^{\nu} \dot{x}^{\rho} . \tag{21}
\end{equation*}
$$

Relevance of the connection

- Split Levi-Civita connection coefficients:

$$
\begin{equation*}
\stackrel{\circ}{\Gamma}_{\nu \rho}^{\mu}=\Gamma^{\mu}{ }_{\nu \rho}-K_{\nu \rho}^{\mu} . \tag{20}
\end{equation*}
$$

\Rightarrow Possible to rewrite geodesic equation:

$$
\begin{equation*}
\ddot{x}^{\mu}+\Gamma^{\mu}{ }_{\nu \rho} \dot{x}^{\nu} \dot{x}^{\rho}=K^{\mu}{ }_{\nu \rho} \dot{x}^{\nu} \dot{x}^{\rho} . \tag{21}
\end{equation*}
$$

- Interpretation: "Separate gravity $K^{\mu}{ }_{\nu \rho}$ from inertia $\Gamma^{\mu}{ }_{\nu \rho} . "$

Relevance of the connection

- Split Levi-Civita connection coefficients:

$$
\begin{equation*}
\stackrel{\circ}{\Gamma}_{\nu \rho}=\Gamma^{\mu}{ }_{\nu \rho}-K_{\nu \rho}^{\mu} . \tag{20}
\end{equation*}
$$

\Rightarrow Possible to rewrite geodesic equation:

$$
\begin{equation*}
\ddot{x}^{\mu}+\Gamma^{\mu}{ }_{\nu \rho} \dot{x}^{\nu} \dot{x}^{\rho}=K^{\mu}{ }_{\nu \rho} \dot{x}^{\nu} \dot{x}^{\rho} . \tag{21}
\end{equation*}
$$

- Interpretation: "Separate gravity $K^{\mu}{ }_{\nu \rho}$ from inertia $\Gamma^{\mu}{ }_{\nu \rho}$."
- Fully equivalent to standard form (teleparallel connection cancels):

$$
\begin{equation*}
\ddot{x}^{\mu}+\Gamma^{\mu}{ }_{\nu \rho} \dot{x}^{\nu} \dot{x}^{\rho}=0 . \tag{22}
\end{equation*}
$$

Relevance of the connection

- Split Levi-Civita connection coefficients:

$$
\begin{equation*}
\stackrel{\circ}{\Gamma}_{\nu \rho}^{\mu}=\Gamma^{\mu}{ }_{\nu \rho}-K^{\mu}{ }_{\nu \rho} . \tag{20}
\end{equation*}
$$

\Rightarrow Possible to rewrite geodesic equation:

$$
\begin{equation*}
\ddot{x}^{\mu}+\Gamma^{\mu}{ }_{\nu \rho} \dot{x}^{\nu} \dot{x}^{\rho}=K^{\mu}{ }_{\nu \rho} \dot{x}^{\nu} \dot{x}^{\rho} . \tag{21}
\end{equation*}
$$

- Interpretation: "Separate gravity $K^{\mu}{ }_{\nu \rho}$ from inertia $\Gamma^{\mu}{ }_{\nu \rho}$."
- Fully equivalent to standard form (teleparallel connection cancels):

$$
\begin{equation*}
\ddot{x}^{\mu}+\Gamma^{\mu}{ }_{\nu \rho} \dot{x}^{\nu} \dot{x}^{\rho}=0 . \tag{22}
\end{equation*}
$$

- Matter coupled to metric only insensitive to $\Gamma^{\mu}{ }_{\nu \rho}$.

Relevance of the connection

- Split Levi-Civita connection coefficients:

$$
\begin{equation*}
\stackrel{\circ}{\Gamma}_{\nu \rho}=\Gamma^{\mu}{ }_{\nu \rho}-K^{\mu}{ }_{\nu \rho} . \tag{20}
\end{equation*}
$$

\Rightarrow Possible to rewrite geodesic equation:

$$
\begin{equation*}
\ddot{x}^{\mu}+\Gamma^{\mu}{ }_{\nu \rho} \dot{x}^{\nu} \dot{x}^{\rho}=K^{\mu}{ }_{\nu \rho} \dot{x}^{\nu} \dot{x}^{\rho} . \tag{21}
\end{equation*}
$$

- Interpretation: "Separate gravity $K^{\mu}{ }_{\nu \rho}$ from inertia $\Gamma^{\mu}{ }_{\nu \rho}$."
- Fully equivalent to standard form (teleparallel connection cancels):

$$
\begin{equation*}
\ddot{x}^{\mu}+\Gamma^{\mu}{ }_{\nu \rho} \dot{x}^{\nu} \dot{x}^{\rho}=0 . \tag{22}
\end{equation*}
$$

- Matter coupled to metric only insensitive to $\Gamma^{\mu}{ }_{\nu \rho}$.
- Connection appears only as "dark" field coupling to gravity:

$$
\begin{equation*}
S=S_{g}\left[g,\ulcorner]+S_{m}[g, \chi]\right. \tag{23}
\end{equation*}
$$

LLI violation in post-Newtonian limit?

- Study teleparallel gravity theories:

1. New General Relativity [Ualikhanova, MH'19]
2. Scalar-torsion gravity [Emstova, MH' 19$]$
3. Generalized scalar-torsion gravity [Flathmann, $\left.\mathrm{MH}^{\prime} 19\right]$

LLI violation in post-Newtonian limit?

- Study teleparallel gravity theories:

1. New General Relativity [Ualikhanova, MH'19]
2. Scalar-torsion gravity [Emstova, MH' 19$]$
3. Generalized scalar-torsion gravity [Flathmann, MH '19]

- PPN parameters:
- $\beta \approx \gamma \approx 1$: bounds on theory parameters.
- $\xi=\alpha_{1}=\alpha_{2}=\alpha_{3}=\zeta_{1}=\zeta_{2}=\zeta_{3}=\zeta_{4}=0$.

LLI violation in post-Newtonian limit?

- Study teleparallel gravity theories:

1. New General Relativity [Ualikhanova, MH'19]
2. Scalar-torsion gravity [Emstova, MH'19]
3. Generalized scalar-torsion gravity [Flathmann, мн' 19$]$

- PPN parameters:
- $\beta \approx \gamma \approx 1$: bounds on theory parameters.
- $\xi=\alpha_{1}=\alpha_{2}=\alpha_{3}=\zeta_{1}=\zeta_{2}=\zeta_{3}=\zeta_{4}=0$.
\Rightarrow No violation of LLI.

Outline

(1) Lorentz covariance and invariance

(2) Teleparallel gravity

4. Conclusion

Finsler spacetime geometry

- Proper time along a curve in Lorentzian spacetime:

$$
\begin{equation*}
\tau=\int_{t_{1}}^{t_{2}} \sqrt{-g_{a b}(x(t)) \dot{x}^{a}(t) \dot{x}^{b}(t)} \mathrm{d} t . \tag{24}
\end{equation*}
$$

Finsler spacetime geometry

- Proper time along a curve in Lorentzian spacetime:

$$
\begin{equation*}
\tau=\int_{t_{1}}^{t_{2}} \sqrt{-g_{a b}(x(t)) \dot{x}^{a}(t) \dot{x}^{b}(t)} \mathrm{d} t \tag{24}
\end{equation*}
$$

- Finsler geometry: use a more general length functional:

$$
\begin{equation*}
\tau=\int_{t_{1}}^{t_{2}} F(x(t), \dot{x}(t)) \mathrm{d} t \tag{25}
\end{equation*}
$$

Finsler spacetime geometry

- Proper time along a curve in Lorentzian spacetime:

$$
\begin{equation*}
\tau=\int_{t_{1}}^{t_{2}} \sqrt{-g_{a b}(x(t)) \dot{x}^{a}(t) \dot{x}^{b}(t)} \mathrm{d} t \tag{24}
\end{equation*}
$$

- Finsler geometry: use a more general length functional:

$$
\begin{equation*}
\tau=\int_{t_{1}}^{t_{2}} F(x(t), \dot{x}(t)) \mathrm{d} t \tag{25}
\end{equation*}
$$

- Finsler function $F: T M \rightarrow \mathbb{R}^{+}$.

Finsler spacetime geometry

- Proper time along a curve in Lorentzian spacetime:

$$
\begin{equation*}
\tau=\int_{t_{1}}^{t_{2}} \sqrt{-g_{a b}(x(t)) \dot{x}^{a}(t) \dot{x}^{b}(t)} \mathrm{d} t \tag{24}
\end{equation*}
$$

- Finsler geometry: use a more general length functional:

$$
\begin{equation*}
\tau=\int_{t_{1}}^{t_{2}} F(x(t), \dot{x}(t)) \mathrm{d} t \tag{25}
\end{equation*}
$$

- Finsler function $F: T M \rightarrow \mathbb{R}^{+}$.
- Parametrization invariance requires homogeneity:

$$
\begin{equation*}
F(x, \lambda y)=\lambda F(x, y) \quad \forall \lambda>0 \tag{26}
\end{equation*}
$$

Finsler spacetime geometry

- Proper time along a curve in Lorentzian spacetime:

$$
\begin{equation*}
\tau=\int_{t_{1}}^{t_{2}} \sqrt{-g_{a b}(x(t)) \dot{x}^{a}(t) \dot{x}^{b}(t)} \mathrm{d} t \tag{24}
\end{equation*}
$$

- Finsler geometry: use a more general length functional:

$$
\begin{equation*}
\tau=\int_{t_{1}}^{t_{2}} F(x(t), \dot{x}(t)) \mathrm{d} t \tag{25}
\end{equation*}
$$

- Finsler function $F: T M \rightarrow \mathbb{R}^{+}$.
- Parametrization invariance requires homogeneity:

$$
\begin{equation*}
F(x, \lambda y)=\lambda F(x, y) \quad \forall \lambda>0 \tag{26}
\end{equation*}
$$

- Cartan non-linear connection:

$$
\begin{equation*}
N^{a}{ }_{b}=\frac{1}{4} \bar{\partial}_{b}\left[g^{F a c}\left(y^{d} \partial_{d} \bar{\partial}_{c} F^{2}-\partial_{c} F^{2}\right)\right] . \tag{27}
\end{equation*}
$$

Motion of test particles

- Finsler geodesic: extremal of length functional:

$$
\begin{equation*}
\delta \int_{t_{1}}^{t_{2}} F(x(t), \dot{x}(t)) \mathrm{d} t=0 \tag{28}
\end{equation*}
$$

Motion of test particles

- Finsler geodesic: extremal of length functional:

$$
\begin{equation*}
\delta \int_{t_{1}}^{t_{2}} F(x(t), \dot{x}(t)) \mathrm{d} t=0 \tag{28}
\end{equation*}
$$

\Rightarrow Geodesic equation for curve $x(\tau)$ on spacetime M :

$$
\begin{equation*}
\ddot{x}^{a}+N^{a}{ }_{b}(x, \dot{x}) \dot{x}^{b}=0 . \tag{29}
\end{equation*}
$$

Motion of test particles

- Finsler geodesic: extremal of length functional:

$$
\begin{equation*}
\delta \int_{t_{1}}^{t_{2}} F(x(t), \dot{x}(t)) \mathrm{d} t=0 \tag{28}
\end{equation*}
$$

\Rightarrow Geodesic equation for curve $x(\tau)$ on spacetime M :

$$
\begin{equation*}
\ddot{x}^{a}+N^{a}{ }_{b}(x, \dot{x}) \dot{x}^{b}=0 . \tag{29}
\end{equation*}
$$

- Finsler Lagrangian ${ }^{2}: L(x, \dot{x})=F^{2}$.
${ }^{2}$ See talk by Volker Perlick.

Motion of test particles

- Finsler geodesic: extremal of length functional:

$$
\begin{equation*}
\delta \int_{t_{1}}^{t_{2}} F(x(t), \dot{x}(t)) \mathrm{d} t=0 \tag{28}
\end{equation*}
$$

\Rightarrow Geodesic equation for curve $x(\tau)$ on spacetime M :

$$
\begin{equation*}
\ddot{x}^{a}+N^{a}{ }_{b}(x, \dot{x}) \dot{x}^{b}=0 . \tag{29}
\end{equation*}
$$

- Finsler Lagrangian ${ }^{2}: L(x, \dot{x})=F^{2}$.
- Legendre transformation ${ }^{3}$: Finsler Hamiltonian $H(x, p)$.

[^0]
Motion of test particles

- Finsler geodesic: extremal of length functional:

$$
\begin{equation*}
\delta \int_{t_{1}}^{t_{2}} F(x(t), \dot{x}(t)) \mathrm{d} t=0 \tag{28}
\end{equation*}
$$

\Rightarrow Geodesic equation for curve $x(\tau)$ on spacetime M :

$$
\begin{equation*}
\ddot{x}^{a}+N^{a}{ }_{b}(x, \dot{x}) \dot{x}^{b}=0 . \tag{29}
\end{equation*}
$$

- Finsler Lagrangian ${ }^{2}: L(x, \dot{x})=F^{2}$.
- Legendre transformation ${ }^{3}$: Finsler Hamiltonian $H(x, p)$.
- Modified dispersion relation:

$$
\begin{equation*}
H(x, p)=-m^{2} \tag{30}
\end{equation*}
$$

²See talk by Volker Perlick.
${ }^{3}$ See talk by Dennis Rätzel.

Motion of test particles

- Finsler geodesic: extremal of length functional:

$$
\begin{equation*}
\delta \int_{t_{1}}^{t_{2}} F(x(t), \dot{x}(t)) \mathrm{d} t=0 \tag{28}
\end{equation*}
$$

\Rightarrow Geodesic equation for curve $x(\tau)$ on spacetime M :

$$
\begin{equation*}
\ddot{x}^{a}+N^{a}{ }_{b}(x, \dot{x}) \dot{x}^{b}=0 . \tag{29}
\end{equation*}
$$

- Finsler Lagrangian ${ }^{2}: L(x, \dot{x})=F^{2}$.
- Legendre transformation ${ }^{3}$: Finsler Hamiltonian $H(x, p)$.
- Modified dispersion relation:

$$
\begin{equation*}
H(x, p)=-m^{2} \tag{30}
\end{equation*}
$$

- Hamilton equations of motion:

$$
\begin{equation*}
\dot{p}_{\mu}=-\partial_{\mu} H, \quad \dot{x}^{\mu}=\bar{\partial}^{\mu} H \tag{31}
\end{equation*}
$$

2See talk by Volker Perlick.
${ }^{3}$ See talk by Dennis Rätzel.

Spherically symmetric MDR

- General spherically symmetric MDR:

$$
\begin{equation*}
-m^{2}=H\left(t, r, p_{t}, p_{r}, w\right), \quad w^{2}=p_{\vartheta}^{2}+\frac{p_{\varphi}^{2}}{\sin ^{2} \vartheta} . \tag{32}
\end{equation*}
$$

Spherically symmetric MDR

- General spherically symmetric MDR:

$$
\begin{equation*}
-m^{2}=H\left(r, p_{t}, p_{r}, w\right), \quad w^{2}=p_{\vartheta}^{2}+\frac{p_{\varphi}^{2}}{\sin ^{2} \vartheta} \tag{32}
\end{equation*}
$$

- Static spherically symmetric: energy conservation

$$
\begin{equation*}
\dot{p}_{t}=-\partial_{t} H=0 \Rightarrow p_{t}=\mathcal{E}=\text { const } \tag{33}
\end{equation*}
$$

Spherically symmetric MDR

- General spherically symmetric MDR:

$$
\begin{equation*}
-m^{2}=H\left(r, p_{t}, p_{r}, w\right), \quad w^{2}=p_{\vartheta}^{2}+\frac{p_{\varphi}^{2}}{\sin ^{2} \vartheta} \tag{32}
\end{equation*}
$$

- Static spherically symmetric: energy conservation

$$
\begin{equation*}
\dot{p}_{t}=-\partial_{t} H=0 \Rightarrow p_{t}=\mathcal{E}=\text { const } \tag{33}
\end{equation*}
$$

- Polar angle:

$$
\begin{align*}
\dot{\vartheta} & =\bar{\partial}^{\vartheta} H=\frac{\partial H}{\partial w} \frac{1}{2 w} \bar{\partial}^{\vartheta} w^{2}=\frac{\partial H}{\partial w} \frac{1}{w} p_{\vartheta}, \tag{34a}\\
\dot{p}_{\vartheta} & =-\partial_{\vartheta} H=-\frac{\partial H}{\partial w} \frac{1}{2 w} \partial_{\vartheta} w^{2}=\frac{\partial H}{\partial w} \frac{1}{w} \frac{\cos \vartheta}{\sin ^{3} \vartheta} p_{\varphi}^{2} . \tag{34b}
\end{align*}
$$

Spherically symmetric MDR

- General spherically symmetric MDR:

$$
\begin{equation*}
-m^{2}=H\left(r, p_{t}, p_{r}, w\right), \quad w^{2}=p_{\vartheta}^{2}+\frac{p_{\varphi}^{2}}{\sin ^{2} \vartheta} \tag{32}
\end{equation*}
$$

- Static spherically symmetric: energy conservation

$$
\begin{equation*}
\dot{p}_{t}=-\partial_{t} H=0 \Rightarrow p_{t}=\mathcal{E}=\text { const } \tag{33}
\end{equation*}
$$

- Polar angle:

$$
\begin{align*}
\dot{\vartheta} & =\bar{\partial}^{\vartheta} H=\frac{\partial H}{\partial w} \frac{1}{2 w} \bar{\partial}^{\vartheta} w^{2}=\frac{\partial H}{\partial w} \frac{1}{w} p_{\vartheta}, \tag{34a}\\
\dot{p}_{\vartheta} & =-\partial_{\vartheta} H=-\frac{\partial H}{\partial w} \frac{1}{2 w} \partial_{\vartheta} w^{2}=\frac{\partial H}{\partial w} \frac{1}{w} \frac{\cos \vartheta}{\sin ^{3} \vartheta} p_{\varphi}^{2} . \tag{34b}
\end{align*}
$$

\Rightarrow Planar motion in equatorial plane: $\vartheta=\frac{\pi}{2}, p_{\vartheta}=0$.

Spherically symmetric MDR

- General spherically symmetric MDR:

$$
\begin{equation*}
-m^{2}=H\left(r, p_{t}, p_{r}, w\right), \quad w^{2}=p_{\vartheta}^{2}+\frac{p_{\varphi}^{2}}{\sin ^{2} \vartheta} \tag{32}
\end{equation*}
$$

- Static spherically symmetric: energy conservation

$$
\begin{equation*}
\dot{p}_{t}=-\partial_{t} H=0 \Rightarrow p_{t}=\mathcal{E}=\text { const } \tag{33}
\end{equation*}
$$

- Polar angle:

$$
\begin{align*}
\dot{\vartheta} & =\bar{\partial}^{\vartheta} H=\frac{\partial H}{\partial w} \frac{1}{2 w} \bar{\partial}^{\vartheta} w^{2}=\frac{\partial H}{\partial w} \frac{1}{w} p_{\vartheta}, \tag{34a}\\
\dot{p}_{\vartheta} & =-\partial_{\vartheta} H=-\frac{\partial H}{\partial w} \frac{1}{2 w} \partial_{\vartheta} w^{2}=\frac{\partial H}{\partial w} \frac{1}{w} \frac{\cos \vartheta}{\sin ^{3} \vartheta} p_{\varphi}^{2} . \tag{34b}
\end{align*}
$$

\Rightarrow Planar motion in equatorial plane: $\vartheta=\frac{\pi}{2}, p_{\vartheta}=0$.

- Angular momentum conservation:

$$
\begin{equation*}
\dot{p}_{\varphi}=-\partial_{\varphi} H=0 \Rightarrow w=p_{\varphi}=\mathcal{L}=\text { const } . \tag{35}
\end{equation*}
$$

Example: κ-Poincarè dispersion relation

- General form of κ-Poincarè dispersion relation:

$$
\begin{equation*}
H(x, p)=-\frac{2}{\ell^{2}} \sinh ^{2}\left(\frac{\ell}{2} Z^{\mu} p_{\mu}\right)+\frac{1}{2} e^{\ell Z^{\mu} p_{\mu}}\left[g^{\mu \nu} p_{\mu} p_{\nu}+\left(Z^{\mu} p_{\mu}\right)^{2}\right] . \tag{36}
\end{equation*}
$$

Example: κ-Poincarè dispersion relation

- General form of κ-Poincarè dispersion relation:

$$
\begin{equation*}
H(x, p)=-\frac{2}{\ell^{2}} \sinh ^{2}\left(\frac{\ell}{2} Z^{\mu} p_{\mu}\right)+\frac{1}{2} e^{\ell Z^{\mu} p_{\mu}}\left[g^{\mu \nu} p_{\mu} p_{\nu}+\left(Z^{\mu} p_{\mu}\right)^{2}\right] \tag{36}
\end{equation*}
$$

- Ingredients and properties:
- Lorentzian metric $g_{\mu \nu}$.
- Unit timelike vector field $Z^{\mu}: g_{\mu \nu} Z^{\mu} Z^{\nu}=-1$.
- Planck length ℓ as perturbation parameter.
- $H \rightarrow g^{\mu \nu} p_{\mu} p_{\nu}$ for $\ell \rightarrow 0$.

Example: κ-Poincarè dispersion relation

- General form of κ-Poincarè dispersion relation:

$$
\begin{equation*}
H(x, p)=-\frac{2}{\ell^{2}} \sinh ^{2}\left(\frac{\ell}{2} Z^{\mu} p_{\mu}\right)+\frac{1}{2} e^{\ell Z^{\mu} p_{\mu}}\left[g^{\mu \nu} p_{\mu} p_{\nu}+\left(Z^{\mu} p_{\mu}\right)^{2}\right] . \tag{36}
\end{equation*}
$$

- Ingredients and properties:
- Lorentzian metric $g_{\mu \nu}$.
- Unit timelike vector field $Z^{\mu}: g_{\mu \nu} Z^{\mu} Z^{\nu}=-1$.
- Planck length ℓ as perturbation parameter.
- $H \rightarrow g^{\mu \nu} p_{\mu} p_{\nu}$ for $\ell \rightarrow 0$.
- Spherically symmetric dispersion relation:

$$
\begin{align*}
& H=-\frac{2}{\ell^{2}} \sinh ^{2}\left[\frac{\ell}{2}\left(c p_{t}+d p_{r}\right)\right]^{2} \\
& +\frac{1}{2} e^{\ell\left(c p_{t}+d p_{r}\right)}\left[\left(c^{2}-a\right) p_{t}^{2}+2 c d p_{r} p_{t}+\left(d^{2}+b\right) p_{r}^{2}+\frac{w^{2}}{r^{2}}\right] \tag{37}
\end{align*}
$$

Circular orbits

- Method of calculation:
- Circular orbit characterized by $\dot{r}=0$.
$\Rightarrow \bar{\partial}^{r} H=0$ becomes algebraic equation for $p_{r}=p_{r}(r, \mathcal{E}, \mathcal{L})$.
\Rightarrow Determine energy $\mathcal{E}=\mathcal{E}(r, \mathcal{L})$ from dispersion relation $H=-m^{2}$.
\Rightarrow Determine radius $r=r(\mathcal{L})$ from $\dot{p}_{r}=0 \Rightarrow \partial_{r} H=0$.

Circular orbits

- Method of calculation:
- Circular orbit characterized by $\dot{r}=0$.
$\Rightarrow \bar{\partial}^{r} H=0$ becomes algebraic equation for $p_{r}=p_{r}(r, \mathcal{E}, \mathcal{L})$.
\Rightarrow Determine energy $\mathcal{E}=\mathcal{E}(r, \mathcal{L})$ from dispersion relation $H=-m^{2}$.
\Rightarrow Determine radius $r=r(\mathcal{L})$ from $\dot{p}_{r}=0 \Rightarrow \partial_{r} H=0$.
- Result for κ-Poincarè:

$$
\begin{equation*}
r=\frac{3}{2} r_{s}+\frac{\ell \mathcal{L}}{6}+\mathcal{O}\left(\ell^{2}\right) \tag{38}
\end{equation*}
$$

Shapiro delay

- Method of calculation:
- Emitter / receiver at r_{e}, closest encounter at r_{c}, mirror at r_{m}.
- General formula of Shapiro delay:

$$
\begin{equation*}
\Delta T=\left.\int_{r_{e}}^{r_{c}} \frac{\mathrm{~d} t}{\mathrm{~d} r}\right|_{\text {in }} ^{<0} \mathrm{~d} r+\left.\int_{r_{c}}^{r_{m}} \frac{\mathrm{~d} t}{\mathrm{~d} r}\right|_{\text {out }} ^{>0} \mathrm{~d} r+\left.\int_{r_{m}}^{r_{c}} \frac{\mathrm{~d} t}{\mathrm{~d} r}\right|_{\text {in }} ^{<0} \mathrm{~d} r+\left.\int_{r_{c}}^{r_{e}} \frac{\mathrm{~d} t}{\mathrm{~d} r}\right|_{\text {out }} ^{>0} \mathrm{~d} r . \tag{39}
\end{equation*}
$$

- At $r=r_{c}: \dot{r}=0$ relates $\mathcal{E}, \mathcal{L}, r_{c}, p_{r c}$ by $\bar{\partial}^{r} H=0$ and $H=-m^{2}$.
- Parametrize trajectory by r and calculate

$$
\begin{equation*}
\frac{\mathrm{d} t}{\mathrm{~d} r}=\frac{\dot{t}}{\dot{r}}=\frac{\bar{\partial}^{t} H}{\bar{\partial}^{r} H} . \tag{40}
\end{equation*}
$$

Shapiro delay

- Method of calculation:
- Emitter / receiver at r_{e}, closest encounter at r_{c}, mirror at r_{m}.
- General formula of Shapiro delay:

$$
\begin{equation*}
\Delta T=\left.\int_{r_{e}}^{r_{c}} \frac{\mathrm{~d} t}{\mathrm{~d} r}\right|_{\text {in }} ^{<0} \mathrm{~d} r+\left.\int_{r_{c}}^{r_{m}} \frac{\mathrm{~d} t}{\mathrm{~d} r}\right|_{\text {out }} ^{>0} \mathrm{~d} r+\left.\int_{r_{m}}^{r_{c}} \frac{\mathrm{~d} t}{\mathrm{~d} r}\right|_{\text {in }} ^{<0} \mathrm{~d} r+\left.\int_{r_{c}}^{r_{e}} \frac{\mathrm{~d} t}{\mathrm{~d} r}\right|_{\text {out }} ^{>0} \mathrm{~d} r . \tag{39}
\end{equation*}
$$

- At $r=r_{c}: \dot{r}=0$ relates $\mathcal{E}, \mathcal{L}, r_{c}, p_{r c}$ by $\bar{\partial}^{r} H=0$ and $H=-m^{2}$.
- Parametrize trajectory by r and calculate

$$
\begin{equation*}
\frac{\mathrm{d} t}{\mathrm{~d} r}=\frac{\dot{t}}{\dot{r}}=\frac{\bar{\partial}^{t} H}{\bar{\partial}^{r} H} . \tag{40}
\end{equation*}
$$

- Result for κ-Poincarè:

$$
\begin{equation*}
\Delta T(r) \sim r_{s} e^{-\ell \mathcal{E}}\left[\frac{\ell \mathcal{E}}{2\left(e^{\ell \mathcal{E}}-1\right)} \sqrt{\frac{r-r_{c}}{r+r_{c}}}+\frac{(2-\ell \mathcal{E})}{2} \ln \left(\frac{r+\sqrt{r^{2}-r_{c}^{2}}}{r_{c}}\right)\right] \tag{41}
\end{equation*}
$$

Light deflection

- Method of calculation:
- Emitter / receiver at $r \rightarrow \infty$, closest encounter at r_{c}.
- Calculate deviation from straight line $\Delta \varphi=\pi$.
- General formula of deflection angle:

$$
\begin{equation*}
\Delta \varphi=\left.\int_{\infty}^{r_{c}} \frac{\mathrm{~d} \varphi}{\mathrm{~d} r}\right|_{\text {in }} ^{<0} \mathrm{~d} r+\left.\int_{r_{c}}^{\infty} \frac{\mathrm{d} \varphi}{\mathrm{~d} r}\right|_{\text {out }} ^{>0} \mathrm{~d} r-\pi . \tag{42}
\end{equation*}
$$

- At $r=r_{c}$: $\dot{r}=0$ relates $\mathcal{E}, \mathcal{L}, r_{c}, p_{r c}$ by $\bar{\partial}^{r} H=0$ and $H=-m^{2}$.
- Parametrize trajectory by r and calculate

$$
\begin{equation*}
\frac{\mathrm{d} t}{\mathrm{~d} r}=\frac{\dot{t}}{\dot{r}}=\frac{\bar{\partial}^{t} H}{\bar{\partial}^{r} H} . \tag{43}
\end{equation*}
$$

Light deflection

- Method of calculation:
- Emitter / receiver at $r \rightarrow \infty$, closest encounter at r_{c}.
- Calculate deviation from straight line $\Delta \varphi=\pi$.
- General formula of deflection angle:

$$
\begin{equation*}
\Delta \varphi=\left.\int_{\infty}^{r_{c}} \frac{\mathrm{~d} \varphi}{\mathrm{~d} r}\right|_{\text {in }} ^{<0} \mathrm{~d} r+\left.\int_{r_{c}}^{\infty} \frac{\mathrm{d} \varphi}{\mathrm{~d} r}\right|_{\text {out }} ^{>0} \mathrm{~d} r-\pi \tag{42}
\end{equation*}
$$

- At $r=r_{c}: \dot{r}=0$ relates $\mathcal{E}, \mathcal{L}, r_{c}, p_{r c}$ by $\bar{\partial}^{r} H=0$ and $H=-m^{2}$.
- Parametrize trajectory by r and calculate

$$
\begin{equation*}
\frac{\mathrm{d} t}{\mathrm{~d} r}=\frac{\dot{t}}{\dot{r}}=\frac{\bar{\partial}^{t} H}{\bar{\partial}^{r} H} \tag{43}
\end{equation*}
$$

- Result for κ-Poincarè:

$$
\begin{equation*}
\Delta \varphi=\frac{r_{s}}{r_{c}} \frac{e^{\ell \mathcal{E}}-1+\ell \mathcal{E}}{e^{\ell \mathcal{E}}-1} \tag{44}
\end{equation*}
$$

Outline

(1) Lorentz covariance and invariance

(2) Teleparallel gravity

(3) Finsler gravity

Conclusion

- Possible signatures of local Lorentz invariance violation:
- Dependence of experiments on absolute velocity.
- Modified dispersion relation.
- Post-Newtonian parameters $\alpha_{1}, \alpha_{2}, \alpha_{3}$.

Conclusion

- Possible signatures of local Lorentz invariance violation:
- Dependence of experiments on absolute velocity.
- Modified dispersion relation.
- Post-Newtonian parameters $\alpha_{1}, \alpha_{2}, \alpha_{3}$.
- Teleparallel gravity:
- Formulated via tetrad or metric and connection.
- Matter couples to metric only.
- No observable violation of LLI.

Conclusion

- Possible signatures of local Lorentz invariance violation:
- Dependence of experiments on absolute velocity.
- Modified dispersion relation.
- Post-Newtonian parameters $\alpha_{1}, \alpha_{2}, \alpha_{3}$.
- Teleparallel gravity:
- Formulated via tetrad or metric and connection.
- Matter couples to metric only.
- No observable violation of LLI.
- Finsler-based gravity theories:
- Based on generalized length functional.
- Formulation as modified dispersion relation.
- Various effects to search for LLI violation.

Extra: the associated bundle

Extra: the many faces of connections

[^0]: ${ }^{2}$ See talk by Volker Perlick.
 ${ }^{3}$ See talk by Dennis Rätzel.

