How to (not) break local Lorentz invariance in gravity theory

Manuel Hohmann

Laboratory of Theoretical Physics - Institute of Physics - University of Tartu Center of Excellence "The Dark Side of the Universe"

781. WE-Heraeus-Seminar: Time and Clocks - 3. March 2023

Outline

- Lorentz covariance and invariance
- Teleparallel gravity
- Finsler gravity
- 4 Conclusion

Outline

- Lorentz covariance and invariance
- Teleparallel gravity
- Finsler gravity
- 4 Conclusion

- So far unexplained cosmological observations:
 - Accelerating expansion of the universe.
 - Homogeneity of cosmic microwave background.

- So far unexplained cosmological observations:
 - Accelerating expansion of the universe.
 - Homogeneity of cosmic microwave background.
- Models for explaining these observations:
 - ACDM model / dark energy.
 - Inflation.

- So far unexplained cosmological observations:
 - Accelerating expansion of the universe.
 - Homogeneity of cosmic microwave background.
- Models for explaining these observations:
 - ACDM model / dark energy.
 - o Inflation.
- Physical mechanisms are not understood:
 - Unknown type of matter?
 - Modification of the laws of gravity?
 - Scalar field in addition to metric mediating gravity?
 - Quantum gravity effects?

- So far unexplained cosmological observations:
 - Accelerating expansion of the universe.
 - Homogeneity of cosmic microwave background.
- Models for explaining these observations:
 - ACDM model / dark energy.
 - Inflation.
- Physical mechanisms are not understood:
 - Unknown type of matter?
 - o Modification of the laws of gravity?
 - Scalar field in addition to metric mediating gravity?
 - Quantum gravity effects?
- Idea here: modification of the geometric structure of spacetime!
 - Study classical gravity theories based on modified geometry.
 - Consider geometries as effective models of quantum gravity.
 - Derive observable effects to test modified geometry.

- Consider simple particle detector:
 - Particles enter tracker chamber with constant magnetic field.
 - o Particles hit calorimeter and emit photons until full stop.
 - Measure radius and direction of particle tracks: momentum.
 - Measure photon frequencies from particle impact: energy.

- Consider simple particle detector:
 - Particles enter tracker chamber with constant magnetic field.
 - o Particles hit calorimeter and emit photons until full stop.
 - Measure radius and direction of particle tracks: momentum.
 - Measure photon frequencies from particle impact: energy.
- Units used by particle detector:
 - Measuring frequency requires standard clock.
 - Measuring radius (distance) requires standard ruler.
 - Measuring direction components requires orthogonal axes.
 - Relating magnetic field, momentum, Lorentz force gives orientation.

- Consider simple particle detector:
 - Particles enter tracker chamber with constant magnetic field.
 - o Particles hit calorimeter and emit photons until full stop.
 - Measure radius and direction of particle tracks: momentum.
 - Measure photon frequencies from particle impact: energy.
- Units used by particle detector:
 - Measuring frequency requires standard clock.
 - Measuring radius (distance) requires standard ruler.
 - Measuring direction components requires orthogonal axes.
 - Relating magnetic field, momentum, Lorentz force gives orientation.
- Relating different measurements:
 - Particle detector establishes local reference frame.
 - Relatively moving detector at the same point has different frame.
 - Measured energy and momentum disagree between detectors.

- Consider simple particle detector:
 - Particles enter tracker chamber with constant magnetic field.
 - Particles hit calorimeter and emit photons until full stop.
 - Measure radius and direction of particle tracks: momentum.
 - Measure photon frequencies from particle impact: energy.
- Units used by particle detector:
 - Measuring frequency requires standard clock.
 - Measuring radius (distance) requires standard ruler.
 - Measuring direction components requires orthogonal axes.
 - Relating magnetic field, momentum, Lorentz force gives orientation.
- Relating different measurements:
 - Particle detector establishes local reference frame.
 - Relatively moving detector at the same point has different frame.
 - Measured energy and momentum disagree between detectors.
- Questions:
 - o How are measurements between detectors at same point related?
 - How does this relation depend on the location of detectors?

- Einstein equivalence principle:
 - 1. Freely falling test bodies move independent of their composition.
 - 2. Local non-gravitational experiments independent of velocity.
 - 3. Local non-gravitational experiments independent of position.

- Einstein equivalence principle:
 - 1. Freely falling test bodies move independent of their composition.
 - 2. Local non-gravitational experiments independent of velocity.
 - 3. Local non-gravitational experiments independent of position.
- Explanations:
 - Test body: sufficiently small, no charges, no self-gravitation.

- Einstein equivalence principle:
 - 1. Freely falling test bodies move independent of their composition.
 - 2. Local non-gravitational experiments independent of velocity.
 - 3. Local non-gravitational experiments independent of position.
- Explanations:
 - Test body: sufficiently small, no charges, no self-gravitation.
 - Gravity absent in sufficiently small, freely falling laboratory.

- Einstein equivalence principle:
 - 1. Freely falling test bodies move independent of their composition.
 - Local non-gravitational experiments independent of velocity.
 - 3. Local non-gravitational experiments independent of position.
- Explanations:
 - Test body: sufficiently small, no charges, no self-gravitation.
 - o Gravity absent in sufficiently small, freely falling laboratory.
 - Local freely falling laboratory with no external forces or fields.

- Einstein equivalence principle:
 - 1. Freely falling test bodies move independent of their composition.
 - 2. Local non-gravitational experiments independent of velocity.
 - 3. Local non-gravitational experiments independent of position.
- Explanations:
 - o Test body: sufficiently small, no charges, no self-gravitation.
 - o Gravity absent in sufficiently small, freely falling laboratory.
 - Local freely falling laboratory with no external forces or fields.
- Invariance of physical laws:
 - No preferred rest frame: local Lorentz invariance (LLI).

- Einstein equivalence principle:
 - 1. Freely falling test bodies move independent of their composition.
 - 2. Local non-gravitational experiments independent of velocity.
 - 3. Local non-gravitational experiments independent of position.
- Explanations:
 - o Test body: sufficiently small, no charges, no self-gravitation.
 - o Gravity absent in sufficiently small, freely falling laboratory.
 - Local freely falling laboratory with no external forces or fields.
- Invariance of physical laws:
 - No preferred rest frame: local Lorentz invariance (LLI).
 - No preferred locations: local position invariance (LPI).

- Einstein equivalence principle:
 - 1. Freely falling test bodies move independent of their composition.
 - 2. Local non-gravitational experiments independent of velocity.
 - 3. Local non-gravitational experiments independent of position.
- Explanations:
 - Test body: sufficiently small, no charges, no self-gravitation.
 - o Gravity absent in sufficiently small, freely falling laboratory.
 - Local freely falling laboratory with no external forces or fields.
- Invariance of physical laws:
 - No preferred rest frame: local Lorentz invariance (LLI).
 - No preferred locations: local position invariance (LPI).
- Consequences for gravitational theory:
 - Spacetime equipped with metric $g_{\mu\nu}$.
 - \circ Freely falling particles follow geodesics of $g_{\mu\nu}.$
 - Local, freely falling laboratories with $g_{\mu\nu} = \eta_{\mu\nu}$.
 - Local, non-gravitational physics respects special relativity.

Orthonormal frames and Lorentz transformations

- Establish orthonormal frame e_a^{μ} at spacetime point $x \in M$:
 - Four-velocity of observer → direction of time component.
 - Clock showing proper time → normalization of time component.
 - Light rays / radar experiment → direction of spatial components.
 - Light turnaround time → normalization of spatial components.
 - Parity-violating particles → orientation of frame.

Orthonormal frames and Lorentz transformations

- Establish orthonormal frame e_a^{μ} at spacetime point $x \in M$:
 - Four-velocity of observer → direction of time component.
 - Clock showing proper time → normalization of time component.
 - Light rays / radar experiment → direction of spatial components.
 - Light turnaround time → normalization of spatial components.
 - Parity-violating particles \rightsquigarrow orientation of frame.
- Comparing frames established by different observers:
 - Observers with different four-velocities $\dot{\gamma}^{\mu}, \dot{\gamma}'^{\mu}$ at same point x.
 - Each observer establishes an orthonormal frame $e_a{}^{\mu}$, $e_a'{}^{\mu}$.
 - LLI: observers' frames are related by Lorentz transformation:

$$e_a^{\prime \mu} = \Lambda_a{}^b e_b{}^\mu \,, \quad \Lambda_a{}^c \Lambda_b{}^d \eta_{cd} = \eta_{ab} \,. \tag{1}$$

→ Observers find same metric components

$$g^{\mu\nu} = \eta^{ab} e_a{}^{\mu} e_b{}^{\nu} = \eta^{ab} e_a'{}^{\mu} e_b'{}^{\nu}$$
 (2)

Frames have same orientation and time-orientation.

Lorentz covariance of observables

- Relating observations made by different observers:
 - o Observers measure quantities in their own frames $e_a{}^{\mu}$, $e_a'{}^{\mu}$.
 - o Observers in general obtain different values Q^{l} , $Q^{\prime l}$.
 - \circ Lorentz covariance: representation ρ of SO₀(1,3):

$$Q^{\prime I} = \rho^I{}_J(\Lambda)Q^J. \tag{3}$$

• Lorentz invariance if $Q^{\prime l} = Q^{l}$.

Lorentz covariance of observables

- Relating observations made by different observers:
 - o Observers measure quantities in their own frames $e_a{}^{\mu}, e_a'{}^{\mu}$.
 - o Observers in general obtain different values Q^{I} , $Q^{\prime I}$.
 - Lorentz covariance: representation ρ of SO₀(1,3):

$$Q^{\prime I} = \rho^I{}_J(\Lambda)Q^J. \tag{3}$$

- Lorentz invariance if $Q^{\prime l} = Q^{l}$.
- Example: energy-momentum of particles:
 - Observers measure $(p_a)=(E,\vec{p})$ and $(p'_a)=(E',\vec{p}')$.
 - Momentum components form covector: $p'_a = \Lambda_a{}^b p_b$.
 - \Rightarrow Physical, frame independent quantity p_{μ} gives observables:

$$p_a = e_a{}^{\mu}p_{\mu} \,, \quad p_a' = e_a'{}^{\mu}p_{\mu} \,.$$
 (4)

→ Mass m is Lorentz-invariant quantity:

$$\eta^{ab} p_a p_b = \eta^{ab} p_a' p_b' = g^{\mu\nu} p_\mu p_\nu = -m^2.$$
(5)

Lorentz covariance of observables

- Relating observations made by different observers:
 - o Observers measure quantities in their own frames $e_a{}^{\mu}, e_a'{}^{\mu}$.
 - o Observers in general obtain different values Q^{l} , $Q^{\prime l}$.
 - Lorentz covariance: representation ρ of SO₀(1,3):

$$Q^{\prime I} = \rho^I{}_J(\Lambda)Q^J. \tag{3}$$

- Lorentz invariance if $Q^{\prime l} = Q^{l}$.
- Example: energy-momentum of particles:
 - Observers measure $(p_a) = (E, \vec{p})$ and $(p'_a) = (E', \vec{p}')$.
 - Momentum components form covector: $p'_a = \Lambda_a{}^b p_b$.
 - \Rightarrow Physical, frame independent quantity p_{μ} gives observables:

$$p_a = e_a{}^{\mu}p_{\mu} \,, \quad p_a' = e_a'{}^{\mu}p_{\mu} \,.$$
 (4)

→ Mass m is Lorentz-invariant quantity:

$$\eta^{ab} p_a p_b = \eta^{ab} p'_a p'_b = g^{\mu\nu} p_\mu p_\nu = -m^2.$$
(5)

Local Lorentz invariance manifest in dispersion relation.

Perturbative expansion of the metric:

$$g_{00}^{(2)} = 2\alpha U,$$
 (6a)

$$g_{\alpha\beta}^{(2)} = 2\gamma U \delta_{\alpha\beta} \,, \tag{6b}$$

$$g_{0\alpha}^{(3)} = -\frac{1}{2}(3 + 4\gamma + \alpha_1 - \alpha_2 + \zeta_1 - 2\xi)V_{\alpha} - \frac{1}{2}(1 + \alpha_2 - \zeta_1 + 2\xi)W_{\alpha},$$
 (6c)

$$g_{00}^{(4)} = -2\beta U^{2} - 2\xi \Phi_{W} + (2 + 2\gamma + \alpha_{3} + \zeta_{1} - 2\xi)\Phi_{1} + 2(1 + 3\gamma - 2\beta + \zeta_{2} + \xi)\Phi_{2} + 2(1 + \zeta_{3})\Phi_{3} + 2(3\gamma + 3\zeta_{4} - 2\xi)\Phi_{4} - (\zeta_{1} - 2\xi)A.$$
 (6d)

Perturbative expansion of the metric:

$$g_{00}^{(2)} = 2\alpha U, (6a)$$

$$g_{\alpha\beta}^{(2)} = 2\gamma U \delta_{\alpha\beta} \,,$$
 (6b)

$$g_{0\alpha}^{(3)} = -\frac{1}{2}(3 + 4\gamma + \alpha_1 - \alpha_2 + \zeta_1 - 2\xi)V_{\alpha} - \frac{1}{2}(1 + \alpha_2 - \zeta_1 + 2\xi)W_{\alpha},$$
 (6c)

$$\begin{split} g_{00}^{(4)} &= -2\beta U^2 - 2\xi \Phi_W + (2 + 2\gamma + \alpha_3 + \zeta_1 - 2\xi) \Phi_1 \\ &\quad + 2(1 + 3\gamma - 2\beta + \zeta_2 + \xi) \Phi_2 + 2(1 + \zeta_3) \Phi_3 \\ &\quad + 2(3\gamma + 3\zeta_4 - 2\xi) \Phi_4 - (\zeta_1 - 2\xi) \mathcal{A} \,. \end{split} \tag{6d}$$

• PPN parameters $\alpha, \gamma, \beta, \alpha_1, \dots, \alpha_3, \zeta_1, \dots, \zeta_4, \xi$.

Perturbative expansion of the metric:

$$g_{00}^{(2)} = 2\alpha U, \tag{6a}$$

$$g_{\alpha\beta}^{(2)} = 2\gamma U \delta_{\alpha\beta} \,,$$
 (6b)

$$g_{0\alpha}^{(3)} = -\frac{1}{2}(3 + 4\gamma + \alpha_1 - \alpha_2 + \zeta_1 - 2\xi) V_{\alpha}$$
$$-\frac{1}{2}(1 + \alpha_2 - \zeta_1 + 2\xi) W_{\alpha}, \qquad (6c)$$

$$\begin{split} g_{00}^{(4)} &= -2\beta \frac{\textit{U}^2}{\textit{U}^2} - 2\xi \Phi_{\textit{W}} + (2 + 2\gamma + \alpha_3 + \zeta_1 - 2\xi) \Phi_1 \\ &\quad + 2(1 + 3\gamma - 2\beta + \zeta_2 + \xi) \Phi_2 + 2(1 + \zeta_3) \Phi_3 \\ &\quad + 2(3\gamma + 3\zeta_4 - 2\xi) \Phi_4 - (\zeta_1 - 2\xi) \mathcal{A} \,. \end{split} \tag{6d}$$

- PPN parameters $\alpha, \gamma, \beta, \alpha_1, \dots, \alpha_3, \zeta_1, \dots, \zeta_4, \xi$.
- PPN potentials $U, V_{\alpha}, W_{\alpha}, \Phi_1, \dots, \Phi_4, \Phi_W, A$.

Perturbative expansion of the metric:

$$g_{00}^{(2)} = 2\alpha U,$$
 (6a)

$$g_{\alpha\beta}^{(2)} = 2\gamma U \delta_{\alpha\beta} \,,$$
 (6b)

$$g_{0\alpha}^{(3)} = -\frac{1}{2}(3 + 4\gamma + \alpha_1 - \alpha_2 + \zeta_1 - 2\xi)V_{\alpha} - \frac{1}{2}(1 + \alpha_2 - \zeta_1 + 2\xi)W_{\alpha},$$
 (6c)

$$\begin{split} g_{00}^{(4)} &= -2\beta U^2 - 2\xi \Phi_W + (2 + 2\gamma + \alpha_3 + \zeta_1 - 2\xi) \Phi_1 \\ &\quad + 2(1 + 3\gamma - 2\beta + \zeta_2 + \xi) \Phi_2 + 2(1 + \zeta_3) \Phi_3 \\ &\quad + 2(3\gamma + 3\zeta_4 - 2\xi) \Phi_4 - (\zeta_1 - 2\xi) \mathcal{A} \,. \end{split} \tag{6d}$$

- PPN parameters $\alpha, \gamma, \beta, \alpha_1, \ldots, \alpha_3, \zeta_1, \ldots, \zeta_4, \xi$.
- PPN potentials $U, V_{\alpha}, W_{\alpha}, \Phi_1, \dots, \Phi_4, \Phi_W, A$.
- LLI if $(\alpha_1, \alpha_2, \alpha_3) \neq (0, 0, 0)$.

Outline

- Lorentz covariance and invariance
- Teleparallel gravity
- Finsler gravity
- 4 Conclusion

Field variables in teleparallel gravity

- Metric teleparallelism conventionally formulated using:
 - Tetrad / coframe: $\theta^a = \theta^a{}_{\mu} dx^{\mu}$ with inverse $e_a = e_a{}^{\mu} \partial_{\mu}$.
 - Spin connection: $\omega^{a}{}_{b} = \dot{\omega^{a}}_{b\mu} dx^{\mu}$.

Field variables in teleparallel gravity

- Metric teleparallelism conventionally formulated using:
 - Tetrad / coframe: $\theta^a = \theta^a{}_{\mu} dx^{\mu}$ with inverse $e_a = e_a{}^{\mu} \partial_{\mu}$.
 - Spin connection: $\omega^a{}_b = \omega^a{}_{b\mu} dx^{\mu}$.
- Induced metric-affine geometry:
 - Metric:

$$g_{\mu\nu} = \eta_{ab} \theta^a{}_{\mu} \theta^b{}_{\nu} \,. \tag{7}$$

Affine connection:

$$\Gamma^{\mu}{}_{\nu\rho} = e_{a}{}^{\mu} \left(\partial_{\rho} \theta^{a}{}_{\nu} + \omega^{a}{}_{b\rho} \theta^{b}{}_{\nu} \right) . \tag{8}$$

Field variables in teleparallel gravity

- Metric teleparallelism conventionally formulated using:
 - Tetrad / coframe: $\theta^a = \theta^a{}_{\mu} dx^{\mu}$ with inverse $e_a = e_a{}^{\mu} \partial_{\mu}$.
 - Spin connection: $\omega^a{}_b = \omega^a{}_{b\mu} dx^{\mu}$.
- Induced metric-affine geometry:
 - Metric:

$$g_{\mu\nu} = \eta_{ab} \theta^a{}_{\mu} \theta^b{}_{\nu} \,. \tag{7}$$

Affine connection:

$$\Gamma^{\mu}{}_{\nu\rho} = e_{a}{}^{\mu} \left(\partial_{\rho} \theta^{a}{}_{\nu} + \omega^{a}{}_{b\rho} \theta^{b}{}_{\nu} \right) . \tag{8}$$

- Conditions on the spin connection:
 - Flatness R = 0:

$$\partial_{\mu}\omega^{a}{}_{b\nu} - \partial_{\nu}\omega^{a}{}_{b\mu} + \omega^{a}{}_{c\mu}\omega^{c}{}_{b\nu} - \omega^{a}{}_{c\nu}\omega^{c}{}_{b\mu} = 0.$$
 (9)

Metric compatibility Q = 0:

$$\eta_{ac}\omega^{c}_{b\mu} + \eta_{bc}\omega^{c}_{a\mu} = 0.$$
 (10)

$$\theta^{a}_{\mu} \mapsto \theta'^{a}_{\mu} = \Lambda^{a}_{b} \theta^{b}_{\mu} \,. \tag{11}$$

- \checkmark Metric is invariant: $g'_{\mu\nu}=g_{\mu\nu}.$
- \oint Connection is not invariant: $\Gamma'^{\mu}{}_{\nu\rho} \neq \Gamma^{\mu}{}_{\nu\rho}$.

$$\theta^{a}_{\mu} \mapsto \theta'^{a}_{\mu} = \Lambda^{a}_{b} \theta^{b}_{\mu}. \tag{11}$$

- ✓ Metric is invariant: $g'_{\mu\nu} = g_{\mu\nu}$.
- \oint Connection is not invariant: $\Gamma'^{\mu}{}_{\nu\rho} \neq \Gamma^{\mu}{}_{\nu\rho}$.
- Perform also transformation of the spin connection:

$$\omega^{a}{}_{b\mu} \mapsto \omega'^{a}{}_{b\mu} = \Lambda^{a}{}_{c}(\Lambda^{-1})^{d}{}_{b}\omega^{c}{}_{d\mu} + \Lambda^{a}{}_{c}\partial_{\mu}(\Lambda^{-1})^{c}{}_{b}$$
. (12)

- \checkmark Metric is invariant: $g'_{\mu\nu}=g_{\mu\nu}.$
- ✓ Connection is invariant: $\Gamma'^{\mu}{}_{\nu\rho} = \Gamma^{\mu}{}_{\nu\rho}$.

$$\theta^{a}_{\mu} \mapsto \theta'^{a}_{\mu} = \Lambda^{a}_{b} \theta^{b}_{\mu} \,. \tag{11}$$

- ✓ Metric is invariant: $g'_{\mu\nu} = g_{\mu\nu}$.
- \oint Connection is not invariant: $\Gamma'^{\mu}{}_{\nu\rho} \neq \Gamma^{\mu}{}_{\nu\rho}$.
- Perform also transformation of the spin connection:

$$\omega^{a}{}_{b\mu} \mapsto \omega'^{a}{}_{b\mu} = \Lambda^{a}{}_{c}(\Lambda^{-1})^{d}{}_{b}\omega^{c}{}_{d\mu} + \Lambda^{a}{}_{c}\partial_{\mu}(\Lambda^{-1})^{c}{}_{b}$$
. (12)

- \checkmark Metric is invariant: $g'_{\mu\nu}=g_{\mu\nu}.$
- ✓ Connection is invariant: $\Gamma'^{\mu}{}_{\nu\rho} = \Gamma^{\mu}{}_{\nu\rho}$.
- ⇒ Metric-affine geometry equivalently described by:
 - Metric $g_{\mu\nu}$ and affine connection $\Gamma^{\mu}_{\nu\rho}$.
 - Equivalence class of tetrad θ^a_{μ} and spin connection $\omega^a_{b\mu}$.
 - Equivalence defined with respect to local Lorentz transformations.

$$\theta^{a}_{\mu} \mapsto \theta'^{a}_{\mu} = \Lambda^{a}_{b} \theta^{b}_{\mu} \,. \tag{11}$$

- ✓ Metric is invariant: $g'_{\mu\nu} = g_{\mu\nu}$.
- \oint Connection is not invariant: $\Gamma'^{\mu}{}_{\nu\rho} \neq \Gamma^{\mu}{}_{\nu\rho}$.
- Perform also transformation of the spin connection:

$$\omega^{a}{}_{b\mu} \mapsto \omega'^{a}{}_{b\mu} = \Lambda^{a}{}_{c}(\Lambda^{-1})^{d}{}_{b}\omega^{c}{}_{d\mu} + \Lambda^{a}{}_{c}\partial_{\mu}(\Lambda^{-1})^{c}{}_{b}$$
. (12)

- \checkmark Metric is invariant: $g'_{\mu
 u} = g_{\mu
 u}$.
- ✓ Connection is invariant: $\Gamma'^{\mu}{}_{\nu\rho} = \Gamma^{\mu}{}_{\nu\rho}$.
- ⇒ Metric-affine geometry equivalently described by:
 - Metric $g_{\mu\nu}$ and affine connection $\Gamma^{\mu}_{\nu\rho}$.
 - Equivalence class of tetrad θ^a_{μ} and spin connection $\omega^a_{b\mu}$.
 - Equivalence defined with respect to local Lorentz transformations.
 - Is LLI broken if teleparallel gravity action depends on $\Gamma^{\mu}_{\ \nu\rho}$?

The Weitzenböck gauge

- Intuitive conclusion: One can always use the Weitzenböck gauge.
 - The spin connection is flat:

$$\partial_{\mu}\omega^{a}{}_{b\nu} - \partial_{\nu}\omega^{a}{}_{b\mu} + \omega^{a}{}_{c\mu}\omega^{c}{}_{b\nu} - \omega^{a}{}_{c\nu}\omega^{c}{}_{b\mu} \equiv 0. \tag{13}$$

⇒ The spin connection can always be written in the form

$$\omega^{a}{}_{b\mu} = \Lambda^{a}{}_{c}\partial_{\mu}(\Lambda^{-1})^{c}{}_{b}. \tag{14}$$

 \Rightarrow One can achieve the Weitzenböck gauge by $\theta^a_{\mu} = \Lambda^a_{b} \theta^{b}_{\mu}$.

- Intuitive conclusion: One can always use the Weitzenböck gauge.
 - The spin connection is flat:

$$\partial_{\mu}\omega^{a}{}_{b\nu} - \partial_{\nu}\omega^{a}{}_{b\mu} + \omega^{a}{}_{c\mu}\omega^{c}{}_{b\nu} - \omega^{a}{}_{c\nu}\omega^{c}{}_{b\mu} \equiv 0. \tag{13}$$

$$\omega^{a}{}_{b\mu} = \Lambda^{a}{}_{c}\partial_{\mu}(\Lambda^{-1})^{c}{}_{b}. \tag{14}$$

- \Rightarrow One can achieve the Weitzenböck gauge by $\theta^a{}_{\mu} = \Lambda^a{}_b \overset{\text{\tiny w}}{\theta}{}^b{}_{\mu}$.
- $\Lambda^a{}_b$ and $\overset{\scriptscriptstyle{W}}{\theta}{}^a{}_\mu$ defined only up to global transform

$$\Lambda^{a}{}_{b} \mapsto \Lambda'^{a}{}_{b} = \Lambda^{a}{}_{c}\Omega^{c}{}_{b}, \quad \overset{w}{\theta}{}^{a}{}_{\mu} \mapsto \overset{w}{\theta'}{}^{a}{}_{\mu} = (\Omega^{-1})^{a}{}_{b}\overset{w}{\theta}{}^{b}{}_{\mu}. \tag{15}$$

- Intuitive conclusion: One can always use the Weitzenböck gauge.
 - The spin connection is flat:

$$\partial_{\mu}\omega^{a}{}_{b\nu} - \partial_{\nu}\omega^{a}{}_{b\mu} + \omega^{a}{}_{c\mu}\omega^{c}{}_{b\nu} - \omega^{a}{}_{c\nu}\omega^{c}{}_{b\mu} \equiv 0. \tag{13}$$

$$\omega^{a}{}_{b\mu} = \Lambda^{a}{}_{c}\partial_{\mu}(\Lambda^{-1})^{c}{}_{b}. \tag{14}$$

- Λ^{a}_{b} and $\overset{\text{w}}{\theta}{}^{a}_{\mu}$ defined only up to global transform

$$\Lambda^{a}_{b} \mapsto \Lambda'^{a}_{b} = \Lambda^{a}_{c} \Omega^{c}_{b}, \quad \overset{\text{w}}{\theta}^{a}_{\mu} \mapsto \overset{\text{w}}{\theta'^{a}}_{\mu} = (\Omega^{-1})^{a}_{b} \overset{\text{w}}{\theta'^{b}}_{\mu}. \tag{15}$$

- Questions posed by the adept of geometry:
 - 1. How can we determine the transformation Λ^a_b ?

- Intuitive conclusion: One can always use the Weitzenböck gauge.
 - The spin connection is flat:

$$\partial_{\mu}\omega^{a}{}_{b\nu} - \partial_{\nu}\omega^{a}{}_{b\mu} + \omega^{a}{}_{c\mu}\omega^{c}{}_{b\nu} - \omega^{a}{}_{c\nu}\omega^{c}{}_{b\mu} \equiv 0. \tag{13}$$

$$\omega^{a}{}_{b\mu} = \Lambda^{a}{}_{c}\partial_{\mu}(\Lambda^{-1})^{c}{}_{b}. \tag{14}$$

- $\Lambda^a{}_b$ and $\overset{\text{\tiny W}}{\theta}{}^a{}_\mu$ defined only up to global transform

$$\Lambda^{a}{}_{b} \mapsto \Lambda'^{a}{}_{b} = \Lambda^{a}{}_{c}\Omega^{c}{}_{b}, \quad \overset{w}{\theta}{}^{a}{}_{\mu} \mapsto \overset{w}{\theta'}{}^{a}{}_{\mu} = (\Omega^{-1})^{a}{}_{b}\overset{w}{\theta}{}^{b}{}_{\mu}. \tag{15}$$

- Questions posed by the adept of geometry:
 - 1. How can we determine the transformation $\Lambda^a{}_b$?
 - 2. Is this even true?

- Intuitive conclusion: One can always use the Weitzenböck gauge.
 - The spin connection is flat:

$$\partial_{\mu}\omega^{a}{}_{b\nu} - \partial_{\nu}\omega^{a}{}_{b\mu} + \omega^{a}{}_{c\mu}\omega^{c}{}_{b\nu} - \omega^{a}{}_{c\nu}\omega^{c}{}_{b\mu} \equiv 0. \tag{13}$$

$$\omega^{a}{}_{b\mu} = \Lambda^{a}{}_{c}\partial_{\mu}(\Lambda^{-1})^{c}{}_{b}. \tag{14}$$

- \Rightarrow One can achieve the Weitzenböck gauge by $\theta^a_{\ \mu} = \Lambda^a_{\ b} \ddot{\theta}^b_{\ \mu}$.
- $\Lambda^a{}_b$ and $\overset{\mathrm{w}}{\theta}{}^a{}_\mu$ defined only up to global transform

$$\Lambda^{a}_{b} \mapsto \Lambda'^{a}_{b} = \Lambda^{a}_{c} \Omega^{c}_{b}, \quad \overset{\text{w}}{\theta}^{a}_{\mu} \mapsto \overset{\text{w}}{\theta'^{a}}_{\mu} = (\Omega^{-1})^{a}_{b} \overset{\text{w}}{\theta}^{b}_{\mu}. \tag{15}$$

- Questions posed by the adept of geometry:
 - 1. How can we determine the transformation Λ^a_b ?
 - 2. Is this even true?
- Remark: this holds also in symmetric and general teleparallelism.

- Recall that we have gauge invariant quantities:
 - The metric $g_{\mu\nu}=\eta_{ab}\theta^a{}_{\mu}\theta^b{}_{\nu}$.
 - The teleparallel affine connection $\Gamma^{\mu}{}_{\nu\rho} = e_{a}{}^{\mu} \left(\partial_{\rho} \theta^{a}{}_{\nu} + \omega^{a}{}_{b\rho} \theta^{b}{}_{\nu} \right)$.

- Recall that we have gauge invariant quantities:
 - The metric $g_{\mu\nu} = \eta_{ab}\theta^a{}_{\mu}\theta^b{}_{\nu}$.
 - The teleparallel affine connection $\Gamma^{\mu}{}_{\nu\rho} = e_{a}{}^{\mu} \left(\partial_{\rho} \theta^{a}{}_{\nu} + \omega^{a}{}_{b\rho} \theta^{b}{}_{\nu} \right)$.
- The tetrad and connection satisfy the "tetrad postulate":

$$\partial_{\mu}\theta^{a}_{\ \nu} + \omega^{a}_{\ b\mu}\theta^{b}_{\ \nu} - \Gamma^{\rho}_{\ \nu\mu}\theta^{a}_{\ \rho} = 0.$$
 (16)

- Recall that we have gauge invariant quantities:
 - The metric $g_{\mu\nu} = \eta_{ab}\theta^a{}_{\mu}\theta^b{}_{\nu}$.
 - The teleparallel affine connection $\Gamma^{\mu}{}_{\nu\rho} = e_{a}{}^{\mu} \left(\partial_{\rho} \theta^{a}{}_{\nu} + \omega^{a}{}_{b\rho} \theta^{b}{}_{\nu} \right)$.
- The tetrad and connection satisfy the "tetrad postulate":

$$\partial_{\mu}\overset{\mathsf{w}}{\theta}{}^{a}{}_{\nu} - \Gamma^{\rho}{}_{\nu\mu}\overset{\mathsf{w}}{\theta}{}^{a}{}_{\rho} = 0. \tag{16}$$

The tetrad postulate also holds in the Weitzenböck gauge.

- Recall that we have gauge invariant quantities:
 - The metric $g_{\mu\nu} = \eta_{ab}\theta^a{}_{\mu}\theta^b{}_{\nu}$.
 - The teleparallel affine connection $\Gamma^{\mu}{}_{\nu\rho} = e_{a}{}^{\mu} \left(\partial_{\rho} \theta^{a}{}_{\nu} + \omega^{a}{}_{b\rho} \theta^{b}{}_{\nu} \right)$.
- The tetrad and connection satisfy the "tetrad postulate":

$$\partial_{\mu}\overset{\mathsf{w}}{\theta}^{a}_{\ \nu} - \Gamma^{\rho}_{\ \nu\mu}\overset{\mathsf{w}}{\theta}^{a}_{\ \rho} = 0. \tag{16}$$

- The tetrad postulate also holds in the Weitzenböck gauge.
- \Rightarrow Each component $\overset{\text{w}}{\theta}{}^{a}{}_{\mu} dx^{\mu}$ is a covariantly constant covector field.

- Recall that we have gauge invariant quantities:
 - The metric $g_{\mu\nu} = \eta_{ab}\theta^a{}_{\mu}\theta^b{}_{\nu}$.
 - The teleparallel affine connection $\Gamma^{\mu}{}_{\nu\rho} = e_{a}{}^{\mu} \left(\partial_{\rho} \theta^{a}{}_{\nu} + \omega^{a}{}_{b\rho} \theta^{b}{}_{\nu} \right)$.
- The tetrad and connection satisfy the "tetrad postulate":

$$\partial_{\mu}\overset{\mathsf{w}}{\theta}{}^{a}{}_{\nu} - \Gamma^{\rho}{}_{\nu\mu}\overset{\mathsf{w}}{\theta}{}^{a}{}_{\rho} = 0. \tag{16}$$

- The tetrad postulate also holds in the Weitzenböck gauge.
- \Rightarrow Each component $\overset{\scriptscriptstyle{W}}{\theta}{}^{a}{}_{\mu}\mathrm{d}x^{\mu}$ is a covariantly constant covector field.
- ⇒ Recipe for integrating the connection:
 - 1. Choose $\theta^a_{\mu}(x)$ at some $x \in M$ to fit with the metric.

- Recall that we have gauge invariant quantities:
 - The metric $g_{\mu\nu} = \eta_{ab}\theta^a{}_{\mu}\theta^b{}_{\nu}$.
 - The teleparallel affine connection $\Gamma^{\mu}_{\nu\rho} = e_a^{\mu} \left(\partial_{\rho} \theta^a_{\nu} + \omega^a_{b\rho} \theta^b_{\nu} \right)$.
- The tetrad and connection satisfy the "tetrad postulate":

$$\partial_{\mu}\overset{\mathsf{w}}{\theta}^{a}{}_{\nu} - \Gamma^{\rho}{}_{\nu\mu}\overset{\mathsf{w}}{\theta}^{a}{}_{\rho} = 0. \tag{16}$$

- The tetrad postulate also holds in the Weitzenböck gauge.
- \Rightarrow Each component $\overset{\text{\tiny w}}{\theta}{}^a{}_{\mu} dx^{\mu}$ is a covariantly constant covector field.
- ⇒ Recipe for integrating the connection:
 - 1. Choose $\overset{\scriptscriptstyle{W}}{\theta}{}^{a}{}_{\mu}(x)$ at some $x\in M$ to fit with the metric.
 - 2. For any other $y \in M$, choose path $x \rightsquigarrow y$, and parallel transport.

- Recall that we have gauge invariant quantities:
 - The metric $g_{\mu\nu} = \eta_{ab}\theta^a{}_{\mu}\theta^b{}_{\nu}$.
 - The teleparallel affine connection $\Gamma^{\mu}{}_{\nu\rho} = e_{a}{}^{\mu} \left(\partial_{\rho} \theta^{a}{}_{\nu} + \omega^{a}{}_{b\rho} \theta^{b}{}_{\nu} \right)$.
- The tetrad and connection satisfy the "tetrad postulate":

$$\partial_{\mu}\overset{\mathsf{w}}{\theta}^{a}{}_{\nu} - \Gamma^{\rho}{}_{\nu\mu}\overset{\mathsf{w}}{\theta}^{a}{}_{\rho} = 0. \tag{16}$$

- The tetrad postulate also holds in the Weitzenböck gauge.
- \Rightarrow Each component $\overset{\scriptscriptstyle{W}}{\theta}{}^{a}{}_{\mu}\mathrm{d}x^{\mu}$ is a covariantly constant covector field.
- ⇒ Recipe for integrating the connection:
 - 1. Choose $\ddot{\theta}^{a}_{\mu}(x)$ at some $x \in M$ to fit with the metric.
 - 2. For any other $y \in M$, choose path $x \rightsquigarrow y$, and parallel transport.
 - Obtained tetrad satisfies required properties:
 - \checkmark $\overset{\text{\it w}}{\theta}{}^a{}_\mu$ gives correct metric, since connection is metric-compatible.

- Recall that we have gauge invariant quantities:
 - The metric $g_{\mu\nu} = \eta_{ab}\theta^a{}_{\mu}\theta^b{}_{\nu}$.
 - The teleparallel affine connection $\Gamma^{\mu}{}_{\nu\rho} = e_{a}{}^{\mu} \left(\partial_{\rho} \theta^{a}{}_{\nu} + \omega^{a}{}_{b\rho} \theta^{b}{}_{\nu} \right)$.
- The tetrad and connection satisfy the "tetrad postulate":

$$\partial_{\mu}\overset{w}{\theta}{}^{a}_{\nu} - \Gamma^{\rho}_{\nu\mu}\overset{w}{\theta}{}^{a}_{\rho} = 0. \tag{16}$$

- The tetrad postulate also holds in the Weitzenböck gauge.
- \Rightarrow Each component $\overset{w}{\theta}{}^{a}{}_{\mu} dx^{\mu}$ is a covariantly constant covector field.
- ⇒ Recipe for integrating the connection:
 - 1. Choose $\overset{\text{\tiny W}}{\theta}{}^a{}_{\mu}(x)$ at some $x \in M$ to fit with the metric.
 - 2. For any other $y \in M$, choose path $x \rightsquigarrow y$, and parallel transport.
 - Obtained tetrad satisfies required properties:
 - $\checkmark\ \stackrel{\mathrm{\tiny W}}{\theta}{}^{a}{}_{\mu}$ gives correct metric, since connection is metric-compatible.
 - ✓ Global Lorentz invariance encoded in freedom of choice for $\overset{\text{\tiny w}}{\theta}{}^a{}_{\mu}(x)$.

- Recipe for integrating the connection:
 - 1. At some $x \in M$,

- Recipe for integrating the connection:
 - 1. At some $x \in M$, choose $\theta^{\alpha}_{\mu}(x)$ to fit with the metric.

- Recipe for integrating the connection:
 - 1. At some $x \in M$, choose $\tilde{\theta}^a_{\mu}(x)$ to fit with the metric.
 - 2. For any other $y \in M$,

- Recipe for integrating the connection:
 - 1. At some $x \in M$, choose $\tilde{\theta}^a_{\mu}(x)$ to fit with the metric.
 - 2. For any other $y \in M$, choose path $x \stackrel{\gamma}{\leadsto} y$,

- Recipe for integrating the connection:
 - 1. At some $x \in M$, choose $\frac{\theta^a}{\mu}(x)$ to fit with the metric.
 - 2. For any other $y \in M$, choose path $x \stackrel{\gamma}{\leadsto} y$, and parallel transport.

- Recipe for integrating the connection:
 - 1. At some $x \in M$, choose $\frac{\tilde{\theta}^a}{\mu}(x)$ to fit with the metric.
 - 2. For any other $y \in M$, choose path $x \stackrel{\gamma}{\leadsto} y$, and parallel transport.
- What happens if we choose another path $x \stackrel{\gamma'}{\leadsto} y$?

- Recipe for integrating the connection:
 - 1. At some $x \in M$, choose $\frac{\ddot{\theta}^a}{\mu}(x)$ to fit with the metric.
 - 2. For any other $y \in M$, choose path $x \stackrel{\gamma}{\leadsto} y$, and parallel transport.
- What happens if we choose another path $x \stackrel{\gamma'}{\leadsto} y$?
 - ✓ Vanishing curvature: parallel transport along both path agrees.

- Recipe for integrating the connection:
 - 1. At some $x \in M$, choose $\tilde{\theta}^a_{\mu}(x)$ to fit with the metric.
 - 2. For any other $y \in M$, choose path $x \stackrel{\gamma}{\leadsto} y$, and parallel transport.
- What happens if we choose another path $x \stackrel{\gamma'}{\leadsto} y$?
 - ✓ Vanishing curvature: parallel transport along both path agrees.
 - \oint But only if γ and γ' are homotopic paths!

- Starting from an arbitrary tetrad and flat spin connection:
 - One may always locally transform into Weitzenböck gauge.
 - One may not always globally transform into Weitzenböck gauge.

- Starting from an arbitrary tetrad and flat spin connection:
 - One may always locally transform into Weitzenböck gauge.
 - o One may not always globally transform into Weitzenböck gauge.
- Is there always some global tetrad and flat spin connection?

- Starting from an arbitrary tetrad and flat spin connection:
 - One may always locally transform into Weitzenböck gauge.
 - o One may not always globally transform into Weitzenböck gauge.
- Is there always some global tetrad and flat spin connection?
- The case of the tetrad:
 - We want to be able to describe spinor fields on spacetime.

- Starting from an arbitrary tetrad and flat spin connection:
 - One may always locally transform into Weitzenböck gauge.
 - o One may not always globally transform into Weitzenböck gauge.
- Is there always some global tetrad and flat spin connection?
- The case of the tetrad:
 - We want to be able to describe spinor fields on spacetime.
 - ⇒ Physical spacetime manifold must admit a spin structure.

- Starting from an arbitrary tetrad and flat spin connection:
 - One may always locally transform into Weitzenböck gauge.
 - o One may not always globally transform into Weitzenböck gauge.
- Is there always some global tetrad and flat spin connection?
- The case of the tetrad:
 - We want to be able to describe spinor fields on spacetime.
 - ⇒ Physical spacetime manifold must admit a spin structure.
 - Spacetime admits a spin structure ⇔ it is parallelizable. [Geroch '68]

- Starting from an arbitrary tetrad and flat spin connection:
 - One may always locally transform into Weitzenböck gauge.
 - o One may not always globally transform into Weitzenböck gauge.
- Is there always some global tetrad and flat spin connection?
- The case of the tetrad: √
 - We want to be able to describe spinor fields on spacetime.
 - ⇒ Physical spacetime manifold must admit a spin structure.
 - Spacetime admits a spin structure ⇔ it is parallelizable. [Geroch '68]
 - ⇒ Physical spacetime possesses global frame bundle sections.

- Starting from an arbitrary tetrad and flat spin connection:
 - One may always locally transform into Weitzenböck gauge.
 - o One may not always globally transform into Weitzenböck gauge.
- Is there always some global tetrad and flat spin connection?
- The case of the tetrad: √
 - We want to be able to describe spinor fields on spacetime.
 - ⇒ Physical spacetime manifold must admit a spin structure.
 - Spacetime admits a spin structure ⇔ it is parallelizable. [Geroch '68]
 - ⇒ Physical spacetime possesses global frame bundle sections.
- The case of the spin connection:
 - Parallelizable manifold always admits flat affine connection Γ.

- Starting from an arbitrary tetrad and flat spin connection:
 - One may always locally transform into Weitzenböck gauge.
 - o One may not always globally transform into Weitzenböck gauge.
- Is there always some global tetrad and flat spin connection?
- The case of the tetrad: √
 - We want to be able to describe spinor fields on spacetime.
 - ⇒ Physical spacetime manifold must admit a spin structure.
 - Spacetime admits a spin structure ⇔ it is parallelizable. [Geroch '68]
 - ⇒ Physical spacetime possesses global frame bundle sections.
- The case of the spin connection: √
 - Parallelizable manifold always admits flat affine connection Γ.
 - ⇒ A spin connection can be constructed from the "tetrad postulate".

- Starting from an arbitrary tetrad and flat spin connection:
 - One may always locally transform into Weitzenböck gauge.
 - o One may not always globally transform into Weitzenböck gauge.
- Is there always some global tetrad and flat spin connection?
- The case of the tetrad: √
 - We want to be able to describe spinor fields on spacetime.
 - ⇒ Physical spacetime manifold must admit a spin structure.
 - Spacetime admits a spin structure ⇔ it is parallelizable. [Geroch '68]
 - ⇒ Physical spacetime possesses global frame bundle sections.
- The case of the spin connection: √
 - Parallelizable manifold always admits flat affine connection Γ.
 - ⇒ A spin connection can be constructed from the "tetrad postulate".
- \Rightarrow Physical spacetime always has global tetrad and spin connection.

- Consider local Lorentz transformations $\Lambda: M \to O(1,3)$:
 - Simultaneous action on tetrad and spin connection:

$$(\theta,\omega) \mapsto (\Lambda\theta, \Lambda\omega\Lambda^{-1} + \Lambda d\Lambda^{-1}). \tag{17}$$

- $(\theta, \omega) \hat{\sim} (\theta', \omega')$ if and only if $(g, \Gamma) = (g', \Gamma')$.
- ⇒ Orbits parametrized by metric and teleparallel affine connection.

- Consider local Lorentz transformations $\Lambda: M \to O(1,3)$:
 - Simultaneous action on tetrad and spin connection:

$$(\theta, \omega) \mapsto (\Lambda \theta, \Lambda \omega \Lambda^{-1} + \Lambda d\Lambda^{-1}).$$
 (17)

- $\bullet (\theta, \omega) \stackrel{\wedge}{\sim} (\theta', \omega')$ if and only if $(g, \Gamma) = (g', \Gamma')$.
- ⇒ Orbits parametrized by metric and teleparallel affine connection.
- Consider locally O(1,3)-invariant teleparallel gravity theory:
 - ∘ $\Lambda : M \rightarrow O(1,3)$ maps solutions to solutions.
 - ⇒ Only metric and affine connection become dynamical variables.

- Consider local Lorentz transformations Λ : M → O(1,3):
 - Simultaneous action on tetrad and spin connection:

$$(\theta,\omega) \mapsto (\Lambda\theta, \Lambda\omega\Lambda^{-1} + \Lambda d\Lambda^{-1}). \tag{17}$$

- \bullet $(\theta,\omega) \stackrel{\wedge}{\sim} (\theta',\omega')$ if and only if $(g,\Gamma)=(g',\Gamma')$.
- → Orbits parametrized by metric and teleparallel affine connection.
- Consider locally O(1,3)-invariant teleparallel gravity theory:
 - ∘ $\Lambda : M \rightarrow O(1,3)$ maps solutions to solutions.
 - → Only metric and affine connection become dynamical variables.
- Decomposition of the Lorentz group:
 - $\quad \quad \text{Proper Lorentz group $SO_0(1,3) \subset O(1,3)$, $\mathfrak{T},\mathfrak{P} \in O(1,3)$.}$
 - \circ Standard model of particle physics only invariant under SO₀(1,3).
 - \Rightarrow Need orientation and time orientation in addition to g and Γ .
 - \Rightarrow Physical geometries parametrized by orbits of SO₀(1,3).

- Consider local Lorentz transformations $\Lambda: M \to O(1,3)$:
 - Simultaneous action on tetrad and spin connection:

$$(\theta,\omega) \mapsto (\Lambda\theta, \Lambda\omega\Lambda^{-1} + \Lambda d\Lambda^{-1}). \tag{17}$$

- \bullet $(\theta,\omega) \stackrel{\wedge}{\sim} (\theta',\omega')$ if and only if $(g,\Gamma)=(g',\Gamma')$.
- → Orbits parametrized by metric and teleparallel affine connection.
- Consider locally O(1,3)-invariant teleparallel gravity theory:
 - ∘ $\Lambda : M \rightarrow O(1,3)$ maps solutions to solutions.
 - → Only metric and affine connection become dynamical variables.
- Decomposition of the Lorentz group:
 - $\quad \ \ \, \text{Proper Lorentz group SO}_0(1,3)\subset O(1,3),\, \mathfrak{T},\mathfrak{P}\in O(1,3).$
 - Standard model of particle physics only invariant under $SO_0(1,3)$.
 - \Rightarrow Need orientation and time orientation in addition to g and Γ .
 - \Rightarrow Physical geometries parametrized by orbits of SO₀(1,3).
- Physical geometry: SO₀(1,3) reduction of the frame bundle & Γ.

What about the teleparallel affine connection?

- Coupling of the teleparallel affine connection Γ:
 - No direct coupling with matter (commonly considered consistent).
 - Possible coupling to metric through gravity (vanishes in TEGR).

What about the teleparallel affine connection?

- Coupling of the teleparallel affine connection Γ:
 - No direct coupling with matter (commonly considered consistent).
 - Possible coupling to metric through gravity (vanishes in TEGR).
- ⇒ Teleparallel connection becomes just (another) "dark" field:
 - Scalar fields / dark energy in scalar-tensor theories.
 - "Dark" vector fields, "dark" photons in generalized Proca theories.
 - Second metric in bimetric theories.

What about the teleparallel affine connection?

- Coupling of the teleparallel affine connection Γ:
 - No direct coupling with matter (commonly considered consistent).
 - Possible coupling to metric through gravity (vanishes in TEGR).
- ⇒ Teleparallel connection becomes just (another) "dark" field:
 - Scalar fields / dark energy in scalar-tensor theories.
 - "Dark" vector fields, "dark" photons in generalized Proca theories.
 - Second metric in bimetric theories.
- ⇒ The "usual rules" for playing with "dark" fields apply:
 - Find out which degrees of freedom couple to physical observables.
 - "Remnant symmetries" may yield gauge degrees of freedom.
 - Make sure physical degrees of freedom obey healthy evolution.
 - Pay attention to possible pathologies:
 - Is the evolution of physical degrees of freedom determined?
 - Are the physical degrees of freedom stable under perturbations?
 - Does the theory remain healthy under quantization?

What are the dynamical field variables in teleparallel gravity?
 Only a tetrad.

- What are the dynamical field variables in teleparallel gravity?
 - 1. Only a tetrad.
 - 2. A tetrad and a flat, antisymmetric spin connection.

- Problems encountered with choice of variables:
 - Does not reflect observed local Lorentz invariance.

- What are the dynamical field variables in teleparallel gravity?
 - Only a tetrad.
 - 2. A tetrad and a flat, antisymmetric spin connection.
 - 3. A metric and a flat, metric-compatible affine connection.
- Problems encountered with choice of variables:
 - Does not reflect observed local Lorentz invariance.
 - 2. Contains unphysical gauge degrees of freedom as variables.

- What are the dynamical field variables in teleparallel gravity?
 - Only a tetrad.
 - 2. A tetrad and a flat, antisymmetric spin connection.
 - 3. A metric and a flat, metric-compatible affine connection.
 - 4. A flat connection on a $SO_0(1,3)$ -reduction of the frame bundle.
- Problems encountered with choice of variables:
 - 1. Does not reflect observed local Lorentz invariance.
 - 2. Contains unphysical gauge degrees of freedom as variables.
 - 3. Does not contain information on orientation and time orientation.

- What are the dynamical field variables in teleparallel gravity?
 - Only a tetrad.
 - 2. A tetrad and a flat, antisymmetric spin connection.
 - 3. A metric and a flat, metric-compatible affine connection.
 - 4. A flat connection on a $SO_0(1,3)$ -reduction of the frame bundle.
- Problems encountered with choice of variables:
 - Does not reflect observed local Lorentz invariance.
 - 2. Contains unphysical gauge degrees of freedom as variables.
 - 3. Does not contain information on orientation and time orientation.
- Can we still use any of the other field variables?
- $4 \rightarrow 3$: If (time) orientation is fixed, metric and connection are sufficient.

- What are the dynamical field variables in teleparallel gravity?
 - 1. Only a tetrad.
 - 2. A tetrad and a flat, antisymmetric spin connection.
 - 3. A metric and a flat, metric-compatible affine connection.
 - 4. A flat connection on a $SO_0(1,3)$ -reduction of the frame bundle.
- Problems encountered with choice of variables:
 - 1. Does not reflect observed local Lorentz invariance.
 - 2. Contains unphysical gauge degrees of freedom as variables.
 - 3. Does not contain information on orientation and time orientation.
- Can we still use any of the other field variables?
- $4 \rightarrow 3$: If (time) orientation is fixed, metric and connection are sufficient.
- $3 \rightarrow$ 2: Possible to choose tetrad and spin connection as representatives.

- What are the dynamical field variables in teleparallel gravity?
 - 1. Only a tetrad.
 - 2. A tetrad and a flat, antisymmetric spin connection.
 - 3. A metric and a flat, metric-compatible affine connection.
 - 4. A flat connection on a $SO_0(1,3)$ -reduction of the frame bundle.
- Problems encountered with choice of variables:
 - 1. Does not reflect observed local Lorentz invariance.
 - 2. Contains unphysical gauge degrees of freedom as variables.
 - 3. Does not contain information on orientation and time orientation.
- Can we still use any of the other field variables?
- $4 \rightarrow 3$: If (time) orientation is fixed, metric and connection are sufficient.
- $3 \rightarrow 2$: Possible to choose tetrad and spin connection as representatives.
- 2 → 1: Locally possible to transform into Weitzenböck gauge.

- What are the dynamical field variables in teleparallel gravity?
 - 1. Only a tetrad.
 - 2. A tetrad and a flat, antisymmetric spin connection.
 - 3. A metric and a flat, metric-compatible affine connection.
 - 4. A flat connection on a $SO_0(1,3)$ -reduction of the frame bundle.
- Problems encountered with choice of variables:
 - 1. Does not reflect observed local Lorentz invariance.
 - 2. Contains unphysical gauge degrees of freedom as variables.
 - 3. Does not contain information on orientation and time orientation.
- Can we still use any of the other field variables?
- $4 \rightarrow 3$: If (time) orientation is fixed, metric and connection are sufficient.
- $3 \rightarrow$ 2: Possible to choose tetrad and spin connection as representatives.
- $2 \rightarrow$ 1: Locally possible to transform into Weitzenböck gauge.
- ⇒ Most fundamental variables found in geometric picture.

1. Start with the general linear frame bundle $\pi : GL(M) \to M$.

- 1. Start with the general linear frame bundle $\pi : GL(M) \to M$.
- 2. Metric reduces bundle to orthonormal frame bundle \tilde{P} .

- 1. Start with the general linear frame bundle $\pi : GL(M) \to M$.
- 2. Metric reduces bundle to orthonormal frame bundle \tilde{P} .
- 3. Orientation and time orientation select oriented frame bundle *P*.

- 1. Start with the general linear frame bundle $\pi : GL(M) \to M$.
- 2. Metric reduces bundle to orthonormal frame bundle \tilde{P} .
- 3. Orientation and time orientation select oriented frame bundle *P*.
- 4. Connection specifies horizontal directions $TP = VP \oplus HP$ in P.

Tetrads and spin structure

- How to obtain a spin structure from a tetrad e : M → P?
 - 1. Spin structure obtained from trivial bundle $Q = M \times SL(2, \mathbb{C})$.
 - 2. Use covering map $\sigma: SL(2,\mathbb{C}) \to SO_0(1,3)$.
 - 3. Define spin structure $\varphi : Q \rightarrow P$ as map

$$\varphi(\mathbf{X}, \mathbf{Z}) = \mathbf{e}(\mathbf{X}) \cdot \sigma(\mathbf{Z}). \tag{18}$$

Tetrads and spin structure

- How to obtain a spin structure from a tetrad e : M → P?
 - 1. Spin structure obtained from trivial bundle $Q = M \times SL(2, \mathbb{C})$.
 - 2. Use covering map $\sigma: SL(2,\mathbb{C}) \to SO_0(1,3)$.
 - 3. Define spin structure $\varphi : Q \rightarrow P$ as map

$$\varphi(\mathbf{X}, \mathbf{Z}) = \mathbf{e}(\mathbf{X}) \cdot \sigma(\mathbf{Z}). \tag{18}$$

- Do different tetrads e, e' define the same spin structure?
 - Consider non-simply connected manifold M.
 - Let $\gamma:[0,1]\to M$ with $\gamma(0)=\gamma(1)$ non-contractible.
 - Let $\Lambda : M \to SO_0(1,3)$ such that $\Lambda \circ \gamma$ has odd winding.
 - Tetrads $e = e' \cdot \Lambda$ define spin structures φ, φ' .
 - Assume existence of bundle isomorphism $\mu: Q \to Q$, $\varphi = \varphi' \circ \mu$.
 - \Rightarrow Curve connects antipodes: $\mu(\gamma(1), 1) = -\mu(\gamma(0), 1)$.
 - $\oint \text{Contradicts } \gamma(0) = \gamma(1).$
 - \Rightarrow Spin structures φ, φ' are inequivalent.

- Clash of two notions of orthonormal frames:
 - 1. Tetrad $e: M \rightarrow P$ solving teleparallel field equation.
 - 2. Observer frame $\tilde{e} : \mathbb{R} \to \gamma^* P$ along trajectory γ .

- Clash of two notions of orthonormal frames:
 - 1. Tetrad $e: M \rightarrow P$ solving teleparallel field equation.
 - 2. Observer frame $\tilde{e}: \mathbb{R} \to \gamma^* P$ along trajectory γ .
- Parallel transport properties of frames¹:

$$0 = \dot{\gamma}^{\mu} (\partial_{\mu} \tilde{\mathbf{e}}_{\mathbf{a}}^{\nu} + \mathring{\Gamma}^{\nu}{}_{\rho\mu} \tilde{\mathbf{e}}_{\mathbf{a}}^{\rho}) = \dot{\gamma}^{\mu} (\partial_{\mu} \mathbf{e}_{\mathbf{a}}^{\nu} - \omega^{b}{}_{a\mu} \mathbf{e}_{b}^{\nu} + \Gamma^{\nu}{}_{\rho\mu} \mathbf{e}_{\mathbf{a}}^{\rho}). \tag{19}$$

¹Dynamical frame; see talk by Philipp Höhn.

- Clash of two notions of orthonormal frames:
 - 1. Tetrad $e: M \rightarrow P$ solving teleparallel field equation.
 - 2. Observer frame $\tilde{e}: \mathbb{R} \to \gamma^* P$ along trajectory γ .
- Parallel transport properties of frames in Weitzenböck gauge¹:

$$0 = \dot{\gamma}^{\mu} (\partial_{\mu} \tilde{\mathbf{e}}_{\mathbf{a}}^{\nu} + \mathring{\Gamma}^{\nu}_{\rho\mu} \tilde{\mathbf{e}}_{\mathbf{a}}^{\rho}) = \dot{\gamma}^{\mu} (\partial_{\mu} \mathbf{e}_{\mathbf{a}}^{\nu} + \Gamma^{\nu}_{\rho\mu} \mathbf{e}_{\mathbf{a}}^{\rho}). \tag{19}$$

- Possible to identify teleparallel as observer frames?
 - 1. *e* forms congruence, transported with flat connection.
 - 2. \tilde{e} only defined on worldline, no congruences.

¹Dynamical frame; see talk by Philipp Höhn.

- Clash of two notions of orthonormal frames:
 - 1. Tetrad $e: M \rightarrow P$ solving teleparallel field equation.
 - 2. Observer frame $\tilde{e}: \mathbb{R} \to \gamma^* P$ along trajectory γ .
- Parallel transport properties of frames in Weitzenböck gauge¹:

$$0 = \dot{\gamma}^{\mu} (\partial_{\mu} \tilde{\mathbf{e}}_{\mathbf{a}}^{\nu} + \mathring{\Gamma}^{\nu}_{\rho\mu} \tilde{\mathbf{e}}_{\mathbf{a}}^{\rho}) = \dot{\gamma}^{\mu} (\partial_{\mu} \mathbf{e}_{\mathbf{a}}^{\nu} + \Gamma^{\nu}_{\rho\mu} \mathbf{e}_{\mathbf{a}}^{\rho}). \tag{19}$$

- Possible to identify teleparallel as observer frames?
 - 1. *e* forms congruence, transported with flat connection.
 - 2. \tilde{e} only defined on worldline, no congruences.
- e and \tilde{e} only agree up to local Lorentz transformation.

¹Dynamical frame; see talk by Philipp Höhn.

- Clash of two notions of orthonormal frames:
 - 1. Tetrad $e: M \rightarrow P$ solving teleparallel field equation.
 - 2. Observer frame $\tilde{e}: \mathbb{R} \to \gamma^* P$ along trajectory γ .
- Parallel transport properties of frames in Weitzenböck gauge¹:

$$0 = \dot{\gamma}^{\mu} (\partial_{\mu} \tilde{\mathbf{e}}_{\mathbf{a}}^{\ \nu} + \mathring{\Gamma}^{\nu}_{\ \rho\mu} \tilde{\mathbf{e}}_{\mathbf{a}}^{\ \rho}) = \dot{\gamma}^{\mu} (\partial_{\mu} \mathbf{e}_{\mathbf{a}}^{\ \nu} + \Gamma^{\nu}_{\ \rho\mu} \mathbf{e}_{\mathbf{a}}^{\ \rho}). \tag{19}$$

- Possible to identify teleparallel as observer frames?
 - 1. *e* forms congruence, transported with flat connection.
 - 2. \tilde{e} only defined on worldline, no congruences.
- e and \tilde{e} only agree up to local Lorentz transformation.
- ⇒ Observer geometry defined by metric: LLI holds.

¹Dynamical frame; see talk by Philipp Höhn.

Split Levi-Civita connection coefficients:

$$\overset{\circ}{\Gamma}{}^{\mu}{}_{\nu\rho} = \Gamma^{\mu}{}_{\nu\rho} - K^{\mu}{}_{\nu\rho} \,. \tag{20}$$

Split Levi-Civita connection coefficients:

$$\overset{\circ}{\Gamma}{}^{\mu}{}_{\nu\rho} = \Gamma^{\mu}{}_{\nu\rho} - K^{\mu}{}_{\nu\rho} \,. \tag{20}$$

⇒ Possible to rewrite geodesic equation:

$$\ddot{\mathbf{x}}^{\mu} + \Gamma^{\mu}{}_{\nu\rho}\dot{\mathbf{x}}^{\nu}\dot{\mathbf{x}}^{\rho} = K^{\mu}{}_{\nu\rho}\dot{\mathbf{x}}^{\nu}\dot{\mathbf{x}}^{\rho}. \tag{21}$$

Split Levi-Civita connection coefficients:

$$\mathring{\Gamma}^{\mu}{}_{\nu\rho} = \Gamma^{\mu}{}_{\nu\rho} - K^{\mu}{}_{\nu\rho} \,. \tag{20}$$

⇒ Possible to rewrite geodesic equation:

$$\ddot{\mathbf{x}}^{\mu} + \Gamma^{\mu}{}_{\nu\rho}\dot{\mathbf{x}}^{\nu}\dot{\mathbf{x}}^{\rho} = K^{\mu}{}_{\nu\rho}\dot{\mathbf{x}}^{\nu}\dot{\mathbf{x}}^{\rho} \,. \tag{21}$$

• Interpretation: "Separate gravity $K^{\mu}_{\nu\rho}$ from inertia $\Gamma^{\mu}_{\nu\rho}$."

Split Levi-Civita connection coefficients:

$$\mathring{\Gamma}^{\mu}{}_{\nu\rho} = \Gamma^{\mu}{}_{\nu\rho} - K^{\mu}{}_{\nu\rho} \,. \tag{20}$$

⇒ Possible to rewrite geodesic equation:

$$\ddot{\mathbf{x}}^{\mu} + \Gamma^{\mu}{}_{\nu\rho}\dot{\mathbf{x}}^{\nu}\dot{\mathbf{x}}^{\rho} = \mathbf{K}^{\mu}{}_{\nu\rho}\dot{\mathbf{x}}^{\nu}\dot{\mathbf{x}}^{\rho} \,. \tag{21}$$

- Interpretation: "Separate gravity $K^{\mu}_{\nu\rho}$ from inertia $\Gamma^{\mu}_{\nu\rho}$."
- Fully equivalent to standard form (teleparallel connection cancels):

$$\ddot{x}^{\mu} + \mathring{\Gamma}^{\mu}{}_{\nu\rho}\dot{x}^{\nu}\dot{x}^{\rho} = 0. \tag{22}$$

Split Levi-Civita connection coefficients:

$$\overset{\circ}{\Gamma}{}^{\mu}{}_{\nu\rho} = \Gamma^{\mu}{}_{\nu\rho} - K^{\mu}{}_{\nu\rho} \,. \tag{20}$$

⇒ Possible to rewrite geodesic equation:

$$\ddot{\mathbf{x}}^{\mu} + \Gamma^{\mu}_{\nu\rho}\dot{\mathbf{x}}^{\nu}\dot{\mathbf{x}}^{\rho} = K^{\mu}_{\nu\rho}\dot{\mathbf{x}}^{\nu}\dot{\mathbf{x}}^{\rho}. \tag{21}$$

- Interpretation: "Separate gravity $K^{\mu}_{\nu\rho}$ from inertia $\Gamma^{\mu}_{\nu\rho}$."
- Fully equivalent to standard form (teleparallel connection cancels):

$$\ddot{x}^{\mu} + \mathring{\Gamma}^{\mu}{}_{\nu\rho}\dot{x}^{\nu}\dot{x}^{\rho} = 0. \tag{22}$$

• Matter coupled to metric only insensitive to $\Gamma^{\mu}_{\nu\rho}$.

Split Levi-Civita connection coefficients:

$$\overset{\circ}{\Gamma}{}^{\mu}{}_{\nu\rho} = \Gamma^{\mu}{}_{\nu\rho} - K^{\mu}{}_{\nu\rho} \,. \tag{20}$$

⇒ Possible to rewrite geodesic equation:

$$\ddot{\mathbf{x}}^{\mu} + \Gamma^{\mu}{}_{\nu\rho}\dot{\mathbf{x}}^{\nu}\dot{\mathbf{x}}^{\rho} = K^{\mu}{}_{\nu\rho}\dot{\mathbf{x}}^{\nu}\dot{\mathbf{x}}^{\rho} \,. \tag{21}$$

- Interpretation: "Separate gravity $K^{\mu}_{\nu\rho}$ from inertia $\Gamma^{\mu}_{\nu\rho}$."
- Fully equivalent to standard form (teleparallel connection cancels):

$$\ddot{x}^{\mu} + \mathring{\Gamma}^{\mu}{}_{\nu\rho}\dot{x}^{\nu}\dot{x}^{\rho} = 0. \tag{22}$$

- Matter coupled to metric only insensitive to $\Gamma^{\mu}_{\nu\rho}$.
- Connection appears only as "dark" field coupling to gravity:

$$S = S_{g}[g, \Gamma] + S_{m}[g, \chi]. \tag{23}$$

LLI violation in post-Newtonian limit?

- Study teleparallel gravity theories:
 - 1. New General Relativity [Ualikhanova, MH '19]
 - 2. Scalar-torsion gravity [Emtsova, MH '19]
 - 3. Generalized scalar-torsion gravity [Flathmann, MH '19]

LLI violation in post-Newtonian limit?

- Study teleparallel gravity theories:
 - 1. New General Relativity [Ualikhanova, MH '19]
 - 2. Scalar-torsion gravity [Emtsova, MH '19]
 - 3. Generalized scalar-torsion gravity [Flathmann, MH '19]
- PPN parameters:
 - $\beta \approx \gamma \approx$ 1: bounds on theory parameters.
 - $\xi = \alpha_1 = \alpha_2 = \alpha_3 = \zeta_1 = \zeta_2 = \zeta_3 = \zeta_4 = 0.$

LLI violation in post-Newtonian limit?

- Study teleparallel gravity theories:
 - 1. New General Relativity [Ualikhanova, MH '19]
 - 2. Scalar-torsion gravity [Emtsova, MH '19]
 - 3. Generalized scalar-torsion gravity [Flathmann, MH '19]
- PPN parameters:
 - $\beta \approx \gamma \approx$ 1: bounds on theory parameters.
 - $\bullet \ \xi = \alpha_1 = \alpha_2 = \alpha_3 = \zeta_1 = \zeta_2 = \zeta_3 = \zeta_4 = 0.$
- ⇒ No violation of LLI.

Outline

- Lorentz covariance and invariance
- Teleparallel gravity
- Finsler gravity
- 4 Conclusion

Proper time along a curve in Lorentzian spacetime:

$$\tau = \int_{t_1}^{t_2} \sqrt{-g_{ab}(x(t))\dot{x}^a(t)\dot{x}^b(t)} dt.$$
 (24)

Proper time along a curve in Lorentzian spacetime:

$$\tau = \int_{t_1}^{t_2} \sqrt{-g_{ab}(x(t))\dot{x}^a(t)\dot{x}^b(t)} dt.$$
 (24)

Finsler geometry: use a more general length functional:

$$\tau = \int_{t_1}^{t_2} F(x(t), \dot{x}(t)) dt.$$
 (25)

Proper time along a curve in Lorentzian spacetime:

$$\tau = \int_{t_1}^{t_2} \sqrt{-g_{ab}(x(t))\dot{x}^a(t)\dot{x}^b(t)} dt.$$
 (24)

Finsler geometry: use a more general length functional:

$$\tau = \int_{t_1}^{t_2} F(x(t), \dot{x}(t)) dt.$$
 (25)

• Finsler function $F: TM \to \mathbb{R}^+$.

Proper time along a curve in Lorentzian spacetime:

$$\tau = \int_{t_1}^{t_2} \sqrt{-g_{ab}(x(t))\dot{x}^a(t)\dot{x}^b(t)} dt.$$
 (24)

Finsler geometry: use a more general length functional:

$$\tau = \int_{t_1}^{t_2} F(x(t), \dot{x}(t)) dt.$$
 (25)

- Finsler function $F: TM \to \mathbb{R}^+$.
- Parametrization invariance requires homogeneity:

$$F(x, \lambda y) = \lambda F(x, y) \quad \forall \lambda > 0.$$
 (26)

Proper time along a curve in Lorentzian spacetime:

$$\tau = \int_{t_1}^{t_2} \sqrt{-g_{ab}(x(t))\dot{x}^a(t)\dot{x}^b(t)} dt.$$
 (24)

Finsler geometry: use a more general length functional:

$$\tau = \int_{t_1}^{t_2} F(x(t), \dot{x}(t)) dt.$$
 (25)

- Finsler function $F: TM \to \mathbb{R}^+$.
- Parametrization invariance requires homogeneity:

$$F(x, \lambda y) = \lambda F(x, y) \quad \forall \lambda > 0.$$
 (26)

Cartan non-linear connection:

$$N^{a}_{b} = \frac{1}{4} \bar{\partial}_{b} \left[g^{Fac} (y^{d} \partial_{d} \bar{\partial}_{c} F^{2} - \partial_{c} F^{2}) \right]. \tag{27}$$

Motion of test particles

Finsler geodesic: extremal of length functional:

$$\delta \int_{t_1}^{t_2} F(x(t), \dot{x}(t)) dt = 0.$$
 (28)

Motion of test particles

Finsler geodesic: extremal of length functional:

$$\delta \int_{t_1}^{t_2} F(x(t), \dot{x}(t)) dt = 0.$$
 (28)

 \Rightarrow Geodesic equation for curve $x(\tau)$ on spacetime M:

$$\ddot{x}^a + N^a{}_b(x, \dot{x})\dot{x}^b = 0. {(29)}$$

Finsler geodesic: extremal of length functional:

$$\delta \int_{t_1}^{t_2} F(x(t), \dot{x}(t)) dt = 0.$$
 (28)

 \Rightarrow Geodesic equation for curve $x(\tau)$ on spacetime M:

$$\ddot{x}^a + N^a{}_b(x, \dot{x})\dot{x}^b = 0. (29)$$

• Finsler Lagrangian²: $L(x, \dot{x}) = F^2$.

²See talk by Volker Perlick.

Finsler geodesic: extremal of length functional:

$$\delta \int_{t_1}^{t_2} F(x(t), \dot{x}(t)) dt = 0.$$
 (28)

 \Rightarrow Geodesic equation for curve $x(\tau)$ on spacetime M:

$$\ddot{x}^a + N^a{}_b(x, \dot{x})\dot{x}^b = 0. (29)$$

- Finsler Lagrangian²: $L(x, \dot{x}) = F^2$.
- Legendre transformation³: Finsler Hamiltonian H(x, p).

²See talk by Volker Perlick.

³See talk by Dennis Rätzel.

Finsler geodesic: extremal of length functional:

$$\delta \int_{t_1}^{t_2} F(x(t), \dot{x}(t)) dt = 0.$$
 (28)

 \Rightarrow Geodesic equation for curve $x(\tau)$ on spacetime M:

$$\ddot{x}^a + N^a{}_b(x, \dot{x})\dot{x}^b = 0. {(29)}$$

- Finsler Lagrangian²: $L(x, \dot{x}) = F^2$.
- Legendre transformation³: Finsler Hamiltonian H(x, p).
- Modified dispersion relation:

$$H(x,p) = -m^2. (30)$$

²See talk by Volker Perlick.

³See talk by Dennis Rätzel.

Finsler geodesic: extremal of length functional:

$$\delta \int_{t_1}^{t_2} F(x(t), \dot{x}(t)) dt = 0.$$
 (28)

 \Rightarrow Geodesic equation for curve $x(\tau)$ on spacetime M:

$$\ddot{x}^a + N^a{}_b(x, \dot{x})\dot{x}^b = 0. {(29)}$$

- Finsler Lagrangian²: $L(x, \dot{x}) = F^2$.
- Legendre transformation³: Finsler Hamiltonian H(x, p).
- Modified dispersion relation:

$$H(x,p) = -m^2. (30)$$

Hamilton equations of motion:

$$\dot{p}_{\mu} = -\partial_{\mu}H, \quad \dot{x}^{\mu} = \bar{\partial}^{\mu}H. \tag{31}$$

²See talk by Volker Perlick.

³See talk by Dennis Rätzel.

General spherically symmetric MDR:

$$-m^2 = H(t, r, p_t, p_r, w), \quad w^2 = p_{\vartheta}^2 + \frac{p_{\varphi}^2}{\sin^2 \vartheta}.$$
 (32)

General spherically symmetric MDR:

$$-m^2 = H(r, p_t, p_r, w), \quad w^2 = p_{\vartheta}^2 + \frac{p_{\varphi}^2}{\sin^2 \vartheta}.$$
 (32)

Static spherically symmetric: energy conservation

$$\dot{p}_t = -\partial_t H = 0 \quad \Rightarrow \quad p_t = \mathcal{E} = \text{const}.$$
 (33)

General spherically symmetric MDR:

$$-m^2 = H(r, p_t, p_r, w), \quad w^2 = p_{\vartheta}^2 + \frac{p_{\varphi}^2}{\sin^2 \vartheta}.$$
 (32)

Static spherically symmetric: energy conservation

$$\dot{p}_t = -\partial_t H = 0 \quad \Rightarrow \quad p_t = \mathcal{E} = \text{const}.$$
 (33)

• Polar angle:

$$\dot{\vartheta} = \bar{\partial}^{\vartheta} H = \frac{\partial H}{\partial w} \frac{1}{2w} \bar{\partial}^{\vartheta} w^{2} = \frac{\partial H}{\partial w} \frac{1}{w} p_{\vartheta}, \qquad (34a)$$

$$\dot{p}_{\vartheta} = -\partial_{\vartheta} H = -\frac{\partial H}{\partial w} \frac{1}{2w} \partial_{\vartheta} w^{2} = \frac{\partial H}{\partial w} \frac{1}{w} \frac{\cos \vartheta}{\sin^{3} \vartheta} p_{\varphi}^{2}. \tag{34b}$$

General spherically symmetric MDR:

$$-m^2 = H(r, p_t, p_r, w), \quad w^2 = p_{\vartheta}^2 + \frac{p_{\varphi}^2}{\sin^2 \vartheta}.$$
 (32)

Static spherically symmetric: energy conservation

$$\dot{p}_t = -\partial_t H = 0 \quad \Rightarrow \quad p_t = \mathcal{E} = \text{const}.$$
 (33)

• Polar angle:

$$\dot{\vartheta} = \bar{\partial}^{\vartheta} H = \frac{\partial H}{\partial w} \frac{1}{2w} \bar{\partial}^{\vartheta} w^{2} = \frac{\partial H}{\partial w} \frac{1}{w} p_{\vartheta}, \qquad (34a)$$

$$\dot{p}_{\vartheta} = -\partial_{\vartheta} H = -\frac{\partial H}{\partial w} \frac{1}{2w} \partial_{\vartheta} w^{2} = \frac{\partial H}{\partial w} \frac{1}{w} \frac{\cos \vartheta}{\sin^{3} \vartheta} p_{\varphi}^{2}. \tag{34b}$$

 \Rightarrow Planar motion in equatorial plane: $\theta = \frac{\pi}{2}$, $p_{\theta} = 0$.

General spherically symmetric MDR:

$$-m^2 = H(r, p_t, p_r, w), \quad w^2 = p_{\vartheta}^2 + \frac{p_{\varphi}^2}{\sin^2 \vartheta}.$$
 (32)

Static spherically symmetric: energy conservation

$$\dot{p}_t = -\partial_t H = 0 \quad \Rightarrow \quad p_t = \mathcal{E} = \text{const}.$$
 (33)

Polar angle:

$$\dot{\vartheta} = \bar{\partial}^{\vartheta} H = \frac{\partial H}{\partial w} \frac{1}{2w} \bar{\partial}^{\vartheta} w^{2} = \frac{\partial H}{\partial w} \frac{1}{w} p_{\vartheta}, \qquad (34a)$$

$$\dot{p}_{\vartheta} = -\partial_{\vartheta} H = -\frac{\partial H}{\partial w} \frac{1}{2w} \partial_{\vartheta} w^{2} = \frac{\partial H}{\partial w} \frac{1}{w} \frac{\cos \vartheta}{\sin^{3} \vartheta} p_{\varphi}^{2}. \tag{34b}$$

- \Rightarrow Planar motion in equatorial plane: $\vartheta = \frac{\pi}{2}$, $p_{\vartheta} = 0$.
 - Angular momentum conservation:

$$\dot{p}_{\varphi} = -\partial_{\varphi}H = 0 \quad \Rightarrow \quad w = p_{\varphi} = \mathcal{L} = \text{const}.$$
 (35)

Example: κ -Poincarè dispersion relation

• General form of κ -Poincarè dispersion relation:

$$H(x,p) = -\frac{2}{\ell^2} \sinh^2 \left(\frac{\ell}{2} Z^{\mu} p_{\mu} \right) + \frac{1}{2} e^{\ell Z^{\mu} p_{\mu}} [g^{\mu\nu} p_{\mu} p_{\nu} + (Z^{\mu} p_{\mu})^2]. \tag{36}$$

Example: κ -Poincarè dispersion relation

• General form of κ -Poincarè dispersion relation:

$$H(x,p) = -\frac{2}{\ell^2} \sinh^2 \left(\frac{\ell}{2} Z^{\mu} p_{\mu} \right) + \frac{1}{2} e^{\ell Z^{\mu} p_{\mu}} [g^{\mu\nu} p_{\mu} p_{\nu} + (Z^{\mu} p_{\mu})^2].$$
(36)

- Ingredients and properties:
 - Lorentzian metric $g_{\mu\nu}$.
 - Unit timelike vector field Z^{μ} : $g_{\mu\nu}Z^{\mu}Z^{\nu}=-1$.
 - \circ Planck length ℓ as perturbation parameter.
 - $\circ~H o g^{\mu
 u} p_{\mu} p_{
 u} ext{ for } \ell o 0.$

Example: κ -Poincarè dispersion relation

• General form of κ -Poincarè dispersion relation:

$$H(x,p) = -\frac{2}{\ell^2} \sinh^2 \left(\frac{\ell}{2} Z^{\mu} p_{\mu} \right) + \frac{1}{2} e^{\ell Z^{\mu} p_{\mu}} [g^{\mu\nu} p_{\mu} p_{\nu} + (Z^{\mu} p_{\mu})^2]. \tag{36}$$

- Ingredients and properties:
 - Lorentzian metric $g_{\mu\nu}$.
 - Unit timelike vector field Z^{μ} : $g_{\mu\nu}Z^{\mu}Z^{\nu}=-1$.
 - $\circ~$ Planck length ℓ as perturbation parameter.
 - $\circ~H o g^{\mu\nu} p_{\mu} p_{\nu} ext{ for } \ell o 0.$
- Spherically symmetric dispersion relation:

$$H = -\frac{2}{\ell^2} \sinh^2 \left[\frac{\ell}{2} (cp_t + dp_r) \right]^2$$

$$+ \frac{1}{2} e^{\ell(cp_t + dp_r)} \left[(c^2 - a)p_t^2 + 2cdp_r p_t + (d^2 + b)p_r^2 + \frac{w^2}{r^2} \right]. \quad (37)$$

Circular orbits

- Method of calculation:
 - Circular orbit characterized by $\dot{r} = 0$.
 - $\Rightarrow \bar{\partial}^r H = 0$ becomes algebraic equation for $p_r = p_r(r, \mathcal{E}, \mathcal{L})$.
 - \Rightarrow Determine energy $\mathcal{E} = \mathcal{E}(r, \mathcal{L})$ from dispersion relation $H = -m^2$.
 - \Rightarrow Determine radius $r = r(\mathcal{L})$ from $\dot{p}_r = 0 \Rightarrow \partial_r H = 0$.

Circular orbits

- Method of calculation:
 - Circular orbit characterized by $\dot{r} = 0$.
 - $\Rightarrow \bar{\partial}^r H = 0$ becomes algebraic equation for $p_r = p_r(r, \mathcal{E}, \mathcal{L})$.
 - \Rightarrow Determine energy $\mathcal{E} = \mathcal{E}(r, \mathcal{L})$ from dispersion relation $H = -m^2$.
 - \Rightarrow Determine radius $r = r(\mathcal{L})$ from $\dot{p}_r = 0 \Rightarrow \partial_r H = 0$.
- Result for κ-Poincarè:

$$r = \frac{3}{2}r_s + \frac{\ell \mathcal{L}}{6} + \mathcal{O}(\ell^2)$$
. (38)

Shapiro delay

- Method of calculation:
 - Emitter / receiver at r_e , closest encounter at r_c , mirror at r_m .
 - General formula of Shapiro delay:

$$\Delta T = \int_{r_e}^{r_c} \frac{dt}{dr} \Big|_{in}^{<0} dr + \int_{r_c}^{r_m} \frac{dt}{dr} \Big|_{out}^{>0} dr + \int_{r_m}^{r_c} \frac{dt}{dr} \Big|_{in}^{<0} dr + \int_{r_c}^{r_e} \frac{dt}{dr} \Big|_{out}^{>0} dr. \quad (39)$$

- At $r = r_c$: $\dot{r} = 0$ relates $\mathcal{E}, \mathcal{L}, r_c, p_{rc}$ by $\bar{\partial}^r H = 0$ and $H = -m^2$.
- Parametrize trajectory by r and calculate

$$\frac{\mathrm{d}t}{\mathrm{d}r} = \frac{\dot{t}}{\dot{r}} = \frac{\bar{\partial}^t H}{\bar{\partial}^r H}.$$
 (40)

Shapiro delay

- Method of calculation:
 - Emitter / receiver at r_e , closest encounter at r_c , mirror at r_m .
 - General formula of Shapiro delay:

$$\Delta T = \int_{r_e}^{r_c} \frac{dt}{dr} \Big|_{in}^{<0} dr + \int_{r_c}^{r_m} \frac{dt}{dr} \Big|_{out}^{>0} dr + \int_{r_m}^{r_c} \frac{dt}{dr} \Big|_{in}^{<0} dr + \int_{r_c}^{r_e} \frac{dt}{dr} \Big|_{out}^{>0} dr. \quad (39)$$

- At $r = r_c$: $\dot{r} = 0$ relates $\mathcal{E}, \mathcal{L}, r_c, p_{rc}$ by $\bar{\partial}^r H = 0$ and $H = -m^2$.
- Parametrize trajectory by r and calculate

$$\frac{\mathrm{d}t}{\mathrm{d}r} = \frac{\dot{t}}{\dot{r}} = \frac{\bar{\partial}^t H}{\bar{\partial}^r H}.$$
 (40)

Result for κ-Poincarè:

$$\Delta T(r) \sim r_{s}e^{-\ell \mathcal{E}} \left[\frac{\ell \mathcal{E}}{2(e^{\ell \mathcal{E}} - 1)} \sqrt{\frac{r - r_{c}}{r + r_{c}}} + \frac{(2 - \ell \mathcal{E})}{2} \ln \left(\frac{r + \sqrt{r^{2} - r_{c}^{2}}}{r_{c}} \right) \right]$$
(41)

Light deflection

- Method of calculation:
 - Emitter / receiver at $r \to \infty$, closest encounter at r_c .
 - Calculate deviation from straight line $\Delta \varphi = \pi$.
 - General formula of deflection angle:

$$\Delta\varphi = \int_{\infty}^{r_c} \frac{\mathrm{d}\varphi}{\mathrm{d}r} \bigg|_{\mathrm{in}}^{<0} \mathrm{d}r + \int_{r_c}^{\infty} \frac{\mathrm{d}\varphi}{\mathrm{d}r} \bigg|_{\mathrm{out}}^{>0} \mathrm{d}r - \pi \,. \tag{42}$$

- At $r = r_c$: $\dot{r} = 0$ relates $\mathcal{E}, \mathcal{L}, r_c, p_{rc}$ by $\bar{\partial}^r H = 0$ and $H = -m^2$.
- Parametrize trajectory by r and calculate

$$\frac{\mathrm{d}t}{\mathrm{d}r} = \frac{\dot{t}}{\dot{r}} = \frac{\bar{\partial}^t H}{\bar{\partial}^r H}.$$
 (43)

Light deflection

- Method of calculation:
 - Emitter / receiver at $r \to \infty$, closest encounter at r_c .
 - Calculate deviation from straight line $\Delta \varphi = \pi$.
 - General formula of deflection angle:

$$\Delta\varphi = \int_{\infty}^{r_c} \frac{d\varphi}{dr} \bigg|_{\text{in}}^{<0} dr + \int_{r_c}^{\infty} \frac{d\varphi}{dr} \bigg|_{\text{out}}^{>0} dr - \pi.$$
 (42)

- At $r = r_c$: $\dot{r} = 0$ relates $\mathcal{E}, \mathcal{L}, r_c, p_{rc}$ by $\bar{\partial}^r H = 0$ and $H = -m^2$.
- Parametrize trajectory by r and calculate

$$\frac{\mathrm{d}t}{\mathrm{d}r} = \frac{\dot{t}}{\dot{r}} = \frac{\bar{\partial}^t H}{\bar{\partial}^r H}.$$
 (43)

Result for κ-Poincarè:

$$\Delta \varphi = \frac{r_s}{r_c} \frac{e^{\ell \mathcal{E}} - 1 + \ell \mathcal{E}}{e^{\ell \mathcal{E}} - 1}.$$
 (44)

Outline

- Lorentz covariance and invariance
- Teleparallel gravity
- Finsler gravity
- Conclusion

Conclusion

- Possible signatures of local Lorentz invariance violation:
 - Dependence of experiments on absolute velocity.
 - Modified dispersion relation.
 - Post-Newtonian parameters $\alpha_1, \alpha_2, \alpha_3$.

Conclusion

- Possible signatures of local Lorentz invariance violation:
 - Dependence of experiments on absolute velocity.
 - Modified dispersion relation.
 - Post-Newtonian parameters $\alpha_1, \alpha_2, \alpha_3$.
- Teleparallel gravity:
 - Formulated via tetrad or metric and connection.
 - Matter couples to metric only.
 - No observable violation of LLI.

Conclusion

- Possible signatures of local Lorentz invariance violation:
 - Dependence of experiments on absolute velocity.
 - Modified dispersion relation.
 - Post-Newtonian parameters $\alpha_1, \alpha_2, \alpha_3$.
- Teleparallel gravity:
 - Formulated via tetrad or metric and connection.
 - Matter couples to metric only.
 - No observable violation of LLI.
- Finsler-based gravity theories:
 - Based on generalized length functional.
 - Formulation as modified dispersion relation.
 - Various effects to search for LLI violation.

Extra: the associated bundle

Extra: the many faces of connections

