Searching for quantum gravity with gas dynamics near black holes

Manuel Hohmann

Laboratory of Theoretical Physics, Institute of Physics, University of Tartu Center of Excellence "Fundamental Universe"

Tuorla-Tartu Meeting - 7. May 2024

- How can we quantize gravity?
 - $\circ~$ Use same methods as in QFT \rightsquigarrow doesn't work ${\not {\! / }}.$

- How can we quantize gravity?
 - Use same methods as in QFT \rightsquigarrow doesn't work \oint .
 - $\circ~$ Guess a complete theory of quantum gravity \rightsquigarrow hard ${\not {}_{\sharp}}$.

- How can we quantize gravity?
 - $\circ~$ Use same methods as in QFT \rightsquigarrow doesn't work ${\it \sc j}$.
 - Guess a complete theory of quantum gravity \rightsquigarrow hard \oint .
 - Assume gravity is classical \rightsquigarrow leaves unsolved problems \oint .

- How can we quantize gravity?
 - Use same methods as in QFT \rightsquigarrow doesn't work \oint .
 - Guess a complete theory of quantum gravity \rightsquigarrow hard \oint .
 - $\circ~$ Assume gravity is classical \leadsto leaves unsolved problems ${\not {}_{2}}$.
 - $\circ~$ Study effective quantum gravity model phenomenology \rightsquigarrow maybe feasible (\checkmark).

- How can we quantize gravity?
 - Use same methods as in QFT \rightsquigarrow doesn't work \oint .
 - Guess a complete theory of quantum gravity \rightsquigarrow hard \oint .
 - $\circ~$ Assume gravity is classical \leadsto leaves unsolved problems ${\not {}_{2}}$.
 - Study effective quantum gravity model phenomenology \rightsquigarrow maybe feasible (\checkmark).
- How can we study effective gravity models?
 - Don't care (too much) about fundamental laws of gravity.

- How can we quantize gravity?
 - Use same methods as in QFT \rightsquigarrow doesn't work \oint .
 - Guess a complete theory of quantum gravity \rightsquigarrow hard \oint .
 - $\circ~$ Assume gravity is classical \leadsto leaves unsolved problems ${\not {}_{2}}$.
 - Study effective quantum gravity model phenomenology \rightsquigarrow maybe feasible (\checkmark).
- How can we study effective gravity models?
 - Don't care (too much) about fundamental laws of gravity.
 - Assume that general relativity (GR) is almost correct.

- How can we quantize gravity?
 - $\circ~$ Use same methods as in QFT \leadsto doesn't work ${\not {}_{2}}$.
 - $\circ~$ Guess a complete theory of quantum gravity \rightsquigarrow hard ${\not {}_{\sharp}}$.
 - Assume gravity is classical \rightsquigarrow leaves unsolved problems \oint .
 - Study effective quantum gravity model phenomenology \rightsquigarrow maybe feasible (\checkmark).
- How can we study effective gravity models?
 - Don't care (too much) about fundamental laws of gravity.
 - Assume that general relativity (GR) is almost correct.
 - Think of possible sources of quantum corrections to GR.

- How can we quantize gravity?
 - $\circ~$ Use same methods as in QFT \leadsto doesn't work ${\not {}_{2}}$.
 - $\circ~$ Guess a complete theory of quantum gravity \rightsquigarrow hard ${\not {}_{\sharp}}$.
 - Assume gravity is classical \rightsquigarrow leaves unsolved problems \oint .
 - Study effective quantum gravity model phenomenology \rightsquigarrow maybe feasible (\checkmark).
- How can we study effective gravity models?
 - o Don't care (too much) about fundamental laws of gravity.
 - Assume that general relativity (GR) is almost correct.
 - Think of possible sources of quantum corrections to GR.
 - Study the phenomenology of quantum corrections.

- How can we quantize gravity?
 - Use same methods as in QFT \rightsquigarrow doesn't work \oint .
 - Guess a complete theory of quantum gravity \rightsquigarrow hard \oint .
 - Assume gravity is classical \rightsquigarrow leaves unsolved problems \oint .
 - Study effective quantum gravity model phenomenology \rightsquigarrow maybe feasible (\checkmark).
- How can we study effective gravity models?
 - o Don't care (too much) about fundamental laws of gravity.
 - Assume that general relativity (GR) is almost correct.
 - Think of possible sources of quantum corrections to GR.
 - Study the phenomenology of quantum corrections.
- How can we study quantum gravity phenomenology?
 - Find physical system which could amplify deviations from general relativity.

- How can we quantize gravity?
 - Use same methods as in QFT \rightsquigarrow doesn't work \oint .
 - Guess a complete theory of quantum gravity \rightsquigarrow hard \oint .
 - Assume gravity is classical \rightsquigarrow leaves unsolved problems \oint .
 - Study effective quantum gravity model phenomenology \rightsquigarrow maybe feasible (\checkmark).
- How can we study effective gravity models?
 - o Don't care (too much) about fundamental laws of gravity.
 - Assume that general relativity (GR) is almost correct.
 - Think of possible sources of quantum corrections to GR.
 - Study the phenomenology of quantum corrections.
- How can we study quantum gravity phenomenology?
 - Find physical system which could amplify deviations from general relativity.
 - Example: study compact system with very strong gravity.

- How can we quantize gravity?
 - Use same methods as in QFT \rightsquigarrow doesn't work \oint .
 - Guess a complete theory of quantum gravity \rightsquigarrow hard \oint .
 - Assume gravity is classical \rightsquigarrow leaves unsolved problems \oint .
 - Study effective quantum gravity model phenomenology \rightsquigarrow maybe feasible (\checkmark).
- How can we study effective gravity models?
 - o Don't care (too much) about fundamental laws of gravity.
 - Assume that general relativity (GR) is almost correct.
 - Think of possible sources of quantum corrections to GR.
 - Study the phenomenology of quantum corrections.
- How can we study quantum gravity phenomenology?
 - Find physical system which could amplify deviations from general relativity.
 - Example: study compact system with very strong gravity.
 - Think of possible observables in the chosen system.

- How can we quantize gravity?
 - $\circ~$ Use same methods as in QFT \leadsto doesn't work ${\not {}_{2}}$.
 - Guess a complete theory of quantum gravity \rightsquigarrow hard \oint .
 - Assume gravity is classical \rightsquigarrow leaves unsolved problems \oint .
 - Study effective quantum gravity model phenomenology \rightsquigarrow maybe feasible (\checkmark).
- How can we study effective gravity models?
 - o Don't care (too much) about fundamental laws of gravity.
 - Assume that general relativity (GR) is almost correct.
 - Think of possible sources of quantum corrections to GR.
 - Study the phenomenology of quantum corrections.
- How can we study quantum gravity phenomenology?
 - Find physical system which could amplify deviations from general relativity.
 - Example: study compact system with very strong gravity.
 - Think of possible observables in the chosen system.
 - Calculate how effective quantum gravity influences observables.

- How can we quantize gravity?
 - $\circ~$ Use same methods as in QFT \rightsquigarrow doesn't work ${\not {}_{\!\!\!\!\!/}}\,.$
 - Guess a complete theory of quantum gravity \rightsquigarrow hard \oint .
 - $\circ~$ Assume gravity is classical \leadsto leaves unsolved problems ${\not {}_{2}}$.
 - Study effective quantum gravity model phenomenology \rightsquigarrow maybe feasible (\checkmark).
- How can we study effective gravity models?
 - Don't care (too much) about fundamental laws of gravity.
 - Assume that general relativity (GR) is almost correct.
 - Think of possible sources of quantum corrections to GR.
 - Study the phenomenology of quantum corrections.
- How can we study quantum gravity phenomenology?
 - Find physical system which could amplify deviations from general relativity.
 - Example: study compact system with very strong gravity.
 - Think of possible observables in the chosen system.
 - Calculate how effective quantum gravity influences observables.

\Rightarrow Here: effective quantum gravity phenomenology with gas dynamics near black holes.

• Basic operating principle of (quantum) gravity theory:

• Basic operating principle of (quantum) gravity theory:

¿ Quantum gravity is a black box!

• Basic operating principle of (quantum) gravity theory:

- Quantum gravity is a black box!
- Quantum gravity must approximate general relativity:

• Basic operating principle of (quantum) gravity theory:

- ✓ Quantum gravity is a black box!
- Quantum gravity must approximate general relativity:

 \rightsquigarrow We still have a black box, but it is multiplied by $\epsilon \ll 1 \rightsquigarrow$ perturbation.

• Basic operating principle of (quantum) gravity theory:

- ✓ Quantum gravity is a black box!
- Quantum gravity must approximate general relativity:

- We still have a black box, but it is multiplied by $\epsilon \ll 1 \rightsquigarrow$ perturbation.
- General relativity is a very simple theory!

• Basic operating principle of (quantum) gravity theory:

- Quantum gravity is a black box!
- Quantum gravity must approximate general relativity:

- \rightsquigarrow We still have a black box, but it is multiplied by $\epsilon \ll 1 \rightsquigarrow$ perturbation.
- ✓ General relativity is a very simple theory!
- \Rightarrow We know what is in the white box:

• Basic operating principle of (quantum) gravity theory:

- Quantum gravity is a black box!
- Quantum gravity must approximate general relativity:

- \rightsquigarrow We still have a black box, but it is multiplied by $\epsilon \ll 1 \rightsquigarrow$ perturbation.
- ✓ General relativity is a very simple theory!
- \Rightarrow We know what is in the white box:

→ Only need to study (all) possible quantum corrections!

Manuel Hohmann (University of Tartu)

• Gas is constituted by particles of equal mass.

- Gas is constituted by particles of equal mass.
- Particle trajectories follow (relativistic) Hamiltonian dynamics.

- Gas is constituted by particles of equal mass.
- Particle trajectories follow (relativistic) Hamiltonian dynamics.
- Each particle is described by (spacetime) position and four-momentum.

- Gas is constituted by particles of equal mass.
- Particle trajectories follow (relativistic) Hamiltonian dynamics.
- Each particle is described by (spacetime) position and four-momentum.
- → Kinetic gas is density distribution in 8-dimensional position-momentum phase space.

- Gas is constituted by particles of equal mass.
- Particle trajectories follow (relativistic) Hamiltonian dynamics.
- Each particle is described by (spacetime) position and four-momentum.
- → Kinetic gas is density distribution in 8-dimensional position-momentum phase space.
- \Rightarrow Gas dynamics follows from Hamiltonian particle dynamics.

- Gas is constituted by particles of equal mass.
- Particle trajectories follow (relativistic) Hamiltonian dynamics.
- Each particle is described by (spacetime) position and four-momentum.
- → Kinetic gas is density distribution in 8-dimensional position-momentum phase space.
- \Rightarrow Gas dynamics follows from Hamiltonian particle dynamics.

Collisionless gas

Particle density function is constant along particle trajectories in phase space.

- Schwarzschild black hole:
 - Spherically symmetric spacetime.
 - Vacuum solution of Einstein's equations (general relativity).
 - Unique solution with these properties (Birkhoff theorem).

- Schwarzschild black hole:
 - Spherically symmetric spacetime.
 - Vacuum solution of Einstein's equations (general relativity).
 - Unique solution with these properties (Birkhoff theorem).
- *κ*-Poincaré modification of spacetime:
 - Interaction between particles and "quantum structure of spacetime".
 - Interaction depends on de Broglie wavelength (momentum).
 - → Distinguished time direction (vector field).
 - $\Rightarrow \kappa$ -Minkowski spacetime has modified symmetry algebra.
 - Black hole spacetime: assume spherically symmetric vector field.
 - \Rightarrow Vector field may only have time and radial components.
 - $\circ\,$ Modification depends on a parameter ℓ (Planck length).
 - $\circ~$ Spacetime approaches Schwarzschild for $\ell \rightarrow 0.$

• Particles of equal mass and energy.

- Particles of equal mass and energy.
- Gravitationally bound: orbit oscillates between two radii.

- Particles of equal mass and energy.
- Gravitationally bound: orbit oscillates between two radii.
- Assume spherically symmetric particle distribution.

- Particles of equal mass and energy.
- Gravitationally bound: orbit oscillates between two radii.
- Assume spherically symmetric particle distribution.
- Calculate particle density as function of radial coordinate.

- Particles of equal mass and energy.
- Gravitationally bound: orbit oscillates between two radii.
- Assume spherically symmetric particle distribution.
- Calculate particle density as function of radial coordinate.
- $\Rightarrow \kappa$ -Poincaré modification shifts particles inward.

• Particles of equal mass and energy.

- Particles of equal mass and energy.
- Marginally bound: drop particles from rest at infinity.

- Particles of equal mass and energy.
- Marginally bound: drop particles from rest at infinity.
- Assume spherically symmetric particle distribution.

- Particles of equal mass and energy.
- Marginally bound: drop particles from rest at infinity.
- Assume spherically symmetric particle distribution.
- Calculate particle density as function of radial coordinate.

- Particles of equal mass and energy.
- Marginally bound: drop particles from rest at infinity.
- Assume spherically symmetric particle distribution.
- Calculate particle density as function of radial coordinate.
- $\Rightarrow \kappa$ -Poincaré modification decreases particle density.

Conclusion

• Summary:

- \Rightarrow Consider effective quantum gravity models instead.
- Effective model is small correction to general relativity.
- ⇒ Study observable effects of possible quantum corrections.
- κ-Poincaré modification changes matter density near black hole.

Conclusion

• Summary:

- \Rightarrow Consider effective quantum gravity models instead.
 - Effective model is small correction to general relativity.
- ⇒ Study observable effects of possible quantum corrections.
- ο κ-Poincaré modification changes matter density near black hole.
- Outlook:
 - Consider more general quantum corrections.
 - Consider spinning black holes.
 - Consider more general gases or matter distributions with less symmetry:
 - Accretion disks and jets ~ blazars.
 - Tidal disruption events.
 - Stellar wake of passing black hole and dynamical friction.
 - Derive observable properties of black holes, quasars, AGN...

Conclusion

• Summary:

- £ Fundamental theory of quantum gravity is unknown.
- \Rightarrow Consider effective quantum gravity models instead.
 - Effective model is small correction to general relativity.
- ⇒ Study observable effects of possible quantum corrections.
- κ-Poincaré modification changes matter density near black hole.
- Outlook:
 - Consider more general quantum corrections.
 - Consider spinning black holes.
 - Consider more general gases or matter distributions with less symmetry:
 - Accretion disks and jets ~> blazars.
 - Tidal disruption events.
 - Stellar wake of passing black hole and dynamical friction.
 - Derive observable properties of black holes, quasars, AGN...
- MH, "Kinetic gases in static spherically symmetric modified dispersion relations," Class. Quant. Grav. **41** (2024) no.1, 015025 [arXiv:2310.01487 [gr-qc]].