Searching for quantum gravity with gas dynamics near black holes

Manuel Hohmann

Laboratory of Theoretical Physics, Institute of Physics, University of Tartu Center of Excellence "Fundamental Universe"

Tuorla-Tartu Meeting - 7. May 2024

- How can we quantize gravity?
	- Use same methods as in QFT \rightsquigarrow doesn't work $\frac{1}{2}$.
- How can we quantize gravity?
	- \circ Use same methods as in QFT \rightsquigarrow doesn't work $\frac{1}{2}$.
	- Guess a complete theory of quantum gravity \rightsquigarrow hard $\frac{1}{2}$.
- How can we quantize gravity?
	- \circ Use same methods as in QFT \rightsquigarrow doesn't work $\frac{1}{2}$.
	- Guess a complete theory of quantum gravity \rightsquigarrow hard \cancel{f} .
	- \circ Assume gravity is classical \rightsquigarrow leaves unsolved problems $\frac{1}{2}$.
- How can we quantize gravity?
	- \circ Use same methods as in QFT \rightsquigarrow doesn't work β .
	- Guess a complete theory of quantum gravity \rightsquigarrow hard \cancel{f} .
	- \circ Assume gravity is classical \rightsquigarrow leaves unsolved problems $\frac{1}{2}$.
	- \circ Study effective quantum gravity model phenomenology \rightsquigarrow maybe feasible (\checkmark) .
- How can we quantize gravity?
	- \circ Use same methods as in QFT \rightsquigarrow doesn't work β .
	- Guess a complete theory of quantum gravity \rightsquigarrow hard \cancel{f} .
	- **Assume gravity is classical** \rightsquigarrow **leaves unsolved problems** $\frac{1}{2}$ **.**
 Study effective quantum gravity model phenomenology \rightsquigarrow **r**
	- Study effective quantum gravity model phenomenology \rightsquigarrow maybe feasible (\checkmark) .
- How can we study effective gravity models?
	- Don't care (too much) about fundamental laws of gravity.
- How can we quantize gravity?
	- \circ Use same methods as in QFT \rightsquigarrow doesn't work β .
	- Guess a complete theory of quantum gravity \rightsquigarrow hard $\frac{1}{2}$.
	- **Assume gravity is classical** \rightsquigarrow **leaves unsolved problems** $\frac{1}{2}$ **.**
 Study effective quantum gravity model phenomenology \rightsquigarrow **r**
	- Study effective quantum gravity model phenomenology \rightsquigarrow maybe feasible (\checkmark) .
- How can we study effective gravity models?
	- Don't care (too much) about fundamental laws of gravity.
	- Assume that general relativity (GR) is almost correct.
- How can we quantize gravity?
	- \circ Use same methods as in QFT \rightsquigarrow doesn't work β .
	- Guess a complete theory of quantum gravity \rightsquigarrow hard $\frac{1}{2}$.
	- **Assume gravity is classical** \rightsquigarrow **leaves unsolved problems** $\frac{1}{2}$ **.**
 Study effective quantum gravity model phenomenology \rightsquigarrow **r**
	- Study effective quantum gravity model phenomenology \rightsquigarrow maybe feasible (\checkmark) .
- How can we study effective gravity models?
	- Don't care (too much) about fundamental laws of gravity.
	- Assume that general relativity (GR) is almost correct.
	- Think of possible sources of quantum corrections to GR.
- How can we quantize gravity?
	- \circ Use same methods as in QFT \rightsquigarrow doesn't work β .
	- Guess a complete theory of quantum gravity \rightsquigarrow hard $\frac{1}{2}$.
	- **Assume gravity is classical** \rightsquigarrow **leaves unsolved problems** $\frac{1}{2}$ **.**
 Study effective quantum gravity model phenomenology \rightsquigarrow **r**
	- Study effective quantum gravity model phenomenology \rightsquigarrow maybe feasible (\checkmark) .
- How can we study effective gravity models?
	- Don't care (too much) about fundamental laws of gravity.
	- Assume that general relativity (GR) is almost correct.
	- Think of possible sources of quantum corrections to GR.
	- Study the phenomenology of quantum corrections.
- How can we quantize gravity?
	- \circ Use same methods as in QFT \rightsquigarrow doesn't work β .
	- Guess a complete theory of quantum gravity \rightsquigarrow hard $\frac{1}{2}$.
	- **Assume gravity is classical** \rightsquigarrow **leaves unsolved problems** $\frac{1}{2}$ **.**
 Study effective quantum gravity model phenomenology \rightsquigarrow **r**
	- Study effective quantum gravity model phenomenology \rightsquigarrow maybe feasible (\checkmark) .
- How can we study effective gravity models?
	- Don't care (too much) about fundamental laws of gravity.
	- Assume that general relativity (GR) is almost correct.
	- Think of possible sources of quantum corrections to GR.
	- Study the phenomenology of quantum corrections.
- How can we study quantum gravity phenomenology?
	- Find physical system which could amplify deviations from general relativity.
- How can we quantize gravity?
	- \circ Use same methods as in QFT \rightsquigarrow doesn't work β .
	- Guess a complete theory of quantum gravity \rightsquigarrow hard $\frac{1}{2}$.
	- **Assume gravity is classical** \rightsquigarrow **leaves unsolved problems** $\frac{1}{2}$ **.**
 Study effective quantum gravity model phenomenology \rightsquigarrow **r**
	- Study effective quantum gravity model phenomenology \rightsquigarrow maybe feasible (\checkmark) .
- How can we study effective gravity models?
	- Don't care (too much) about fundamental laws of gravity.
	- Assume that general relativity (GR) is almost correct.
	- Think of possible sources of quantum corrections to GR.
	- Study the phenomenology of quantum corrections.
- How can we study quantum gravity phenomenology?
	- Find physical system which could amplify deviations from general relativity.
	- Example: study compact system with very strong gravity.
- How can we quantize gravity?
	- \circ Use same methods as in QFT \rightsquigarrow doesn't work β .
	- Guess a complete theory of quantum gravity \rightsquigarrow hard $\frac{1}{2}$.
	- **Assume gravity is classical** \rightsquigarrow **leaves unsolved problems** $\frac{1}{2}$ **.**
 Study effective quantum gravity model phenomenology \rightsquigarrow **r**
	- Study effective quantum gravity model phenomenology \rightsquigarrow maybe feasible (\checkmark) .
- How can we study effective gravity models?
	- Don't care (too much) about fundamental laws of gravity.
	- Assume that general relativity (GR) is almost correct.
	- Think of possible sources of quantum corrections to GR.
	- Study the phenomenology of quantum corrections.
- How can we study quantum gravity phenomenology?
	- Find physical system which could amplify deviations from general relativity.
	- Example: study compact system with very strong gravity.
	- Think of possible observables in the chosen system.
- How can we quantize gravity?
	- \circ Use same methods as in QFT \rightsquigarrow doesn't work β .
	- Guess a complete theory of quantum gravity \rightsquigarrow hard $\frac{1}{2}$.
	- **Assume gravity is classical** \rightsquigarrow **leaves unsolved problems** $\frac{1}{2}$ **.**
 Study effective quantum gravity model phenomenology \rightsquigarrow **r**
	- Study effective quantum gravity model phenomenology \rightsquigarrow maybe feasible (\checkmark) .
- How can we study effective gravity models?
	- Don't care (too much) about fundamental laws of gravity.
	- Assume that general relativity (GR) is almost correct.
	- Think of possible sources of quantum corrections to GR.
	- Study the phenomenology of quantum corrections.
- How can we study quantum gravity phenomenology?
	- Find physical system which could amplify deviations from general relativity.
	- Example: study compact system with very strong gravity.
	- Think of possible observables in the chosen system.
	- Calculate how effective quantum gravity influences observables.
- How can we quantize gravity?
	- \circ Use same methods as in QFT \rightsquigarrow doesn't work β .
	- Guess a complete theory of quantum gravity \rightsquigarrow hard $\frac{1}{2}$.
	- \circ Assume gravity is classical \rightsquigarrow leaves unsolved problems $\frac{1}{2}$.
	- \circ Study effective quantum gravity model phenomenology \rightsquigarrow maybe feasible (\checkmark) .
- How can we study effective gravity models?
	- Don't care (too much) about fundamental laws of gravity.
	- Assume that general relativity (GR) is almost correct.
	- Think of possible sources of quantum corrections to GR.
	- Study the phenomenology of quantum corrections.
- How can we study quantum gravity phenomenology?
	- Find physical system which could amplify deviations from general relativity.
	- Example: study compact system with very strong gravity.
	- Think of possible observables in the chosen system.
	- Calculate how effective quantum gravity influences observables.

⇒ Here: effective quantum gravity phenomenology with gas dynamics near black holes.

• Basic operating principle of (quantum) gravity theory:

• Basic operating principle of (quantum) gravity theory:

 $\frac{1}{2}$ Quantum gravity is a black box!

Basic operating principle of (quantum) gravity theory:

- Quantum gravity is a black box!
- Quantum gravity must approximate general relativity:

$$
\begin{array}{c}\n\text{quantum} \\
\text{gravity}\n\end{array} = \begin{bmatrix}\n\text{general} \\
\text{relativity}\n\end{bmatrix} + \epsilon \begin{array}{c}\n\text{quantum} \\
\text{correction}\n\end{array}
$$

Basic operating principle of (quantum) gravity theory:

- Quantum gravity is a black box!
- Quantum gravity must approximate general relativity:

We still have a black box, but it is multiplied by $\epsilon \ll 1 \rightsquigarrow$ perturbation.

Basic operating principle of (quantum) gravity theory:

- Quantum gravity is a black box!
- Quantum gravity must approximate general relativity:

$$
quantum = \boxed{\frac{\text{general}}{\text{relativity}}} + \epsilon \cdot \text{ quantum} \quad \text{correction}
$$

- We still have a black box, but it is multiplied by $\epsilon \ll 1 \rightsquigarrow$ perturbation.
- General relativity is a very simple theory!

Basic operating principle of (quantum) gravity theory:

- Quantum gravity is a black box!
- Quantum gravity must approximate general relativity:

$$
\begin{array}{c}\n\text{quantum} \\
\text{gravity}\n\end{array} = \begin{bmatrix}\n\text{general} \\
\text{relativity}\n\end{bmatrix} + \epsilon \begin{array}{c}\n\text{quantum} \\
\text{correction}\n\end{array}
$$

- We still have a black box, but it is multiplied by $\epsilon \ll 1 \rightsquigarrow$ perturbation.
- \checkmark General relativity is a very simple theory!
- We know what is in the white box:

$$
\boxed{\text{general} \atop \text{relativity}} = \boxed{\boxed{\color{white} \text{general} \atop \text{relativity}}
$$

Basic operating principle of (quantum) gravity theory:

- Quantum gravity is a black box!
- Quantum gravity must approximate general relativity:

$$
\begin{array}{c}\n\text{quantum} \\
\text{gravity}\n\end{array} = \begin{bmatrix}\n\text{general} \\
\text{relativity}\n\end{bmatrix} + \epsilon \begin{array}{c}\n\text{quantum} \\
\text{correction}\n\end{array}
$$

- We still have a black box, but it is multiplied by $\epsilon \ll 1 \rightsquigarrow$ perturbation.
- General relativity is a very simple theory!
- We know what is in the white box:

general relativity =

⇝ Only need to study (all) possible quantum corrections!

• Gas is constituted by particles of equal mass.

- Gas is constituted by particles of equal mass.
- Particle trajectories follow (relativistic) Hamiltonian dynamics.

- Gas is constituted by particles of equal mass.
- Particle trajectories follow (relativistic) Hamiltonian dynamics.
- Each particle is described by (spacetime) position and four-momentum.

- Gas is constituted by particles of equal mass.
- Particle trajectories follow (relativistic) Hamiltonian dynamics.
- Each particle is described by (spacetime) position and four-momentum.
- \rightarrow Kinetic gas is density distribution in 8-dimensional position-momentum phase space.

- Gas is constituted by particles of equal mass.
- Particle trajectories follow (relativistic) Hamiltonian dynamics.
- Each particle is described by (spacetime) position and four-momentum.
- Kinetic gas is density distribution in 8-dimensional position-momentum phase space.
- Gas dynamics follows from Hamiltonian particle dynamics.

- Gas is constituted by particles of equal mass.
- Particle trajectories follow (relativistic) Hamiltonian dynamics.
- Each particle is described by (spacetime) position and four-momentum.
- Kinetic gas is density distribution in 8-dimensional position-momentum phase space.
- Gas dynamics follows from Hamiltonian particle dynamics.

Collisionless gas

Particle density function is constant along particle trajectories in phase space.

- Schwarzschild black hole:
	- Spherically symmetric spacetime.
	- Vacuum solution of Einstein's equations (general relativity).
	- Unique solution with these properties (Birkhoff theorem).
- Schwarzschild black hole:
	- Spherically symmetric spacetime.
	- Vacuum solution of Einstein's equations (general relativity).
	- Unique solution with these properties (Birkhoff theorem).
- κ -Poincaré modification of spacetime:
	- Interaction between particles and "quantum structure of spacetime".
	- Interaction depends on de Broglie wavelength (momentum).
	- \rightarrow Distinguished time direction (vector field).
	- \Rightarrow κ -Minkowski spacetime has modified symmetry algebra.
	- Black hole spacetime: assume spherically symmetric vector field.
	- \Rightarrow Vector field may only have time and radial components.
	- \circ Modification depends on a parameter ℓ (Planck length).
	- \circ Spacetime approaches Schwarzschild for $\ell \to 0$.

• Particles of equal mass and energy.

- Particles of equal mass and energy.
- Gravitationally bound: orbit oscillates between two radii.

- Particles of equal mass and energy.
- Gravitationally bound: orbit oscillates between two radii.
- Assume spherically symmetric particle distribution.

- Particles of equal mass and energy.
- Gravitationally bound: orbit oscillates between two radii.
- Assume spherically symmetric particle distribution.
- Calculate particle density as function of radial coordinate.

- Particles of equal mass and energy.
- Gravitationally bound: orbit oscillates between two radii.
- Assume spherically symmetric particle distribution.
- Calculate particle density as function of radial coordinate.
- \Rightarrow κ -Poincaré modification shifts particles inward.

• Particles of equal mass and energy.

- Particles of equal mass and energy.
- Marginally bound: drop particles from rest at infinity.

- Particles of equal mass and energy.
- Marginally bound: drop particles from rest at infinity.
- Assume spherically symmetric particle distribution.

- Particles of equal mass and energy.
- Marginally bound: drop particles from rest at infinity.
- Assume spherically symmetric particle distribution.
- Calculate particle density as function of radial coordinate.

- Particles of equal mass and energy.
- Marginally bound: drop particles from rest at infinity.
- Assume spherically symmetric particle distribution.
- Calculate particle density as function of radial coordinate.
- κ -Poincaré modification decreases particle density.

Conclusion

• Summary:

- Fundamental theory of quantum gravity is unknown.
 \Rightarrow Consider effective quantum gravity models instead
- Consider effective quantum gravity models instead.
- Effective model is small correction to general relativity.
- ⇒ Study observable effects of possible quantum corrections.
- \circ κ -Poincaré modification changes matter density near black hole.

Conclusion

Summary:

- $\frac{1}{2}$ Fundamental theory of quantum gravity is unknown.
- \Rightarrow Consider effective quantum gravity models instead.
- Effective model is small correction to general relativity.
- ⇒ Study observable effects of possible quantum corrections.
- \circ κ -Poincaré modification changes matter density near black hole.
- Outlook:
	- Consider more general quantum corrections.
	- Consider spinning black holes.
	- Consider more general gases or matter distributions with less symmetry:
		- Accretion disks and jets \rightsquigarrow blazars.
		- Tidal disruption events.
		- Stellar wake of passing black hole and dynamical friction.
	- Derive observable properties of black holes, quasars, AGN. . .

Conclusion

• Summary:

- $\frac{1}{2}$ Fundamental theory of quantum gravity is unknown.
- \Rightarrow Consider effective quantum gravity models instead.
- Effective model is small correction to general relativity.
- \Rightarrow Study observable effects of possible quantum corrections.
- \circ κ -Poincaré modification changes matter density near black hole.
- Outlook:
	- Consider more general quantum corrections.
	- Consider spinning black holes.
	- Consider more general gases or matter distributions with less symmetry:
		- \cdot Accretion disks and jets \rightsquigarrow blazars.
		- Tidal disruption events.
		- Stellar wake of passing black hole and dynamical friction.
	- Derive observable properties of black holes, quasars, AGN. . .
- MH, "Kinetic gases in static spherically symmetric modified dispersion relations," Class. Quant. Grav. **41** (2024) no.1, 015025 [arXiv:2310.01487 [gr-qc]].