Cartan geometric structures in gravity and their symmetries

Manuel Hohmann

Laboratory of Theoretical Physics - Institute of Physics - University of Tartu

Geometric structures in Physics - Tromsø-27. October 2023

Motivation: problems in gravity

- So far unexplained cosmological observations:
- Accelerating expansion of the universe.
- Homogeneity of cosmic microwave background.

Motivation: problems in gravity

- So far unexplained cosmological observations:
- Accelerating expansion of the universe.
- Homogeneity of cosmic microwave background.
- Models for explaining these observations:
- ^CDM model / dark energy.
- Inflation.

Motivation: problems in gravity

- So far unexplained cosmological observations:
- Accelerating expansion of the universe.
- Homogeneity of cosmic microwave background.
- Models for explaining these observations:
- ^CDM model / dark energy.
- Inflation.
- Physical mechanisms are not understood:
- Unknown type of matter?
- Modification of the laws of gravity?
- Scalar field in addition to metric mediating gravity?
- Quantum gravity effects?

Motivation: problems in gravity

- So far unexplained cosmological observations:
- Accelerating expansion of the universe.
- Homogeneity of cosmic microwave background.
- Models for explaining these observations:
- ^CDM model / dark energy.
- Inflation.
- Physical mechanisms are not understood:
- Unknown type of matter?
- Modification of the laws of gravity?
- Scalar field in addition to metric mediating gravity?
- Quantum gravity effects?
- Idea here: modification of the geometric structure of spacetime!
- Study classical gravity theories based on modified geometry.
- Consider geometries as effective models of quantum gravity.
- Derive observable effects to test modified geometry.

Outline

1. Cartan geometry in gravity
1.1 Preliminaries
1.2 MacDowell-Mansouri gravity
1.3 Poincarè gauge gravity
2. Finsler geometry and gravity
2.1 Preliminaries
2.2 Cartan geometry on observer space
2.3 Finsler-Cartan-Gravity
3. Symmetry in Cartan geometry
3.1 Spacetime symmetry
3.2 Observer space symmetry
4. Conclusion

Outline

1. Cartan geometry in gravity
1.1 Preliminaries
1.2 MacDowell-Mansouri gravity
1.3 Poincarè gauge gravity
2. Finsler geometry and gravity
2.1 Preliminaries
2.2 Cartan geometry on observer space
2.3 Finsler-Cartan-Gravity
3. Symmetry in Cartan geometry
3.1 Spacetime symmetry
3.2 Observer space symmetry
4. Conclusion

Outline

1. Cartan geometry in gravity

1.1 Preliminaries

1.2 MacDowell-Mansouri gravity
1.3 Poincarè gauge gravity
2. Finsler geometry and gravity
2.1 Preliminaries
2.2 Cartan geometry on observer space
2.3 Finsler-Cartan-Gravity
3. Symmetry in Cartan geometry
3.1 Spacetime symmetry
3.2 Observer space symmetry
4. Conclusion

Cartan geometry

- Ingredients of a Cartan geometry:
- A Lie group G with a closed subgroup $H \subset G$.
- A principal H-bundle $\pi: P \rightarrow M$.
- A 1-form $A \in \Omega^{1}(P, \mathfrak{g})$ on P with values in \mathfrak{g}.

Cartan geometry

- Ingredients of a Cartan geometry:
- A Lie group G with a closed subgroup $H \subset G$.
- A principal H-bundle $\pi: P \rightarrow M$.
- A 1-form $A \in \Omega^{1}(P, \mathfrak{g})$ on P with values in \mathfrak{g}.
- Conditions on the Cartan connection A :
- For each $p \in P, A_{p}: T_{p} P \rightarrow \mathfrak{g}$ is a linear isomorphism.
- A is right-equivariant: $\left(R_{h}\right)^{*} A=\operatorname{Ad}\left(h^{-1}\right) \circ A \quad \forall h \in H$.
- A restricts to the Maurer-Cartan form of H on ker π_{*}.

Cartan geometry

- Ingredients of a Cartan geometry:
- A Lie group G with a closed subgroup $H \subset G$.
- A principal H-bundle $\pi: P \rightarrow M$.
- A 1-form $A \in \Omega^{1}(P, \mathfrak{g})$ on P with values in \mathfrak{g}.
- Conditions on the Cartan connection A :
- For each $p \in P, A_{p}: T_{p} P \rightarrow \mathfrak{g}$ is a linear isomorphism.
- A is right-equivariant: $\left(R_{h}\right)^{*} A=\operatorname{Ad}\left(h^{-1}\right) \circ A \quad \forall h \in H$.
- A restricts to the Maurer-Cartan form of H on ker π_{*}.
- Fundamental vector fields:
$\Rightarrow A$ has an "inverse" $\underline{A}: \mathfrak{g} \rightarrow \Gamma(T P)$.
\Rightarrow Vector fields $\underline{A}(a)$ for $a \in \mathfrak{g}$ are nowhere vanishing.

Cartan geometry

- Ingredients of a Cartan geometry:
- A Lie group G with a closed subgroup $H \subset G$.
- A principal H-bundle $\pi: P \rightarrow M$.
- A 1-form $A \in \Omega^{1}(P, \mathfrak{g})$ on P with values in \mathfrak{g}.
- Conditions on the Cartan connection A :
- For each $p \in P, A_{p}: T_{p} P \rightarrow \mathfrak{g}$ is a linear isomorphism.
- A is right-equivariant: $\left(R_{h}\right)^{*} A=\operatorname{Ad}\left(h^{-1}\right) \circ A \quad \forall h \in H$.
- A restricts to the Maurer-Cartan form of H on ker π_{*}.
- Fundamental vector fields:
$\Rightarrow A$ has an "inverse" $\underline{A}: \mathfrak{g} \rightarrow \Gamma(T P)$.
\Rightarrow Vector fields $\underline{A}(a)$ for $a \in \mathfrak{g}$ are nowhere vanishing.
- Geometry of M :
- Cartan connection describes geometry and parallel transport on M.
- M "locally looks like" homogeneous space G/H.
- Tangent spaces $T_{x} M \cong \mathfrak{z}=\mathfrak{g} / \mathfrak{h}$.

Cartan geometry

- Ingredients of a Cartan geometry:
- A Lie group G with a closed subgroup $H \subset G$.
- A principal H-bundle $\pi: P \rightarrow M$.
- A 1-form $A \in \Omega^{1}(P, \mathfrak{g})$ on P with values in \mathfrak{g}.
- Conditions on the Cartan connection A :
- For each $p \in P, A_{p}: T_{p} P \rightarrow \mathfrak{g}$ is a linear isomorphism.
- A is right-equivariant: $\left(R_{h}\right)^{*} A=\operatorname{Ad}\left(h^{-1}\right) \circ A \quad \forall h \in H$.
- A restricts to the Maurer-Cartan form of H on ker π_{*}.
- Fundamental vector fields:
$\Rightarrow A$ has an "inverse" $\underline{A}: \mathfrak{g} \rightarrow \Gamma(T P)$.
\Rightarrow Vector fields $\underline{A}(a)$ for $a \in \mathfrak{g}$ are nowhere vanishing.
- Geometry of M :
- Cartan connection describes geometry and parallel transport on M.
- M "locally looks like" homogeneous space G/H.
- Tangent spaces $T_{x} M \cong \mathfrak{z}=\mathfrak{g} / \mathfrak{h}$.
- Curvature of the Cartan connection:
- Curvature defined by $F=\mathrm{d} A+\frac{1}{2}[A \wedge A] \in \Omega_{H}^{2}(P, \mathfrak{g})$.
- Curvature measures deviation between M and G / H.

First-order reductive models

- First-order Cartan geometry:
- Adjoint representations of $H \subset G$ on \mathfrak{g} and \mathfrak{h}.
- Quotient representation of H on $\mathfrak{g} / \mathfrak{h}$ is faithful.
\Rightarrow "Fake tangent bundle" $\mathcal{T}=\mathcal{P} \times_{H} \mathfrak{g} / \mathfrak{h}$.
$\Rightarrow \mathcal{P}$ is "fake frame bundle": "admissible" frames $\mathfrak{g} / \mathfrak{h} \rightarrow \mathcal{T}_{x}$ for $x \in M$.

First-order reductive models

- First-order Cartan geometry:
- Adjoint representations of $H \subset G$ on \mathfrak{g} and \mathfrak{h}.
- Quotient representation of H on $\mathfrak{g} / \mathfrak{h}$ is faithful.
\Rightarrow "Fake tangent bundle" $\mathcal{T}=\mathcal{P} \times_{H} \mathfrak{g} / \mathfrak{h}$.
$\Rightarrow \mathcal{P}$ is "fake frame bundle": "admissible" frames $\mathfrak{g} / \mathfrak{h} \rightarrow \mathcal{T}_{x}$ for $x \in M$.
- Reductive Cartan geometry:
- Direct sum $\mathfrak{g}=\mathfrak{h} \oplus \mathfrak{z}$ of vector spaces.
- \mathfrak{h} and \mathfrak{z} are subrepresentations of $\operatorname{Ad} H$ on \mathfrak{g}.
\Rightarrow Cartan connection $A=\omega+e$ splits: $\omega \in \Omega^{1}(\mathcal{P}, \mathfrak{h})$ and $e \in \Omega^{1}(\mathcal{P}, \mathfrak{z})$.
$\Rightarrow e$ induces isomorphism $\mathcal{T} \cong T M$.
$\Rightarrow e$ induces isomorphism $\mathcal{P} \cong P \subset F M$.

First-order reductive models

- First-order Cartan geometry:
- Adjoint representations of $H \subset G$ on \mathfrak{g} and \mathfrak{h}.
- Quotient representation of H on $\mathfrak{g} / \mathfrak{h}$ is faithful.
\Rightarrow "Fake tangent bundle" $\mathcal{T}=\mathcal{P} \times_{H} \mathfrak{g} / \mathfrak{h}$.
$\Rightarrow \mathcal{P}$ is "fake frame bundle": "admissible" frames $\mathfrak{g} / \mathfrak{h} \rightarrow \mathcal{T}_{x}$ for $x \in M$.
- Reductive Cartan geometry:
- Direct sum $\mathfrak{g}=\mathfrak{h} \oplus \mathfrak{z}$ of vector spaces.
- \mathfrak{h} and \mathfrak{z} are subrepresentations of $\operatorname{Ad} H$ on \mathfrak{g}.
\Rightarrow Cartan connection $A=\omega+e$ splits: $\omega \in \Omega^{1}(\mathcal{P}, \mathfrak{h})$ and $e \in \Omega^{1}(\mathcal{P}, \mathfrak{z})$.
$\Rightarrow e$ induces isomorphism $\mathcal{T} \cong T M$.
$\Rightarrow e$ induces isomorphism $\mathcal{P} \cong P \subset F M$.
\Rightarrow Cartan geometry $(\tilde{\pi}: P \rightarrow M, \tilde{A})$ with $\tilde{A}=\tilde{\omega}+\tilde{e}$.
- ẽ: solder form on $P \subset F M$.
- Drop tilde and consider Cartan geometries on $\mathcal{P} \equiv P \subset F M$.

Outline

1. Cartan geometry in gravity
1.1 Preliminaries
1.2 MacDowell-Mansouri gravity
1.3 Poincarè gauge gravity
2. Finsler geometry and gravity
2.1 Preliminaries
2.2 Cartan geometry on observer space
2.3 Finsler-Cartan-Gravity
3. Symmetry in Cartan geometry
3.1 Spacetime symmetry
3.2 Observer space symmetry
4. Conclusion

Cartan geometry of pseudo-Riemannian spacetime

- Choose Lie groups:
- Let

$$
G=\left\{\begin{array}{ll}
\mathrm{SO}_{0}(4,1) & \Lambda>0 \\
\mathrm{ISO}_{0}(3,1) & \Lambda=0, \\
\mathrm{SO}_{0}(3,2) & \Lambda<0
\end{array}, \quad H=\mathrm{SO}_{0}(3,1)\right.
$$

\Rightarrow Coset spaces G / H are the maximally symmetric spacetimes.

Cartan geometry of pseudo-Riemannian spacetime

- Choose Lie groups:
- Let

$$
G=\left\{\begin{array}{ll}
\mathrm{SO}_{0}(4,1) & \Lambda>0 \\
\mathrm{ISO}_{0}(3,1) & \Lambda=0, \\
\mathrm{SO}_{0}(3,2) & \Lambda<0
\end{array}, \quad H=\mathrm{SO}_{0}(3,1)\right.
$$

\Rightarrow Coset spaces G / H are the maximally symmetric spacetimes.

- Choose principal H-bundle:
- Let (M, g) be a Lorentzian manifold with (time) orientation.
- Let P be the oriented time-oriented orthonormal frames on M.
$\Rightarrow \pi: P \rightarrow M$ is a principal H-bundle.

Cartan geometry of pseudo-Riemannian spacetime

- Choose Lie groups:
- Let

$$
G=\left\{\begin{array}{ll}
\mathrm{SO}_{0}(4,1) & \Lambda>0 \\
\mathrm{IO}_{0}(3,1) & \Lambda=0, \\
\mathrm{SO}_{0}(3,2) & \Lambda<0
\end{array}, \quad H=\mathrm{SO}_{0}(3,1)\right.
$$

\Rightarrow Coset spaces G / H are the maximally symmetric spacetimes.

- Choose principal H-bundle:
- Let (M, g) be a Lorentzian manifold with (time) orientation.
- Let P be the oriented time-oriented orthonormal frames on M.
$\Rightarrow \pi: P \rightarrow M$ is a principal H-bundle.
- Choose Cartan connection:
- $\mathfrak{g}=\mathfrak{h} \oplus \mathfrak{z}$ splits into direct sum.
- Let $e \in \Omega^{1}(P, \mathfrak{z})$ be the solder form of $\pi: P \rightarrow M$.
- Let $\omega \in \Omega^{1}(P, \mathfrak{h})$ be the Levi-Civita connection.
$\Rightarrow A=\omega+e \in \Omega^{1}(P, \mathfrak{g})$ is a Cartan connection.

Cartan geometry of pseudo-Riemannian spacetime

- Choose Lie groups:
- Let

$$
G=\left\{\begin{array}{ll}
\mathrm{SO}_{0}(4,1) & \Lambda>0 \\
\mathrm{IS}_{0}(3,1) & \Lambda=0, \\
\mathrm{SO}_{0}(3,2) & \Lambda<0
\end{array}, \quad H=\mathrm{SO}_{0}(3,1)\right.
$$

\Rightarrow Coset spaces G / H are the maximally symmetric spacetimes.

- Choose principal H-bundle:
- Let (M, g) be a Lorentzian manifold with (time) orientation.
- Let P be the oriented time-oriented orthonormal frames on M.
$\Rightarrow \pi: P \rightarrow M$ is a principal H-bundle.
- Choose Cartan connection:
- $\mathfrak{g}=\mathfrak{h} \oplus \mathfrak{z}$ splits into direct sum.
- Let $e \in \Omega^{1}(P, \mathfrak{z})$ be the solder form of $\pi: P \rightarrow M$.
- Let $\omega \in \Omega^{1}(P, \mathfrak{h})$ be the Levi-Civita connection.
$\Rightarrow A=\omega+e \in \Omega^{1}(P, \mathfrak{g})$ is a Cartan connection.
\Rightarrow Spacetime (M, g) can be reconstructed from Cartan geometry.

Curvature decomposition

- Curvature of Cartan connection:

$$
\begin{equation*}
F=\mathrm{d} A+\frac{1}{2}[A \wedge A] \in \Omega^{2}(P, \mathfrak{g}) \tag{1}
\end{equation*}
$$

Curvature decomposition

- Curvature of Cartan connection:

$$
\begin{equation*}
F=\mathrm{d} A+\frac{1}{2}[A \wedge A] \in \Omega^{2}(P, \mathfrak{g}) \tag{1}
\end{equation*}
$$

- Grading of Lie algebra:

$$
[\mathfrak{h}, \mathfrak{h}] \subseteq \mathfrak{h}, \quad[\mathfrak{h}, \mathfrak{z}] \subseteq \mathfrak{z}, \quad[\mathfrak{z}, \mathfrak{z}] \subseteq \mathfrak{h} .
$$

Curvature decomposition

- Curvature of Cartan connection:

$$
\begin{equation*}
F=\mathrm{d} A+\frac{1}{2}[A \wedge A] \in \Omega^{2}(P, \mathfrak{g}) \tag{1}
\end{equation*}
$$

- Grading of Lie algebra:

$$
[\mathfrak{h}, \mathfrak{h}] \subseteq \mathfrak{h}, \quad[\mathfrak{h}, \mathfrak{z}] \subseteq \mathfrak{z}, \quad[\mathfrak{z}, \mathfrak{z}] \subseteq \mathfrak{h} .
$$

\Rightarrow Decomposition of Cartan curvature:

$$
F=F_{\mathfrak{h}}+F_{\mathfrak{z}}
$$

Curvature decomposition

- Curvature of Cartan connection:

$$
\begin{equation*}
F=\mathrm{d} A+\frac{1}{2}[A \wedge A] \in \Omega^{2}(P, \mathfrak{g}) \tag{1}
\end{equation*}
$$

- Grading of Lie algebra:

$$
[\mathfrak{h}, \mathfrak{h}] \subseteq \mathfrak{h}, \quad[\mathfrak{h}, \mathfrak{z}] \subseteq \mathfrak{z}, \quad[\mathfrak{z}, \mathfrak{z}] \subseteq \mathfrak{h}
$$

\Rightarrow Decomposition of Cartan curvature:

$$
F=F_{\mathfrak{h}}+F_{\mathfrak{z}}
$$

\Rightarrow Use $A=\omega+e:$

$$
F_{\mathfrak{h}}=\mathrm{d} \omega+\frac{1}{2}[\omega \wedge \omega]+\frac{1}{2}[e \wedge e], \quad F_{\mathfrak{z}}=\mathrm{de}+[\omega \wedge e] .
$$

MacDowell-Mansouri gravity in Cartan geometry

- MacDowell-Mansouri gravity in terms of Cartan geometry: [D. Wise '06]

$$
S_{G}=\int_{M} \operatorname{tr}_{\mathfrak{h}}\left(F_{\mathfrak{h}} \wedge \star F_{\mathfrak{h}}\right)
$$

- Hodge operator \star on \mathfrak{h}.
- Non-degenerate H-invariant inner product $\operatorname{tr}_{\mathfrak{h}}$ on \mathfrak{h}.

MacDowell-Mansouri gravity in Cartan geometry

- MacDowell-Mansouri gravity in terms of Cartan geometry: [D. Wise '06]

$$
S_{G}=\int_{M} \operatorname{tr}_{\mathfrak{h}}\left(F_{\mathfrak{h}} \wedge \star F_{\mathfrak{h}}\right)
$$

- Hodge operator \star on \mathfrak{h}.
- Non-degenerate H-invariant inner product $\operatorname{tr}_{\mathfrak{h}}$ on \mathfrak{h}.
- Translate terms into pseudo-Riemannian geometry (with $\left.R=\mathrm{d} \omega+\frac{1}{2}[\omega \wedge \omega]\right)$:
- Curvature scalar:

$$
[e \wedge e] \wedge \star R \rightsquigarrow g^{a b} R_{a c b}^{c} \mathrm{~d} V
$$

- Cosmological constant:

$$
[e \wedge e] \wedge \star[e \wedge e] \rightsquigarrow d V
$$

- Gauss-Bonnet term:

$$
R \wedge \star R \rightsquigarrow \epsilon^{a b c d} \epsilon^{e f g h} R_{a b e f} R_{c d g h} \mathrm{~d} V
$$

MacDowell-Mansouri gravity in Cartan geometry

- MacDowell-Mansouri gravity in terms of Cartan geometry: [D. Wise '06]

$$
S_{G}=\int_{M} \operatorname{tr}_{\mathfrak{h}}\left(F_{\mathfrak{h}} \wedge \star F_{\mathfrak{h}}\right)
$$

- Hodge operator \star on \mathfrak{h}.
- Non-degenerate H-invariant inner product $\operatorname{tr}_{\mathfrak{h}}$ on \mathfrak{h}.
- Translate terms into pseudo-Riemannian geometry (with $\left.R=\mathrm{d} \omega+\frac{1}{2}[\omega \wedge \omega]\right):$
- Curvature scalar:

$$
[e \wedge e] \wedge \star R \rightsquigarrow g^{a b} R_{a c b}^{c} \mathrm{~d} V
$$

- Cosmological constant:

$$
[e \wedge e] \wedge \star[e \wedge e] \rightsquigarrow d V
$$

- Gauss-Bonnet term:

$$
R \wedge \star R \rightsquigarrow \epsilon^{a b c d} \epsilon^{e f g h} R_{a b e f} R_{c d g h} \mathrm{~d} V
$$

\Rightarrow Gravity theory formulated through Cartan geometry.

Outline

1. Cartan geometry in gravity
1.1 Preliminaries
1.2 MacDowell-Mansouri gravity
1.3 Poincarè gauge gravity
2. Finsler geometry and gravity
2.1 Preliminaries
2.2 Cartan geometry on observer space
2.3 Finsler-Cartan-Gravity
3. Symmetry in Cartan geometry
3.1 Spacetime symmetry
3.2 Observer space symmetry
4. Conclusion

Cartan geometry of Riemann-Cartan spacetime

- Choose Lie groups:
- Let

$$
G=\left\{\begin{array}{ll}
\mathrm{SO}_{0}(4,1) & \Lambda>0 \\
\mathrm{ISO}_{0}(3,1) & \Lambda=0, \\
\mathrm{SO}_{0}(3,2) & \Lambda<0
\end{array}, \quad H=\mathrm{SO}_{0}(3,1)\right.
$$

\Rightarrow Coset spaces G / H are the maximally symmetric spacetimes.

Cartan geometry of Riemann-Cartan spacetime

- Choose Lie groups:
- Let

$$
G=\left\{\begin{array}{ll}
\mathrm{SO}_{0}(4,1) & \Lambda>0 \\
\mathrm{ISO}_{0}(3,1) & \Lambda=0, \\
\mathrm{SO}_{0}(3,2) & \Lambda<0
\end{array}, \quad H=\mathrm{SO}_{0}(3,1)\right.
$$

\Rightarrow Coset spaces G / H are the maximally symmetric spacetimes.

- Choose principal H-bundle:
- (M, g, T): Riemann-Cartan spacetime with (time) orientation.
- Let P be the oriented time-oriented orthonormal frames on M.
$\Rightarrow \pi: P \rightarrow M$ is a principal H-bundle.

Cartan geometry of Riemann-Cartan spacetime

- Choose Lie groups:
- Let

$$
G=\left\{\begin{array}{ll}
\mathrm{SO}_{0}(4,1) & \Lambda>0 \\
\mathrm{IS}_{0}(3,1) & \Lambda=0, \\
\mathrm{SO}_{0}(3,2) & \Lambda<0
\end{array}, \quad H=\mathrm{SO}_{0}(3,1)\right.
$$

\Rightarrow Coset spaces G / H are the maximally symmetric spacetimes.

- Choose principal H-bundle:
- (M, g, T): Riemann-Cartan spacetime with (time) orientation.
- Let P be the oriented time-oriented orthonormal frames on M.
$\Rightarrow \pi: P \rightarrow M$ is a principal H-bundle.
- Choose Cartan connection:
- $\mathfrak{g}=\mathfrak{h} \oplus \mathfrak{z}$ splits into direct sum.
- Let $e \in \Omega^{1}(P, \mathfrak{z})$ be the solder form of $\pi: P \rightarrow M$.
- Let $\omega \in \Omega^{1}(P, \mathfrak{h})$ be the Riemann-Cartan connection.
$\Rightarrow A=\omega+e \in \Omega^{1}(P, \mathfrak{g})$ is a Cartan connection.

Cartan geometry of Riemann-Cartan spacetime

- Choose Lie groups:
- Let

$$
G=\left\{\begin{array}{ll}
\mathrm{SO}_{0}(4,1) & \Lambda>0 \\
\mathrm{ISO}_{0}(3,1) & \Lambda=0, \\
\mathrm{SO}_{0}(3,2) & \Lambda<0
\end{array}, \quad H=\mathrm{SO}_{0}(3,1)\right.
$$

\Rightarrow Coset spaces G / H are the maximally symmetric spacetimes.

- Choose principal H-bundle:
- (M, g, T): Riemann-Cartan spacetime with (time) orientation.
- Let P be the oriented time-oriented orthonormal frames on M.
$\Rightarrow \pi: P \rightarrow M$ is a principal H-bundle.
- Choose Cartan connection:
- $\mathfrak{g}=\mathfrak{h} \oplus \mathfrak{z}$ splits into direct sum.
- Let $e \in \Omega^{1}(P, \mathfrak{z})$ be the solder form of $\pi: P \rightarrow M$.
- Let $\omega \in \Omega^{1}(P, \mathfrak{h})$ be the Riemann-Cartan connection.
$\Rightarrow A=\omega+e \in \Omega^{1}(P, \mathfrak{g})$ is a Cartan connection.
\Rightarrow Spacetime (M, g, T) can be reconstructed from Cartan geometry.

Cartan geometry of Riemann-Cartan spacetime

- Choose Lie groups:
- Let

$$
G=\left\{\begin{array}{ll}
\mathrm{SO}_{0}(4,1) & \Lambda>0 \\
\mathrm{ISO}_{0}(3,1) & \Lambda=0, \\
\mathrm{SO}_{0}(3,2) & \Lambda<0
\end{array}, \quad H=\mathrm{SO}_{0}(3,1)\right.
$$

\Rightarrow Coset spaces G / H are the maximally symmetric spacetimes.

- Choose principal H-bundle:
- (M, g, T): Riemann-Cartan spacetime with (time) orientation.
- Let P be the oriented time-oriented orthonormal frames on M.
$\Rightarrow \pi: P \rightarrow M$ is a principal H-bundle.
- Choose Cartan connection:
- $\mathfrak{g}=\mathfrak{h} \oplus \mathfrak{z}$ splits into direct sum.
- Let $e \in \Omega^{1}(P, \mathfrak{z})$ be the solder form of $\pi: P \rightarrow M$.
- Let $\omega \in \Omega^{1}(P, \mathfrak{h})$ be the Riemann-Cartan connection.
$\Rightarrow A=\omega+e \in \Omega^{1}(P, \mathfrak{g})$ is a Cartan connection.
\Rightarrow Spacetime (M, g, T) can be reconstructed from Cartan geometry.

Poincarè gauge gravity

- Basis expansion:

$$
A=\omega+e=\frac{1}{2} \omega^{i}{ }_{j} \mathcal{H}_{i}^{j}+e^{i} \mathcal{Z}_{i}
$$

Poincarè gauge gravity

- Basis expansion:

$$
A=\omega+e=\frac{1}{2} \omega^{i}{ }_{j} \mathcal{H}_{i}^{j}+e^{i} \mathcal{Z}_{i}
$$

- Torsion decomposition:

$$
F_{\mathfrak{z}}=\frac{1}{2} T^{i}{ }_{j k} e^{j} \wedge e^{k} \otimes \mathcal{Z}_{i}
$$

Poincarè gauge gravity

- Basis expansion:

$$
A=\omega+e=\frac{1}{2} \omega^{i}{ }_{j} \mathcal{H}_{i}^{j}+e^{i} \mathcal{Z}_{i}
$$

- Torsion decomposition:

$$
F_{\mathfrak{z}}=\frac{1}{2} T^{i}{ }_{j k} e^{j} \wedge e^{k} \otimes \mathcal{Z}_{i}
$$

- Introduce "generalized Hodge dual":

$$
*: \Omega_{H}^{2}(P, \mathfrak{z}) \rightarrow \Omega_{H}^{2}(P, \mathfrak{z})
$$

Poincarè gauge gravity

- Basis expansion:

$$
A=\omega+e=\frac{1}{2} \omega^{i}{ }_{j} \mathcal{H}_{i}^{j}+e^{i} \mathcal{Z}_{i}
$$

- Torsion decomposition:

$$
F_{\mathfrak{z}}=\frac{1}{2} T^{i}{ }_{j k} e^{j} \wedge e^{k} \otimes \mathcal{Z}_{i}
$$

- Introduce "generalized Hodge dual":

$$
*: \Omega_{H}^{2}(P, \mathfrak{z}) \rightarrow \Omega_{H}^{2}(P, \mathfrak{z})
$$

- Poincarè gauge gravity:

$$
S_{G}=\int_{M}\left[\operatorname{tr}_{\mathfrak{h}}\left(F_{\mathfrak{h}} \wedge \star F_{\mathfrak{h}}\right)+\operatorname{tr}_{\mathfrak{z}}\left(F_{\mathfrak{z}} \wedge * F_{\mathfrak{z}}\right)\right] .
$$

Outline

1. Cartan geometry in gravity 1.1 Preliminaries
 1.2 MacDowell-Mansouri gravity
 1.3 Poincarè gauge gravity

2. Finsler geometry and gravity
2.1 Preliminaries
2.2 Cartan geometry on observer space
2.3 Finsler-Cartan-Gravity
3. Symmetry in Cartan geometry
3.1 Spacetime symmetry
3.2 Observer space symmetry
4. Conclusion

Outline

1. Cartan geometry in gravity
1.1 Preliminaries1.2 MacDowell-Mansouri gravity1.3 Poincarè gauge gravity
2. Finsler geometry and gravity
2.1 Preliminaries
2.2 Cartan geometry on observer space
2.3 Finsler-Cartan-Gravity
3. Symmetry in Cartan geometry
3.1 Spacetime symmetry
3.2 Observer space symmetry
4. Conclusion

The clock postulate

- Proper time along a curve $\gamma: \mathbb{R} \rightarrow M$ in Lorentzian spacetime:

$$
\tau=\int_{t_{1}}^{t_{2}} \sqrt{-g_{a b}(\gamma(t)) \dot{\gamma}^{a}(t) \dot{\gamma}^{b}(t)} \mathrm{d} t
$$

The clock postulate

- Proper time along a curve $\gamma: \mathbb{R} \rightarrow M$ in Lorentzian spacetime:

$$
\tau=\int_{t_{1}}^{t_{2}} \sqrt{-g_{a b}(\gamma(t)) \dot{\gamma}^{a}(t) \dot{\gamma}^{b}(t)} \mathrm{d} t
$$

- Finsler geometry: use a more general length functional:

$$
\tau=\int_{t_{1}}^{t_{2}} F(\gamma(t), \dot{\gamma}(t)) \mathrm{d} t
$$

The clock postulate

- Proper time along a curve $\gamma: \mathbb{R} \rightarrow M$ in Lorentzian spacetime:

$$
\tau=\int_{t_{1}}^{t_{2}} \sqrt{-g_{a b}(\gamma(t)) \dot{\gamma}^{a}(t) \dot{\gamma}^{b}(t)} \mathrm{d} t
$$

- Finsler geometry: use a more general length functional:

$$
\tau=\int_{t_{1}}^{t_{2}} F(\gamma(t), \dot{\gamma}(t)) \mathrm{d} t
$$

- Finsler function $F: T M \rightarrow \mathbb{R}^{+}$.

The clock postulate

- Proper time along a curve $\gamma: \mathbb{R} \rightarrow M$ in Lorentzian spacetime:

$$
\tau=\int_{t_{1}}^{t_{2}} \sqrt{-g_{a b}(\gamma(t)) \dot{\gamma}^{a}(t) \dot{\gamma}^{b}(t)} \mathrm{d} t
$$

- Finsler geometry: use a more general length functional:

$$
\tau=\int_{t_{1}}^{t_{2}} F(\gamma(t), \dot{\gamma}(t)) \mathrm{d} t
$$

- Finsler function $F: T M \rightarrow \mathbb{R}^{+}$.
- Introduce manifold-induced coordinates $\left(x^{a}, y^{a}\right)$ on TM:
- Coordinates x^{a} on M.
- Define coordinates y^{a} for $y^{a} \frac{\partial}{\partial x^{a}} \in T_{x} M$.
- Tangent bundle TTM spanned by $\left\{\partial_{a}=\frac{\partial}{\partial x^{a}}, \bar{\partial}_{a}=\frac{\partial}{\partial y^{a}}\right\}$.

The clock postulate

- Proper time along a curve $\gamma: \mathbb{R} \rightarrow M$ in Lorentzian spacetime:

$$
\tau=\int_{t_{1}}^{t_{2}} \sqrt{-g_{a b}(\gamma(t)) \dot{\gamma}^{a}(t) \dot{\gamma}^{b}(t)} \mathrm{d} t
$$

- Finsler geometry: use a more general length functional:

$$
\tau=\int_{t_{1}}^{t_{2}} F(\gamma(t), \dot{\gamma}(t)) \mathrm{d} t
$$

- Finsler function $F: T M \rightarrow \mathbb{R}^{+}$.
- Introduce manifold-induced coordinates $\left(x^{a}, y^{a}\right)$ on TM:
- Coordinates x^{a} on M.
- Define coordinates y^{a} for $y^{a} \frac{\partial}{\partial x^{a}} \in T_{x} M$.
- Tangent bundle TTM spanned by $\left\{\partial_{a}=\frac{\partial}{\partial x^{a}}, \bar{\partial}_{a}=\frac{\partial}{\partial y^{a}}\right\}$.
- Parametrization invariance requires homogeneity:

$$
F(x, \lambda y)=\lambda F(x, y) \quad \forall \lambda>0
$$

Definition of Finsler spacetimes

- Finsler geometries suitable for spacetimes exist. [c. Pfeifer, M. Wohlfarth'11]
\Rightarrow Notion of timelike, lightlike, spacelike tangent vectors.

Definition of Finsler spacetimes

- Finsler geometries suitable for spacetimes exist. [c. Pfeifer, M. Wohlfarth' ${ }^{111]}$
\Rightarrow Notion of timelike, lightlike, spacelike tangent vectors.
- Finsler metric with Lorentz signature:

$$
g_{a b}^{F}(x, y)=\frac{1}{2} \frac{\partial}{\partial y^{a}} \frac{\partial}{\partial y^{b}} F^{2}(x, y)
$$

- Unit vectors $y \in T_{x} M$ defined by

$$
F^{2}(x, y)=g_{a b}^{F}(x, y) y^{a} y^{b}=1
$$

Definition of Finsler spacetimes

- Finsler geometries suitable for spacetimes exist. [c. Pfeifer, M. Wohlfarth' ${ }^{111]}$
\Rightarrow Notion of timelike, lightlike, spacelike tangent vectors.
- Finsler metric with Lorentz signature:

$$
g_{a b}^{F}(x, y)=\frac{1}{2} \frac{\partial}{\partial y^{a}} \frac{\partial}{\partial y^{b}} F^{2}(x, y)
$$

- Unit vectors $y \in T_{x} M$ defined by

$$
F^{2}(x, y)=g_{a b}^{F}(x, y) y^{a} y^{b}=1
$$

\Rightarrow Set $\Omega_{x} \subset T_{x} M$ of unit timelike vectors at $x \in M$.

- Ω_{x} contains a closed connected component $S_{x} \subseteq \Omega_{x}$.
- Causality: S_{x} corresponds to physical observers.

Connections on Finsler spacetimes

- Cartan non-linear connection:

$$
N^{a}{ }_{b}=\frac{1}{4} \bar{\partial}_{b}\left[g^{F a c}\left(y^{d} \partial_{d} \bar{\partial}_{c} F^{2}-\partial_{c} F^{2}\right)\right]
$$

\Rightarrow Berwald basis of TTM:

$$
\left\{\delta_{a}=\partial_{a}-N_{a}^{b} \bar{\partial}_{b}, \bar{\partial}_{a}\right\}
$$

\Rightarrow Dual Berwald basis of $T^{*} T M$:

$$
\left\{\mathrm{d} x^{a}, \delta y^{a}=\mathrm{d} y^{a}+N^{a}{ }_{b} \mathrm{~d} x^{b}\right\} .
$$

\Rightarrow Splits $T T M=H T M \oplus V T M$ and $T^{*} T M=H^{*} T M \oplus V^{*} T M$.

Connections on Finsler spacetimes

- Cartan non-linear connection:

$$
N^{a}{ }_{b}=\frac{1}{4} \bar{\partial}_{b}\left[g^{F a c}\left(y^{d} \partial_{d} \bar{\partial}_{c} F^{2}-\partial_{c} F^{2}\right)\right]
$$

\Rightarrow Berwald basis of TTM:

$$
\left\{\delta_{a}=\partial_{a}-N^{b}{ }_{a} \bar{\partial}_{b}, \bar{\partial}_{a}\right\}
$$

\Rightarrow Dual Berwald basis of $T^{*} T M$:

$$
\left\{\mathrm{d} x^{a}, \delta y^{a}=\mathrm{d} y^{a}+N^{a}{ }_{b} \mathrm{~d} x^{b}\right\} .
$$

\Rightarrow Splits $T T M=H T M \oplus V T M$ and $T^{*} T M=H^{*} T M \oplus V^{*} T M$.

- Cartan linear connection:

$$
\begin{gathered}
\nabla_{\delta_{a}} \delta_{b}=F_{a b}^{c} \delta_{c}, \nabla_{\delta_{a}} \bar{\partial}_{b}=F^{c}{ }_{a b} \bar{\partial}_{c}, \nabla_{\bar{\partial}_{a}} \delta_{b}=C^{c}{ }_{a b} \delta_{c}, \nabla_{\bar{\partial}_{a}} \bar{\partial}_{b}=C_{a b}^{c} \bar{\partial}_{c} \\
F_{a b}^{c}=\frac{1}{2} g^{F c d}\left(\delta_{a} g_{b d}^{F}+\delta_{b} g_{a d}^{F}-\delta_{d} g_{a b}^{F}\right) \\
C^{c}{ }_{a b}=\frac{1}{2} g^{F c d}\left(\bar{\partial}_{a} g_{b d}^{F}+\bar{\partial}_{b} g_{a d}^{F}-\bar{\partial}_{d} g_{a b}^{F}\right)
\end{gathered}
$$

Outline

1. Cartan geometry in gravity
1.1 Preliminaries1.2 MacDowell-Mansouri gravity1.3 Poincarè gauge gravity
2. Finsler geometry and gravity
2.1 Preliminaries
2.2 Cartan geometry on observer space
2.3 Finsler-Cartan-Gravity
3. Symmetry in Cartan geometry
3.1 Spacetime symmetry
3.2 Observer space symmetry
4. Conclusion

Observer space

- Recall from the definition of Finsler spacetimes:
- Set $\Omega_{x} \subset T_{x} M$ of unit timelike vectors at $x \in M$.
- Ω_{x} contains a closed connected component $S_{x} \subseteq \Omega_{x}$.

Observer space

- Recall from the definition of Finsler spacetimes:
- Set $\Omega_{x} \subset T_{x} M$ of unit timelike vectors at $x \in M$.
- Ω_{x} contains a closed connected component $S_{x} \subseteq \Omega_{x}$.
- Definition of observer space:

$$
O=\bigcup_{x \in M} S_{x}
$$

\Rightarrow Tangent vectors $y \in S_{x}$ satisfy $g_{a b}^{F}(x, y) y^{a} y^{b}=1$.

Observer space

- Recall from the definition of Finsler spacetimes:
- Set $\Omega_{x} \subset T_{x} M$ of unit timelike vectors at $x \in M$.
- Ω_{x} contains a closed connected component $S_{x} \subseteq \Omega_{x}$.
- Definition of observer space:

$$
O=\bigcup_{x \in M} S_{x}
$$

\Rightarrow Tangent vectors $y \in S_{x}$ satisfy $g_{a b}^{F}(x, y) y^{a} y^{b}=1$.

- Complete $y=f_{0}$ to a frame f_{i} with $g_{a b}^{F}(x, y) f_{i}^{a} f_{j}^{b}=-\eta_{i j}$.
- Let P be the space of all observer frames.
$\Rightarrow \pi: P \rightarrow O$ is a principal $\mathrm{SO}(3)$-bundle.
- In general no principal $\mathrm{SO}_{0}(3,1)$-bundle $\tilde{\pi}: P \rightarrow M$.

Cartan connection - translational part

- Need to construct $A \in \Omega^{1}(P, \mathfrak{g})$.
- Recall that

$$
\begin{aligned}
& \mathfrak{g}=\mathfrak{h} \oplus \mathfrak{z} \\
& \boldsymbol{A}=\omega+\boldsymbol{e}
\end{aligned}
$$

\Rightarrow Need to construct $\omega \in \Omega^{1}(P, \mathfrak{h})$ and $e \in \Omega^{1}(P, \mathfrak{z})$.

Cartan connection - translational part

- Need to construct $A \in \Omega^{1}(P, \mathfrak{g})$.
- Recall that

$$
\begin{aligned}
& \mathfrak{g}=\mathfrak{h} \oplus \mathfrak{z} \\
& \boldsymbol{A}=\omega+\boldsymbol{e}
\end{aligned}
$$

\Rightarrow Need to construct $\omega \in \Omega^{1}(P, \mathfrak{h})$ and $e \in \Omega^{1}(P, \mathfrak{z})$.

- Definition of e : Use the solder form.
- Let $w \in T_{(x, f)} P$ be a tangent vector.
- Differential of the projection $\tilde{\pi}: P \rightarrow M$ yields $\tilde{\pi}_{*}(w) \in T_{x} M$.
- View frame f as a linear isometry $f: \mathfrak{z} \rightarrow T_{x} M$.
- Solder form given by $e(w)=f^{-1}\left(\tilde{\pi}_{*}(w)\right)$.

Cartan connection - boost / rotational part

- Definition of ω :
- Frames (x, f) and (x, f^{\prime}) related by generalized Lorentz transform.
[C. Pfeifer, M. Wohlfarth '11]
- Relation between f and f^{\prime} defined by parallel transport on O.
- Tangent vector $w \in T_{(x, f)} P$ "shifts" frame f by small amount.
- Compare shifted frame with parallely transported frame.
- Measure the difference using the original frame:

$$
\Delta f_{i}^{a}=\epsilon_{j}^{a} \omega^{j}{ }_{i}(w) .
$$

Cartan connection - boost / rotational part

- Definition of ω :
- Frames (x, f) and $\left(x, f^{\prime}\right)$ related by generalized Lorentz transform.
[C. Pfeifer, M. Wohlfarth '11]
- Relation between f and f^{\prime} defined by parallel transport on O.
- Tangent vector $w \in T_{(x, f)} P$ "shifts" frame f by small amount.
- Compare shifted frame with parallely transported frame.
- Measure the difference using the original frame:

$$
\Delta f_{i}^{a}=\epsilon f_{j}^{a} \omega_{i}^{j}(w) .
$$

- Choose parallel transport on O so that g^{F} is covariantly constant.
- Connection on Finsler geometry: Cartan linear connection.

Cartan connection - boost / rotational part

- Definition of ω :
- Frames (x, f) and $\left(x, f^{\prime}\right)$ related by generalized Lorentz transform.
[C. Pfeifer, M. Wohlfarth '11]
- Relation between f and f^{\prime} defined by parallel transport on O.
- Tangent vector $w \in T_{(x, f)} P$ "shifts" frame f by small amount.
- Compare shifted frame with parallely transported frame.
- Measure the difference using the original frame:

$$
\Delta f_{i}^{a}=\epsilon f_{j}^{a} \omega_{i}^{j}(w) .
$$

- Choose parallel transport on O so that g^{F} is covariantly constant.
- Connection on Finsler geometry: Cartan linear connection.
\Rightarrow Frames f_{i}^{a} and $f_{i}^{a}+\Delta f_{i}^{a}$ are orthonormal wrt the same metric.
$\Rightarrow \omega(w) \in \mathfrak{h}$ is an infinitesimal Lorentz transform.

Cartan connection and fundamental vector fields

- Translational part $e \in \Omega^{1}(P, \mathfrak{z})$:

$$
e^{i}=f^{-1}{ }_{a}^{i} \mathrm{~d} x^{a}
$$

Cartan connection and fundamental vector fields

- Translational part $e \in \Omega^{1}(P, \mathfrak{z})$:

$$
e^{i}=f^{-1}{ }_{a}^{i} \mathrm{~d} x^{a} .
$$

- Boost / rotational part $\omega \in \Omega^{1}(P, \mathfrak{h})$:

$$
\omega_{j}^{i}=f^{-1 i}\left[\mathrm{~d} f_{j}^{a}+f_{j}^{b}\left(\mathrm{~d} x^{c} F^{a}{ }_{b c}+\left(\mathrm{d} x^{d} N^{c}{ }_{d}+\mathrm{d} f_{0}^{c}\right) C^{a}{ }_{b c}\right)\right] .
$$

Cartan connection and fundamental vector fields

- Translational part $e \in \Omega^{1}(P, \mathfrak{z})$:

$$
e^{i}=f^{-1 i}{ }_{a} \mathrm{~d} x^{a} .
$$

- Boost / rotational part $\omega \in \Omega^{1}(P, \mathfrak{h})$:

$$
\omega^{i}{ }_{j}=f^{-1 i}\left[\mathrm{~d} f_{j}^{a}+f_{j}^{b}\left(\mathrm{~d} x^{c} F^{a}{ }_{b c}+\left(\mathrm{d} x^{d} N^{c}{ }_{d}+\mathrm{d} f_{0}^{c}\right) C^{a}{ }_{b c}\right)\right] .
$$

$\Rightarrow A=\omega+e$ is a Cartan connection on $\pi: P \rightarrow O$.

Cartan connection and fundamental vector fields

- Translational part $e \in \Omega^{1}(P, \mathfrak{z})$:

$$
e^{i}=f^{-1 i}{ }_{a} \mathrm{~d} x^{a}
$$

- Boost / rotational part $\omega \in \Omega^{1}(P, \mathfrak{h})$:

$$
\omega^{i}{ }_{j}=f_{a}^{-1 i}\left[\mathrm{~d} f_{j}^{a}+f_{j}^{b}\left(\mathrm{~d} x^{c} F^{a}{ }_{b c}+\left(\mathrm{d} x^{d} N^{c}{ }_{d}+\mathrm{d} f_{0}^{c}\right) C_{b c}^{a}\right)\right] .
$$

$\Rightarrow A=\omega+e$ is a Cartan connection on $\pi: P \rightarrow O$.

- Let $a=z^{i} \mathcal{Z}_{i}+\frac{1}{2} h^{i}{ }_{j} \mathcal{H}_{i}{ }^{j} \in \mathfrak{g}$.

Cartan connection and fundamental vector fields

- Translational part $e \in \Omega^{1}(P, \mathfrak{z})$:

$$
e^{i}=f^{-1 i}{ }_{a} \mathrm{~d} x^{a}
$$

- Boost / rotational part $\omega \in \Omega^{1}(P, \mathfrak{h})$:

$$
\omega^{i}{ }_{j}=f^{-1 i}\left[\mathrm{~d} f_{j}^{a}+f_{j}^{b}\left(\mathrm{~d} x^{c} F^{a}{ }_{b c}+\left(\mathrm{d} x^{d} N^{c}{ }_{d}+\mathrm{d} f_{0}^{c}\right) C^{a}{ }_{b c}\right)\right] .
$$

$\Rightarrow A=\omega+e$ is a Cartan connection on $\pi: P \rightarrow O$.

- Let $a=z^{i} \mathcal{Z}_{i}+\frac{1}{2} h^{i}{ }_{j} \mathcal{H}_{i}{ }^{j} \in \mathfrak{g}$.
- Define the vector field

$$
\underline{A}(a)=z^{i} f_{i}^{a}\left(\partial_{a}-f_{j}^{b} F^{c}{ }_{a b} \bar{\partial}_{c}^{j}\right)+\left(h_{j}^{i} f_{i}^{a}-h_{0}^{i} f_{i}^{b} f_{j}^{c} C^{a}{ }_{b c}\right) \bar{\partial}_{a}^{j} .
$$

Cartan connection and fundamental vector fields

- Translational part $e \in \Omega^{1}(P, \mathfrak{z})$:

$$
e^{i}=f^{-1 i}{ }_{a} \mathrm{~d} x^{a}
$$

- Boost / rotational part $\omega \in \Omega^{1}(P, \mathfrak{h})$:

$$
\omega_{j}^{i}=f_{a}^{-1 i}\left[\mathrm{~d} f_{j}^{a}+f_{j}^{b}\left(\mathrm{~d} x^{c} F_{b c}^{a}+\left(\mathrm{d} x^{d} N^{c}{ }_{d}+\mathrm{d} f_{0}^{c}\right) C_{b c}^{a}\right)\right] .
$$

$\Rightarrow A=\omega+e$ is a Cartan connection on $\pi: P \rightarrow O$.

- Let $a=z^{i} \mathcal{Z}_{i}+\frac{1}{2} h^{i}{ }_{j} \mathcal{H}_{i}{ }^{j} \in \mathfrak{g}$.
- Define the vector field

$$
\underline{A}(a)=z^{i} f_{i}^{a}\left(\partial_{a}-f_{j}^{b} F^{c}{ }_{a b} \bar{\partial}_{c}^{j}\right)+\left(h_{j}^{i} f_{i}^{a}-h_{0}^{i} f_{i}^{b} f_{j}^{c} C^{a}{ }_{b c}\right) \bar{\partial}_{a}^{j}
$$

$\Rightarrow A_{p}: T_{p} P \rightarrow \mathfrak{g}$ and $\underline{A}_{p}: \mathfrak{g} \rightarrow T_{p} P$ complement each other.

Split of the tangent bundle $T P$

- Consider adjoint representation Ad : $K \subset G \rightarrow \operatorname{Aut}(\mathfrak{g})$ of K on \mathfrak{g}.
- \mathfrak{g} splits into irreducible subrepresentations of Ad.

Split of the tangent bundle $T P$

- Consider adjoint representation Ad : $K \subset G \rightarrow \operatorname{Aut}(\mathfrak{g})$ of K on \mathfrak{g}.
- \mathfrak{g} splits into irreducible subrepresentations of Ad.
- Induced decompositions of A and $T P$:

- Subbundles of $T P$ spanned by fundamental vector fields \underline{A}.

Time translation

- Consider the fundamental vector field

$$
\mathbf{t}=\underline{A}\left(\mathcal{Z}_{0}\right)=f_{0}^{a} \partial_{a}-f_{j}^{a} N^{b}{ }_{a} \bar{\partial}_{b}^{j} \quad \Leftrightarrow \quad \omega^{i}{ }_{j}(\mathbf{t})=0, \quad e^{i}(\mathbf{t})=\delta_{0}^{i} .
$$

- Integral curve $\Gamma: \mathbb{R} \rightarrow P, \lambda \mapsto(x(\lambda), f(\lambda))$ of \mathbf{t}.

Time translation

- Consider the fundamental vector field

$$
\mathbf{t}=\underline{A}\left(\mathcal{Z}_{0}\right)=f_{0}^{a} \partial_{a}-f_{j}^{a} N^{b}{ }_{a} \bar{\partial}_{b}^{j} \quad \Leftrightarrow \quad \omega^{i}(\mathbf{t})=0, \quad e^{i}(\mathbf{t})=\delta_{0}^{i} .
$$

- Integral curve $\Gamma: \mathbb{R} \rightarrow P, \lambda \mapsto(x(\lambda), f(\lambda))$ of \mathbf{t}.
- From $e^{i}(\mathbf{t})=\delta_{0}^{i}$ follows:

$$
\dot{x}^{a}=f_{0}^{a}
$$

$\Rightarrow\left(x, f_{0}\right)$ is the canonical lift of a curve from M to O.

Time translation

- Consider the fundamental vector field

$$
\mathbf{t}=\underline{A}\left(\mathcal{Z}_{0}\right)=f_{0}^{a} \partial_{a}-f_{j}^{a} N^{b}{ }_{a} \bar{\partial}_{b}^{j} \quad \Leftrightarrow \quad \omega^{i}(\mathbf{t})=0, \quad e^{i}(\mathbf{t})=\delta_{0}^{i} .
$$

- Integral curve $\Gamma: \mathbb{R} \rightarrow P, \lambda \mapsto(x(\lambda), f(\lambda))$ of \mathbf{t}.
- From $e^{i}(\mathbf{t})=\delta_{0}^{i}$ follows:

$$
\dot{x}^{a}=f_{0}^{a}
$$

$\Rightarrow\left(x, f_{0}\right)$ is the canonical lift of a curve from M to O.

- From $\omega^{i}{ }_{0}(\mathbf{t})=0$ follows:

$$
0=\dot{f}_{0}^{a}+N^{a}{ }_{b} \dot{x}^{b}=\ddot{x}^{a}+N^{a}{ }_{b} \dot{x}^{b} .
$$

$\Rightarrow\left(x, f_{0}\right)$ is a Finsler geodesic.

Time translation

- Consider the fundamental vector field

$$
\mathbf{t}=\underline{A}\left(\mathcal{Z}_{0}\right)=f_{0}^{a} \partial_{a}-f_{j}^{a} N^{b}{ }_{a} \bar{\partial}_{b}^{j} \quad \Leftrightarrow \quad \omega^{i}{ }_{j}(\mathbf{t})=0, \quad e^{i}(\mathbf{t})=\delta_{0}^{i}
$$

- Integral curve $\Gamma: \mathbb{R} \rightarrow P, \lambda \mapsto(x(\lambda), f(\lambda))$ of \mathbf{t}.
- From $\boldsymbol{e}^{i}(\mathbf{t})=\delta_{0}^{i}$ follows:

$$
\dot{x}^{a}=f_{0}^{a}
$$

$\Rightarrow\left(x, f_{0}\right)$ is the canonical lift of a curve from M to O.

- From $\omega^{i}{ }_{0}(\mathbf{t})=0$ follows:

$$
0=\dot{f}_{0}^{a}+N^{a}{ }_{b} \dot{x}^{b}=\ddot{x}^{a}+N^{a}{ }_{b} \dot{x}^{b} .
$$

$\Rightarrow\left(x, f_{0}\right)$ is a Finsler geodesic.

- From $\omega^{\alpha}{ }_{\beta}(\mathbf{t})=0$ follows:

$$
0=\dot{f}_{\alpha}^{a}+f_{\alpha}^{b}\left(\dot{x}^{c} F^{a}{ }_{b c}+\left(\dot{x}^{d} N_{d}^{c}+\dot{f}_{0}^{c}\right) C_{b c}^{a}\right)=\nabla_{\left(\dot{x}, \dot{f}_{0}\right)} f_{\alpha}^{a}
$$

\Rightarrow Frame f is parallely transported.

Curvature of the Cartan connection

- Curvature $F \in \Omega^{2}(P, \mathfrak{g})$ defined by

$$
F=\mathrm{d} A+\frac{1}{2}[A \wedge A]
$$

Curvature of the Cartan connection

- Curvature $F \in \Omega^{2}(P, \mathfrak{g})$ defined by

$$
F=\mathrm{d} A+\frac{1}{2}[A \wedge A]
$$

- Translational part $F_{\mathfrak{z}} \in \Omega^{2}(P, \mathfrak{z})$ ("torsion"):

$$
\mathrm{d} e^{i}+\omega^{i}{ }_{j} \wedge e^{j}=-f^{-1}{ }_{a}^{i} C^{a}{ }_{b c} \mathrm{~d} x^{b} \wedge \delta f_{0}^{c}
$$

with $\delta f_{0}^{C}=N^{c}{ }_{d} \mathrm{~d} x^{d}+\mathrm{d} f_{0}^{C}$.

Curvature of the Cartan connection

- Curvature $F \in \Omega^{2}(P, \mathfrak{g})$ defined by

$$
F=\mathrm{d} A+\frac{1}{2}[A \wedge A]
$$

- Translational part $F_{\mathfrak{z}} \in \Omega^{2}(P, \mathfrak{z})$ ("torsion"):

$$
\mathrm{d} e^{i}+\omega^{i}{ }_{j} \wedge e^{j}=-f^{-1 i}{ }_{a}^{i} C^{a}{ }_{b c} \mathrm{~d} x^{b} \wedge \delta f_{0}^{c}
$$

with $\delta f_{0}^{c}=N^{c}{ }_{d} \mathrm{~d} x^{d}+\mathrm{d} f_{0}^{c}$.

- Boost / rotational part $F_{\mathfrak{h}} \in \Omega^{2}(P, \mathfrak{h})$:

$$
\begin{aligned}
\mathrm{d} \omega^{i}{ }_{j}+\omega^{i}{ }_{k} \wedge \omega^{k}{ }_{j}= & -\frac{1}{2} f^{-1 i}{ }_{\mathrm{d}} f_{j}^{c}\left(R^{d}{ }_{c a b} \mathrm{~d} x^{a} \wedge \mathrm{~d} x^{b}\right. \\
& \left.+2 P^{d}{ }_{c a b} \mathrm{~d} x^{a} \wedge \delta f_{0}^{b}+S^{d}{ }_{c a b} \delta f_{0}^{a} \wedge \delta f_{0}^{b}\right) .
\end{aligned}
$$

Curvature of the Cartan connection

- Curvature $F \in \Omega^{2}(P, \mathfrak{g})$ defined by

$$
F=\mathrm{d} A+\frac{1}{2}[A \wedge A] .
$$

- Translational part $F_{\mathfrak{z}} \in \Omega^{2}(P, \mathfrak{z})$ ("torsion"):

$$
\mathrm{d} e^{i}+\omega^{i}{ }_{j} \wedge e^{j}=-f^{-1 i}{ }_{a} C^{a}{ }_{b c} \mathrm{~d} x^{b} \wedge \delta f_{0}^{c}
$$

with $\delta f_{0}^{c}=N^{c}{ }_{d} \mathrm{~d} x^{d}+\mathrm{d} f_{0}^{c}$.

- Boost / rotational part $F_{\mathfrak{h}} \in \Omega^{2}(P, \mathfrak{h})$:

$$
\begin{aligned}
\mathrm{d} \omega^{i}{ }_{j}+\omega^{i}{ }_{k} \wedge \omega^{k}{ }_{j}= & -\frac{1}{2} f^{-1 i}{ }_{\mathrm{d}} f_{j}^{c}\left(R^{d}{ }_{c a b} \mathrm{~d} x^{a} \wedge \mathrm{~d} x^{b}\right. \\
& \left.+2 P^{d}{ }_{c a b} \mathrm{~d} x^{a} \wedge \delta f_{0}^{b}+S^{d}{ }_{c a b} \delta f_{0}^{a} \wedge \delta f_{0}^{b}\right) .
\end{aligned}
$$

- $R^{d}{ }_{c a b}, P^{d}{ }_{c a b}, S^{d}{ }_{c a b}$: curvature of Cartan linear connection.

Outline

1. Cartan geometry in gravity
 1.1 Preliminaries
 1.2 MacDowell-Mansouri gravity
 1.3 Poincarè gauge gravity

2. Finsler geometry and gravity
2.1 Preliminaries
2.2 Cartan geometry on observer space
2.3 Finsler-Cartan-Gravity
3. Symmetry in Cartan geometry
3.1 Spacetime symmetry
3.2 Observer space symmetry
4. Conclusion

Gravity from Cartan to Finsler

- MacDowell-Mansouri gravity on observer space: [s. Gielen, D. Wise '12]

$$
S_{G}=\int_{O} \epsilon_{\alpha \beta \gamma} \operatorname{tr}_{\mathfrak{h}}\left(F_{\mathfrak{h}} \wedge \star F_{\mathfrak{h}}\right) \wedge b^{\alpha} \wedge b^{\beta} \wedge b^{\gamma}
$$

- Hodge operator \star on \mathfrak{h}.
- Non-degenerate H-invariant inner product $\operatorname{tr}_{\mathfrak{h}}$ on \mathfrak{h}.

Gravity from Cartan to Finsler

- MacDowell-Mansouri gravity on observer space: [s. Gielen, D. Wise '12]

$$
S_{G}=\int_{O} \epsilon_{\alpha \beta \gamma} \operatorname{tr}_{\mathfrak{h}}\left(F_{\mathfrak{h}} \wedge \star F_{\mathfrak{h}}\right) \wedge b^{\alpha} \wedge b^{\beta} \wedge b^{\gamma}
$$

- Hodge operator \star on \mathfrak{h}.
- Non-degenerate H-invariant inner product $\operatorname{tr}_{\mathfrak{h}}$ on \mathfrak{h}.
- Translate terms into Finsler language (with $R=\mathrm{d} \omega+\frac{1}{2}[\omega \wedge \omega]$):
- Curvature scalar:

$$
[e \wedge e] \wedge \star R \rightsquigarrow g^{F a b} R_{a c b}^{c} \mathrm{~d} V .
$$

- Cosmological constant:

$$
[e \wedge e] \wedge \star[e \wedge e] \rightsquigarrow \mathrm{d} V
$$

- Gauss-Bonnet term:

$$
R \wedge \star R \rightsquigarrow \epsilon^{a b c d} \epsilon^{e f g h} R_{a b e f} R_{c d g h} \mathrm{~d} V .
$$

Gravity from Cartan to Finsler

- MacDowell-Mansouri gravity on observer space: [s. Gielen, D. Wise '12]

$$
S_{G}=\int_{O} \epsilon_{\alpha \beta \gamma} \operatorname{tr}_{\mathfrak{h}}\left(F_{\mathfrak{h}} \wedge \star F_{\mathfrak{h}}\right) \wedge b^{\alpha} \wedge b^{\beta} \wedge b^{\gamma}
$$

- Hodge operator \star on \mathfrak{h}.
- Non-degenerate H-invariant inner product $\operatorname{tr}_{\mathfrak{h}}$ on \mathfrak{h}.
- Translate terms into Finsler language (with $R=\mathrm{d} \omega+\frac{1}{2}[\omega \wedge \omega]$):
- Curvature scalar:

$$
[e \wedge e] \wedge \star R \rightsquigarrow g^{F a b} R_{a c b}^{c} \mathrm{~d} V .
$$

- Cosmological constant:

$$
[e \wedge e] \wedge \star[e \wedge e] \rightsquigarrow \mathrm{d} V
$$

- Gauss-Bonnet term:

$$
R \wedge \star R \rightsquigarrow \epsilon^{a b c d} \epsilon^{e f g h} R_{a b e f} R_{c d g h} \mathrm{~d} V .
$$

\Rightarrow Gravity theory on Finsler spacetime.

Gravity from Finsler to Cartan

- Finsler gravity action: [c. Peeierer, M. Wohlfarth'11]

$$
S_{G}=\int_{O} d^{4} x d^{3} y \sqrt{-\tilde{G}} R^{a}{ }_{a b} y^{b}
$$

- Sasaki metric \tilde{G} on O.
- Non-linear curvature $R^{a}{ }_{a b}$.

Gravity from Finsler to Cartan

- Finsler gravity action: [c. Peiefer, M. Wohlfarth '11]

$$
S_{G}=\int_{O} \mathrm{~d}^{4} x \mathrm{~d}^{3} y \sqrt{-\tilde{G}} R^{a}{ }_{a b} y^{b}
$$

- Sasaki metric \tilde{G} on O.
- Non-linear curvature $R^{a}{ }_{a b}$.
- Translate terms into Cartan language:

$$
\begin{aligned}
\mathrm{d}^{4} x \mathrm{~d}^{3} y \sqrt{-\tilde{G}} & =\epsilon_{i j k k} \epsilon_{\alpha \beta \gamma} e^{i} \wedge e^{j} \wedge e^{k} \wedge e^{\prime} \wedge b^{\alpha} \wedge b^{\beta} \wedge b^{\gamma} \\
R^{a}{ }_{a b} y^{b} & =b^{\alpha}\left[\underline{A}\left(\mathcal{Z}_{\alpha}\right), \underline{A}\left(\mathcal{Z}_{0}\right)\right]
\end{aligned}
$$

Gravity from Finsler to Cartan

- Finsler gravity action: [c. Peeifer, M. Wohlfarth'11]

$$
S_{G}=\int_{O} \mathrm{~d}^{4} x \mathrm{~d}^{3} y \sqrt{-\tilde{G}} R^{a}{ }_{a b} y^{b}
$$

- Sasaki metric \tilde{G} on O.
- Non-linear curvature $R^{a}{ }_{a b}$.
- Translate terms into Cartan language:

$$
\begin{aligned}
\mathrm{d}^{4} x \mathrm{~d}^{3} y \sqrt{-\tilde{G}} & =\epsilon_{i j k} \epsilon_{\alpha \beta \gamma} e^{i} \wedge e^{j} \wedge e^{k} \wedge e^{\prime} \wedge b^{\alpha} \wedge b^{\beta} \wedge b^{\gamma} \\
R_{a b}^{a} y^{b} & =b^{\alpha}\left[\underline{A}\left(\mathcal{Z}_{\alpha}\right), \underline{A}\left(\mathcal{Z}_{0}\right)\right]
\end{aligned}
$$

\Rightarrow Gravity theory on observer space.

Outline

```
1. Cartan geometry in gravity
1.1 Preliminaries
1.2 MacDowell-Mansouri gravity
1.3 Poincarè gauge gravity
2. Finsler geometry and gravity
2.1 Preliminaries
2.2 Cartan geometry on observer space
2.3 Finsler-Cartan-Gravity
```

3. Symmetry in Cartan geometry
3.1 Spacetime symmetry
3.2 Observer space symmetry

4. Conclusion

Outline

```
1. Cartan geometry in gravity
1.1 Preliminaries
1.2 MacDowell-Mansouri gravity
1.3 Poincarè gauge gravity
2. Finsler geometry and gravity
2.1 Preliminaries
2.2 Cartan geometry on observer space
2.3 Finsler-Cartan-Gravity
```

3. Symmetry in Cartan geometry
3.1 Spacetime symmetry
3.2 Observer space symmetry

4. Conclusion

Symmetries of first-order reductive Cartan geometry

- Frame bundle lift of a vector field $\xi^{a} \partial_{a} \in \operatorname{Vect}(M)$ to $\operatorname{GL}(M)$:

$$
\bar{\xi}=\xi^{a} \frac{\partial}{\partial x^{a}}+f_{i}^{a} \partial_{a} \xi^{b} \frac{\partial}{\partial f_{i}^{b}} \in \operatorname{Vect}(\operatorname{GL}(M))
$$

Symmetries of first-order reductive Cartan geometry

- Frame bundle lift of a vector field $\xi^{a} \partial_{a} \in \operatorname{Vect}(M)$ to $\operatorname{GL}(M)$:

$$
\bar{\xi}=\xi^{a} \frac{\partial}{\partial x^{a}}+f_{i}^{a} \partial_{a} \xi^{b} \frac{\partial}{\partial f_{i}^{b}} \in \operatorname{Vect}(\operatorname{GL}(M))
$$

- Symmetry requires that ξ is tangent to $P \subset \mathrm{GL}(M)$.

Symmetries of first-order reductive Cartan geometry

- Frame bundle lift of a vector field $\xi^{a} \partial_{a} \in \operatorname{Vect}(M)$ to $\operatorname{GL}(M)$:

$$
\bar{\xi}=\xi^{a} \frac{\partial}{\partial x^{a}}+f_{i}^{a} \partial_{a} \xi^{b} \frac{\partial}{\partial f_{i}^{b}} \in \operatorname{Vect}(\operatorname{GL}(M))
$$

- Symmetry requires that ξ is tangent to $P \subset G L(M)$.
\Rightarrow Solder form e is always invariant:

$$
\mathcal{L}_{\bar{\xi}} e=0 .
$$

Symmetries of first-order reductive Cartan geometry

- Frame bundle lift of a vector field $\xi^{a} \partial_{a} \in \operatorname{Vect}(M)$ to $\operatorname{GL}(M)$:

$$
\bar{\xi}=\xi^{a} \frac{\partial}{\partial x^{a}}+f_{i}^{a} \partial_{a} \xi^{b} \frac{\partial}{\partial f_{i}^{b}} \in \operatorname{Vect}(\operatorname{GL}(M))
$$

- Symmetry requires that ξ is tangent to $P \subset G L(M)$.
\Rightarrow Solder form e is always invariant:

$$
\mathcal{L}_{\bar{\xi}} e=0
$$

- Symmetry condition is invariance of Cartan connection:

$$
\mathcal{L}_{\bar{\xi}} \omega=0 .
$$

Riemann-Cartan, Riemann \& Weizenböck

- Riemann-Cartan spacetime:
- Metric g and torsion T determine connection

$$
\Gamma^{a}{ }_{b c}=\frac{1}{2} g^{a d}\left(\partial_{b} g_{d c}+\partial_{c} g_{b d}-\partial_{d} g_{b c}-g_{b e} T^{e}{ }_{c d}-g_{c e} T^{e}{ }_{b d}\right)+\frac{1}{2} T^{a}{ }_{c b} .
$$

\Rightarrow Cartan geometry with Cartan curvature $F=\mathrm{d} A+A \wedge A \in \Omega^{2}(P, \mathfrak{g})$.
\Rightarrow Symmetry of Cartan geometry $\Leftrightarrow \mathcal{L}_{\xi} g=0, \mathcal{L}_{\xi} T=0$.

Riemann-Cartan, Riemann \& Weizenböck

- Riemann-Cartan spacetime:
- Metric g and torsion T determine connection

$$
\Gamma^{a}{ }_{b c}=\frac{1}{2} g^{a d}\left(\partial_{b} g_{d c}+\partial_{c} g_{b d}-\partial_{d} g_{b c}-g_{b e} T^{e}{ }_{c d}-g_{c e} T^{e}{ }_{b d}\right)+\frac{1}{2} T^{a}{ }_{c b}
$$

\Rightarrow Cartan geometry with Cartan curvature $F=\mathrm{d} A+A \wedge A \in \Omega^{2}(P, \mathfrak{g})$.
\Rightarrow Symmetry of Cartan geometry $\Leftrightarrow \mathcal{L}_{\xi} g=0, \mathcal{L}_{\xi} T=0$.

- Riemannian spacetime:
- Metric g determines Levi-Civita connection

$$
\Gamma^{a}{ }_{b c}=\frac{1}{2} g^{a d}\left(\partial_{b} g_{d c}+\partial_{c} g_{b d}-\partial_{d} g_{b c}\right)
$$

\Rightarrow Cartan geometry with Cartan curvature $F=\mathrm{d} A+A \wedge A \in \Omega^{2}(P, \mathfrak{h})$.
\Rightarrow Symmetry of Cartan geometry $\Leftrightarrow \mathcal{L}_{\xi} g=0$.

Riemann-Cartan, Riemann \& Weizenböck

- Riemann-Cartan spacetime:
- Metric g and torsion T determine connection

$$
\Gamma^{a}{ }_{b c}=\frac{1}{2} g^{a d}\left(\partial_{b} g_{d c}+\partial_{c} g_{b d}-\partial_{d} g_{b c}-g_{b e} T^{e}{ }_{c d}-g_{c e} T^{e}{ }_{b d}\right)+\frac{1}{2} T^{a}{ }_{c b} .
$$

\Rightarrow Cartan geometry with Cartan curvature $F=\mathrm{d} A+A \wedge A \in \Omega^{2}(P, \mathfrak{g})$.
\Rightarrow Symmetry of Cartan geometry $\Leftrightarrow \mathcal{L}_{\xi} g=0, \mathcal{L}_{\xi} T=0$.

- Riemannian spacetime:
- Metric g determines Levi-Civita connection

$$
\Gamma_{b c}^{a}=\frac{1}{2} g^{a d}\left(\partial_{b} g_{d c}+\partial_{c} g_{b d}-\partial_{d} g_{b c}\right)
$$

\Rightarrow Cartan geometry with Cartan curvature $F=\mathrm{d} A+A \wedge A \in \Omega^{2}(P, \mathfrak{h})$.
\Rightarrow Symmetry of Cartan geometry $\Leftrightarrow \mathcal{L}_{\xi} g=0$.

- Weizenböck spacetime:
- Vielbein h determines Weizenböck connection

$$
\Gamma^{a}{ }_{b c}=h_{i}^{a} \partial_{c} h_{b}^{i} .
$$

\Rightarrow Cartan geometry with Cartan curvature $F=\mathrm{d} A+A \wedge A \in \Omega^{2}(P, \mathfrak{z})$.
\Rightarrow Symmetry of Cartan geometry $\Leftrightarrow \mathcal{L}_{\xi} h=\lambda h, \lambda \in \mathfrak{h}$.

Outline

```
1. Cartan geometry in gravity
1.1 Preliminaries
1.2 MacDowell-Mansouri gravity
1.3 Poincarè gauge gravity
2. Finsler geometry and gravity
2.1 Preliminaries
2.2 Cartan geometry on observer space
2.3 Finsler-Cartan-Gravity
```

3. Symmetry in Cartan geometry

3.1 Spacetime symmetry

3.2 Observer space symmetry

4. Conclusion

Symmetries of observer space

- Structures induced by Cartan geometry $(\pi: P \rightarrow O, A)$:
- Tangent bundle split $T O=V O \oplus \overrightarrow{H O} \oplus H^{0} O$.
- Projectors $P_{V}, P_{\vec{H}}, P_{H^{0}}, P_{H}=P_{\vec{H}}+P_{H^{0}}$ onto subbundles.
- Vector bundle isomorphism $\Theta: V O \rightarrow \vec{H} O$.
- "Time translation" vector field $\mathbf{r} \in \Gamma\left(H^{0} O\right)$.

Symmetries of observer space

- Structures induced by Cartan geometry $(\pi: P \rightarrow O, A)$:
- Tangent bundle split $T O=V O \oplus \overrightarrow{H O} \oplus H^{0} O$.
- Projectors $P_{V}, P_{\vec{H}}, P_{H^{0}}, P_{H}=P_{\vec{H}}+P_{H^{0}}$ onto subbundles.
- Vector bundle isomorphism $\Theta: V O \rightarrow \vec{H} O$.
- "Time translation" vector field $\mathbf{r} \in \Gamma\left(H^{0} O\right)$.
- $\equiv \in \operatorname{Vect}(O)$ called "spatio-temporal" if:
- Boost component of \equiv is time derivative of spatial translation:

$$
P_{H} \circ \mathcal{L}_{\mathbf{r}}\left(P_{H} \circ \equiv\right)=\Theta \circ P_{V} \circ \equiv .
$$

- 三 does not depend on vertical directions:

$$
P_{H} \circ \mathcal{L}_{\Upsilon}\left(P_{H} \circ \equiv\right)=0 \quad \text { for } \quad \Upsilon \in \Gamma(V O)
$$

Symmetries of observer space

- Structures induced by Cartan geometry $(\pi: P \rightarrow O, A)$:
- Tangent bundle split $T O=V O \oplus \overrightarrow{H O} \oplus H^{0} O$.
- Projectors $P_{V}, P_{\vec{H}}, P_{H^{0}}, P_{H}=P_{\vec{H}}+P_{H^{0}}$ onto subbundles.
- Vector bundle isomorphism $\Theta: V O \rightarrow \overrightarrow{H O}$.
- "Time translation" vector field $\mathbf{r} \in \Gamma\left(H^{0} O\right)$.
- $\equiv \in \operatorname{Vect}(O)$ called "spatio-temporal" if:
- Boost component of \equiv is time derivative of spatial translation:

$$
P_{H} \circ \mathcal{L}_{\mathbf{r}}\left(P_{H} \circ \equiv\right)=\Theta \circ P_{V} \circ \equiv .
$$

- 三 does not depend on vertical directions:

$$
P_{H} \circ \mathcal{L}_{\Upsilon}\left(P_{H} \circ \equiv\right)=0 \quad \text { for } \quad \Upsilon \in \Gamma(V O) .
$$

- Symmetry of Cartan geometry:
- 言 is tangent to $P \subset F O=G L(O)$.
- A is invariant under $\bar{\equiv}$, i.e., $\mathcal{L} \equiv A=0$.

Finsler spacetime symmetries

- Tangent bundle lift of a vector field $\xi^{a} \partial_{a} \in \operatorname{Vect}(M)$ to $T M$:

$$
\hat{\xi}=\xi^{a} \frac{\partial}{\partial x^{a}}+y^{a} \partial_{a} \xi^{b} \frac{\partial}{\partial y^{b}} \in \operatorname{Vect}(T M)
$$

Finsler spacetime symmetries

- Tangent bundle lift of a vector field $\xi^{a} \partial_{a} \in \operatorname{Vect}(M)$ to $T M$:

$$
\hat{\xi}=\xi^{a} \frac{\partial}{\partial x^{a}}+y^{a} \partial_{a} \xi^{b} \frac{\partial}{\partial y^{b}} \in \operatorname{Vect}(T M)
$$

- Symmetry of Finsler spacetime:

$$
\mathcal{L}_{\hat{\xi}} F=0 .
$$

Finsler spacetime symmetries

- Tangent bundle lift of a vector field $\xi^{a} \partial_{a} \in \operatorname{Vect}(M)$ to $T M$:

$$
\hat{\xi}=\xi^{a} \frac{\partial}{\partial x^{a}}+y^{a} \partial_{a} \xi^{b} \frac{\partial}{\partial y^{b}} \in \operatorname{Vect}(T M)
$$

- Symmetry of Finsler spacetime:

$$
\mathcal{L}_{\hat{\xi}} F=0 .
$$

- One-to-one correspondence between:

1. Symmetry vector fields $\xi \in \operatorname{Vect}(M)$ of Finsler spacetime.
2. Symmetry vector fields $\equiv \in \operatorname{Vect}(O)$ on Finsler observer space.
\Rightarrow Vector field \equiv is spatio-temporal.

Outline

1. Cartan geometry in gravity
1.1 Preliminaries1.2 MacDowell-Mansouri gravity1.3 Poincarè gauge gravity2. Finsler geometry and gravity2.1 Preliminaries2.2 Cartan geometry on observer space2.3 Finsler-Cartan-Gravity
2. Symmetry in Cartan geometry3.1 Spacetime symmetry3.2 Observer space symmetry
3. Conclusion

Summary

- First-order reductive Cartan geometry:
- Split $\mathfrak{g}=\mathfrak{h} \oplus \mathfrak{z}$ of Lie algebra induced by ad.
- $\pi: P \rightarrow M$ canonically identified with admissible frame bundle.
- $A=\omega+e$ with solder form e and Ehresmann connection ω.
- Suitable models for various gravity theories.

Summary

- First-order reductive Cartan geometry:
- Split $\mathfrak{g}=\mathfrak{h} \oplus \mathfrak{z}$ of Lie algebra induced by ad.
- $\pi: P \rightarrow M$ canonically identified with admissible frame bundle.
- $A=\omega+e$ with solder form e and Ehresmann connection ω.
- Suitable models for various gravity theories.
- Finsler \& Cartan geometry on observer space:
- Finsler geometry motivated by clock postulate.
- Observer space model for Finsler spacetimes.
- Free-fall follows integral curves of time vector field.
- Gravity theories motivated by Finsler and Cartan geometry.

Summary

- First-order reductive Cartan geometry:
- Split $\mathfrak{g}=\mathfrak{h} \oplus \mathfrak{z}$ of Lie algebra induced by ad.
- $\pi: P \rightarrow M$ canonically identified with admissible frame bundle.
- $A=\omega+e$ with solder form e and Ehresmann connection ω.
- Suitable models for various gravity theories.
- Finsler \& Cartan geometry on observer space:
- Finsler geometry motivated by clock postulate.
- Observer space model for Finsler spacetimes.
- Free-fall follows integral curves of time vector field.
- Gravity theories motivated by Finsler and Cartan geometry.
- Spacetime and observer space symmetries:
- Notion of symmetry for first-order reductive Cartan geometry.
- Derive notions of symmetry for spacetime model geometries.
- Observer space model: notion of "spatio-temporal" symmetry.
- Equivalent definition of symmetry of Finsler spacetime.

References

[1] D. K. Wise, "MacDowell-Mansouri gravity and Cartan geometry," Class. Quant. Grav. 27 (2010), 155010 [arXiv:gr-qc/0611154 [gr-qc]].
[2] S. Gielen and D. K. Wise, "Lifting General Relativity to Observer Space," J. Math. Phys. 54 (2013), 052501 [arXiv:1210.0019 [gr-qc]].
[3] MH, "Extensions of Lorentzian spacetime geometry: From Finsler to Cartan and vice versa," Phys. Rev. D 87 (2013) no.12, 124034 [arXiv:1304.5430 [gr-qc]].
[4] MH, "Spacetime and observer space symmetries in the language of Cartan geometry," J. Math. Phys. 57 (2016) no.8, 082502 [arXiv:1505.07809 [math-ph]].
[5] MH, "A geometric view on local Lorentz transformations in teleparallel gravity," Int. J. Geom. Meth. Mod. Phys. 19 (2022) no.Supp01, 2240001 [arXiv:2112.15173 [gr-qc]].

