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Motivation

So far unexplained cosmological observations:
Accelerating expansion of the universe
Homogeneity of cosmic microwave background

Models for explaining these observations:
ΛCDM model / dark energy
Inflation

Physical mechanisms are not understood:
Unknown type of matter?
Modification of the laws of gravity?
Scalar field in addition to metric mediating gravity?
Quantum gravity effects?

Idea here: modification of the geometrical structure of spacetime!
Replace metric spacetime geometry by Finsler geometry.
Similarly: replacing flat spacetime by curved spacetime led to GR.
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Finsler spacetimes

Finsler geometry of space widely used in physics:
Approaches to quantum gravity
Electrodynamics in anisotropic media
Modeling of astronomical data

Finsler geometry generalizes Riemannian geometry:
Geometry described by Finsler function on the tangent bundle.
Finsler function measures length of tangent vectors.
Well-defined notions of connections, curvature, parallel transport. . .

Finsler spacetimes are suitable backgrounds for:
Gravity
Electrodynamics
Other matter field theories

Possible explanations of yet unexplained phenomena:
Fly-by anomaly
Galaxy rotation curves
Accelerating expansion of the universe
Inflation
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The clock postulate

Proper time along a curve in Lorentzian spacetime:

τ =

∫ t2

t1

√
−gab(x(t))ẋa(t)ẋb(t)dt .

Finsler geometry: use a more general length functional:

τ =

∫ t2

t1
F (x(t), ẋ(t))dt .

Finsler function F : TM → R+.
Parametrization invariance requires homogeneity:

F (x , λy) = λF (x , y) ∀λ > 0 .

Manuel Hohmann (University of Tartu) Finsler fluids & cosmology 16. July 2015 4 / 15



The clock postulate

Proper time along a curve in Lorentzian spacetime:

τ =

∫ t2

t1

√
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Finsler spacetimes

Finsler geometries suitable for spacetimes exist. [C. Pfeifer, M. Wohlfarth ’11]

⇒ Finsler metric with Lorentz signature:

gF
ab(x , y) =

1
2
∂

∂ya
∂

∂yb F 2(x , y) .

⇒ Notion of timelike, lightlike, spacelike tangent vectors.

Unit vectors y ∈ TxM defined by

F 2(x , y) = gF
ab(x , y)yayb = 1 .

⇒ Set Ωx ⊂ TxM of unit timelike vectors at x ∈ M.
Ωx contains a closed connected component Sx ⊆ Ωx .

 Causality: Sx corresponds to physical observers.
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Gravitational dynamics

Gravitational action:

SG =
1
κ

∫
Σ

VolG̃Ra
abyb .

Gravitational field equations:[
gF ab∂̄a∂̄b(Rc

cdyd )− 6
Ra

abyb

F 2

+ 2gF ab (∇aSb + SaSb + ∂̄a(ycδcSb − Nc
bSc)

) ]∣∣∣∣
Σ

= κT |Σ

Geometry side obtained by variation of SG with respect to F .
Variation of matter action yields energy-momentum scalar T .
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Point masses on Finsler spacetimes

Point masses follow Finsler geodesics.
Geodesic equation for curve x(τ) on spacetime M:

ẍa + Na
b(x , ẋ)ẋb = 0 .

Canonical lift of curve to tangent bundle TM:

x , y = ẋ ∈ O =
⋃

x∈M

Sx ⊂ TM .

Lift of geodesic equation:

ẋa = ya , ẏa = −Na
b(x , y)yb .

⇒ Solutions are integral curves of vector field on O:

ya∂a − ybNa
b∂̄a = r .

⇒ Point mass trajectories modeled by integral curves of r on O.
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b(x , y)yb .

⇒ Solutions are integral curves of vector field on O:

ya∂a − ybNa
b∂̄a = r .

⇒ Point mass trajectories modeled by integral curves of r on O.

Manuel Hohmann (University of Tartu) Finsler fluids & cosmology 16. July 2015 7 / 15



Point masses on Finsler spacetimes

Point masses follow Finsler geodesics.
Geodesic equation for curve x(τ) on spacetime M:
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Fluids on Finsler spacetimes

Single-component fluid:
Constituted by classical, relativistic particles.
Particles have equal properties (mass, charge, . . . ).
Particles follow piecewise geodesic curves.
Endpoints of geodesics are interactions with other particles.

Continuum limit:
Phase space O is filled with particles.
Particle density function φ : O → R+.

Collisionless fluid:
Particles do not interact with other particles.

⇒ Particles follow geodesics.
⇒ Continuum dynamics given by Liouville equation:

Lrφ = 0 .
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Example: collisionless dust fluid

Variables describing a classical dust fluid:
Mass density ρ : M → R+.
Velocity u : M → O.

Particle density function:

φ(x , y) ∼ ρ(x)δSx (y ,u(x)) .

Apply Liouville equation:

0 = ∇ua = ub∂bua + ubNa
b ,

0 = ∇δa(ρua) = ∂a(ρua) +
1
2
ρuagF bc

(
∂agF

bc − Nd
a∂̄dgF

bc

)
.

Metric limit F 2(x , y) = |gab(x)yayb| yields Euler equations:

ub∇bua = 0 , ∇a(ρua) = 0 .
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Fluid energy-momentum

Energy-momentum functional T [φ]?

Known result for metric perfect fluid:
Density ρ.
Pressure p.
Velocity ua.

Tρ,p,u(x , y) = (1−6(gab(x)ua(x)yb)2)ρ(x)+3(1−2(gab(x)ua(x)yb)2)p(x) .

Generalize to Finsler fluid:
Consider dust: p = 0.
Consider superposition of dust with different velocities.
Integrate over contributions from each velocity.
Generalize gabuavb to Finsler angle.

Tφ(x , v) = m
∫

Sx

d3v ′√det h(x , v ′)φ(x , v ′)(1− 6 cos2^(v , v ′)) .
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Cosmological symmetry

Introduce suitable coordinates on TM:

t , r , θ, ϕ, y t , y r , yθ, yϕ .

Most general Finsler function obeying cosmological symmetry:

F = F (t , y t ,w) , w2 =
(y r )2

1− kr2 + r2
(

(yθ)2 + sin2 θ(yϕ)2
)
.

Homogeneity of Finsler function F (t , y t ,w) = y t F̃ (t ,w/y t ).
Introduce new coordinates: ỹ = y t F̃ (t ,w/y t ), w̃ = w/y t .

⇒ Coordinates on observer space O with ỹ ≡ 1.
⇒ Geometry function F̃ (t , w̃) on O.
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⇒ Geometry function F̃ (t , w̃) on O.

Manuel Hohmann (University of Tartu) Finsler fluids & cosmology 16. July 2015 11 / 15



Cosmological fluid dynamics

Most general fluid obeying cosmological symmetry:

φ = φ(t , w̃) .

Collisionless fluid satisfies Liouville equation:

0 = Lrφ =
1
F̃

(
∂tφ−

∂t∂w̃ F̃
∂2

w̃ F̃
∂w̃φ

)
.

Example: collisionless dust fluid φ(x , y) ∼ ρ(x)δSx (y ,u(x)):

u(t) =
1

F̃ (t ,0)
∂t , ∂t

(
ρ(t)

√
gF (t ,0)

)
= 0 .
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Cosmological gravitational dynamics

Start from gravitational field equations:[
gF ab∂̄a∂̄b(Rc

cdyd )− 6
Ra

abyb

F 2

+ 2gF ab (∇aSb + SaSb + ∂̄a(ycδcSb − Nc
bSc)

) ]∣∣∣∣
Σ

= κT |Σ

Some terms simplify for cosmological symmetry: Ra
abyb.

Some terms don’t simplify at all: Na
b, ∇aSb.

Simplify the problem:
Finsler perturbation of metric geometry.
Finsler function using higher rank tensors: Ha1···an ya1 · · · yan .
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Summary

Finsler spacetimes:
Define geometry by length functional.
Observer space O of physical four-velocities.
Geodesics are integral curves of vector field on O.
Dynamics given by gravitational action.

Fluid dynamics:
Model fluids by point mass trajectories.
Define fluid density on observer space.
Collisionless fluid satisfies Liouville equation.

Cosmology:
All quantities depend on only two coordinates t , w̃ .
Simple equation of motion for cosmological fluid matter.
Gravitational field equation becomes involved.
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Outlook

Derivation of Finsler-Friedmann equations:
Finsler perturbation of metric background.
Simple model Finsler geometry from higher rank tensors.
Fully general Finsler-Friedmann equations?

Solving for cosmological dynamics
Dark energy?
Inflation?
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