Fluid dynamics on generalized geometric backgrounds

Manuel Hohmann

Teoreetilise Füüsika Labor Füüsika Instituut Tartu Ülikool

3. October 2014

- Pinsler geometry and observer space
- 3 Fluids on observer space
- 4 Conclusion

- 2 Finsler geometry and observer space
- 3 Fluids on observer space
- 4 Conclusion

- Perfect fluid:
 - No shear stress, no friction.
 - Characterized by density ρ and pressure p.
 - Dust, dark matter: p = 0.
 - Radiation: $p = \frac{1}{3}\rho$.
 - Dark energy: $p < -\frac{1}{3}\rho$.
 - Used in cosmology, parameterized post-Newtonian formalism...

- Perfect fluid:
 - No shear stress, no friction.
 - Characterized by density ρ and pressure p.
 - Dust, dark matter: *p* = 0.
 - Radiation: $p = \frac{1}{3}\rho$.
 - Dark energy: $p < -\frac{1}{3}\rho$.
 - Used in cosmology, parameterized post-Newtonian formalism...
- Collisionless fluid:
 - Model for dark matter.
 - Used in structure formation...

- Perfect fluid:
 - No shear stress, no friction.
 - Characterized by density ρ and pressure p.
 - Dust, dark matter: *p* = 0.
 - Radiation: $p = \frac{1}{3}\rho$.
 - Dark energy: $p < -\frac{1}{3}\rho$.
 - Used in cosmology, parameterized post-Newtonian formalism...
- Collisionless fluid:
 - Model for dark matter.
 - Used in structure formation...
- Maxwell-Boltzmann gas:
 - Collisions described by Boltzmann equation.
 - Used in structure formation, atmosphere dynamics...

- Perfect fluid:
 - No shear stress, no friction.
 - Characterized by density *ρ* and pressure *ρ*.
 - Dust, dark matter: *p* = 0.
 - Radiation: $p = \frac{1}{3}\rho$.
 - Dark energy: $p < -\frac{1}{3}\rho$.
 - Used in cosmology, parameterized post-Newtonian formalism...
- Collisionless fluid:
 - Model for dark matter.
 - Used in structure formation...
- Maxwell-Boltzmann gas:
 - Collisions described by Boltzmann equation.
 - Used in structure formation, atmosphere dynamics...
- Charged, multi-component gas:
 - Plasma, interacting gas including recombination / ionization.
 - Used in stellar dynamics, pre-CMB era models...

- Fluid dynamics naturally lift to tangent bundle:
 - Fluids conveniently modeled by particle dynamics (SPH...).
 - Physical fluids constituted by particles.
 - Particle trajectories lift to tangent bundle: $\gamma \rightsquigarrow (\gamma, \dot{\gamma})$.
 - \Rightarrow Dynamics on the tangent bundle described by first order ODE.

- Fluid dynamics naturally lift to tangent bundle:
 - Fluids conveniently modeled by particle dynamics (SPH...).
 - Physical fluids constituted by particles.
 - Particle trajectories lift to tangent bundle: $\gamma \rightsquigarrow (\gamma, \dot{\gamma})$.
 - ⇒ Dynamics on the tangent bundle described by first order ODE.
- Velocity dependence of physical measurements:
 - Physical observables are tensor components.
 - Measured tensor components depend on observer velocity.
 - Physical observer velocities are future unit timelike vectors.
 - \Rightarrow Observer space is space of physical velocities.

- Fluid dynamics naturally lift to tangent bundle:
 - Fluids conveniently modeled by particle dynamics (SPH...).
 - Physical fluids constituted by particles.
 - Particle trajectories lift to tangent bundle: $\gamma \rightsquigarrow (\gamma, \dot{\gamma})$.
 - ⇒ Dynamics on the tangent bundle described by first order ODE.
- Velocity dependence of physical measurements:
 - Physical observables are tensor components.
 - Measured tensor components depend on observer velocity.
 - Physical observer velocities are future unit timelike vectors.
 - \Rightarrow Observer space is space of physical velocities.
- Quantum gravity: possible non-tensorial observer dependence.
- Modified gravity theories may have more general observer spaces.
- ⇒ Physical observables become functions on observer space!

- Fluid dynamics naturally lift to tangent bundle:
 - Fluids conveniently modeled by particle dynamics (SPH...).
 - Physical fluids constituted by particles.
 - Particle trajectories lift to tangent bundle: $\gamma \rightsquigarrow (\gamma, \dot{\gamma})$.
 - ⇒ Dynamics on the tangent bundle described by first order ODE.
- Velocity dependence of physical measurements:
 - Physical observables are tensor components.
 - Measured tensor components depend on observer velocity.
 - Physical observer velocities are future unit timelike vectors.
 - \Rightarrow Observer space is space of physical velocities.
- Quantum gravity: possible non-tensorial observer dependence.
- Modified gravity theories may have more general observer spaces.
- \Rightarrow Physical observables become functions on observer space!
 - Space of observers corresponds to particle tangent vectors.
- ⇒ Consider fluid dynamics on observer space!

- Finsler geometry of space widely used in physics:
 - Approaches to quantum gravity
 - Electrodynamics in anisotropic media
 - Modeling of astronomical data

- Finsler geometry of space widely used in physics:
 - Approaches to quantum gravity
 - Electrodynamics in anisotropic media
 - Modeling of astronomical data
- Finsler geometry generalizes Riemannian geometry:
 - Geometry described by Finsler function on the tangent bundle.
 - Finsler function measures length of tangent vectors.
 - Well-defined notions of connections, curvature, parallel transport...

- Finsler geometry of space widely used in physics:
 - Approaches to quantum gravity
 - Electrodynamics in anisotropic media
 - Modeling of astronomical data
- Finsler geometry generalizes Riemannian geometry:
 - Geometry described by Finsler function on the tangent bundle.
 - Finsler function measures length of tangent vectors.
 - Well-defined notions of connections, curvature, parallel transport...
- Finsler spacetimes are suitable backgrounds for:
 - Gravity
 - Electrodynamics
 - Other matter field theories

- Finsler geometry of space widely used in physics:
 - Approaches to quantum gravity
 - Electrodynamics in anisotropic media
 - Modeling of astronomical data
- Finsler geometry generalizes Riemannian geometry:
 - Geometry described by Finsler function on the tangent bundle.
 - Finsler function measures length of tangent vectors.
 - Well-defined notions of connections, curvature, parallel transport...
- Finsler spacetimes are suitable backgrounds for:
 - Gravity
 - Electrodynamics
 - Other matter field theories
- Possible explanations of yet unexplained phenomena:
 - Fly-by anomaly
 - Galaxy rotation curves
 - Accelerating expansion of the universe

- 2 Finsler geometry and observer space
 - 3 Fluids on observer space
- Conclusion

The clock postulate

• Proper time along a curve in Lorentzian spacetime:

$$au = \int_{t_1}^{t_2} \sqrt{-g_{ab}(x(t))\dot{x}^a(t)\dot{x}^b(t)}dt$$
 .

The clock postulate

• Proper time along a curve in Lorentzian spacetime:

$$\tau = \int_{t_1}^{t_2} \sqrt{-g_{ab}(x(t))\dot{x}^a(t)\dot{x}^b(t)}dt.$$

• Finsler geometry: use a more general length functional:

$$\tau = \int_{t_1}^{t_2} F(\boldsymbol{x}(t), \dot{\boldsymbol{x}}(t)) dt.$$

- Finsler function $F : TM \to \mathbb{R}^+$.
- Parametrization invariance requires homogeneity:

$$F(x, \lambda y) = \lambda F(x, y) \quad \forall \lambda > 0.$$

- Finsler geometries suitable for spacetimes exist. [C. Pfeifer, M. Wohlfarth '11]
- \Rightarrow Finsler metric with Lorentz signature:

$$g_{ab}^{F}(x,y) = \frac{1}{2} \frac{\partial}{\partial y^{a}} \frac{\partial}{\partial y^{b}} F^{2}(x,y).$$

 \Rightarrow Notion of timelike, lightlike, spacelike tangent vectors.

- Finsler geometries suitable for spacetimes exist. [C. Pfeifer, M. Wohlfarth '11]
- \Rightarrow Finsler metric with Lorentz signature:

$$\frac{g_{ab}^{F}(x,y)}{2} = \frac{1}{2} \frac{\partial}{\partial y^{a}} \frac{\partial}{\partial y^{b}} F^{2}(x,y) \,.$$

- \Rightarrow Notion of timelike, lightlike, spacelike tangent vectors.
- Unit vectors $y \in T_x M$ defined by

$$F^2(x,y) = \frac{g^F_{ab}}{(x,y)}y^a y^b = 1.$$

⇒ Set $\Omega_x \subset T_x M$ of unit timelike vectors at $x \in M$.

- Finsler geometries suitable for spacetimes exist. [C. Pfeifer, M. Wohlfarth '11]
- \Rightarrow Finsler metric with Lorentz signature:

$$g_{ab}^{F}(x,y) = \frac{1}{2} \frac{\partial}{\partial y^{a}} \frac{\partial}{\partial y^{b}} F^{2}(x,y).$$

- \Rightarrow Notion of timelike, lightlike, spacelike tangent vectors.
- Unit vectors $y \in T_x M$ defined by

$$F^2(x,y) = g^F_{ab}(x,y)y^ay^b = 1.$$

- \Rightarrow Set $\Omega_x \subset T_x M$ of unit timelike vectors at $x \in M$.
 - Ω_x contains a closed connected component $S_x \subseteq \Omega_x$.
- \rightsquigarrow Causality: S_x corresponds to physical observers.

• Cartan non-linear connection:

$$N^{a}{}_{b} = \frac{1}{4} \bar{\partial}_{b} \left[g^{Fac} (y^{d} \partial_{d} \bar{\partial}_{c} F^{2} - \partial_{c} F^{2}) \right]$$

• Cartan non-linear connection:

$$N^a{}_b = rac{1}{4} ar{\partial}_b \left[g^{F\,ac} (y^d \partial_d ar{\partial}_c F^2 - \partial_c F^2)
ight]$$

 \Rightarrow Split of the tangent and cotangent bundles:

• Tangent bundle: *TTM* = *HTM* \oplus *VTM*

$$\delta_{a} = \partial_{a} - N^{b}{}_{a}\bar{\partial}_{b}, \quad \bar{\partial}_{a}$$

• Cotangent bundle: $T^*TM = H^*TM \oplus V^*TM$

$$dx^a$$
, $\delta y^a = dy^a + N^a{}_b dx^b$

• Cartan non-linear connection:

$$N^{a}{}_{b} = rac{1}{4} ar{\partial}_{b} \left[g^{F\,ac} (y^{d} \partial_{d} ar{\partial}_{c} F^{2} - \partial_{c} F^{2})
ight]$$

 \Rightarrow Split of the tangent and cotangent bundles:

• Tangent bundle: *TTM* = *HTM* \oplus *VTM*

$$\delta_{a} = \partial_{a} - N^{b}{}_{a}\bar{\partial}_{b}\,,\quad \bar{\partial}_{a}$$

• Cotangent bundle: $T^*TM = H^*TM \oplus V^*TM$

$$dx^a$$
, $\delta y^a = dy^a + N^a{}_b dx^b$

• Sasaki metric:

$$G = -g^{F}_{ab} \, dx^{a} \otimes dx^{b} - rac{g^{F}_{ab}}{F^{2}} \, \delta y^{a} \otimes \delta y^{b}$$

• Cartan non-linear connection:

$$N^{a}{}_{b} = rac{1}{4} ar{\partial}_{b} \left[g^{F\,ac} (y^{d} \partial_{d} ar{\partial}_{c} F^{2} - \partial_{c} F^{2})
ight]$$

 \Rightarrow Split of the tangent and cotangent bundles:

• Tangent bundle: $TTM = HTM \oplus VTM$

$$\delta_{a} = \partial_{a} - N^{b}{}_{a}\bar{\partial}_{b}\,,\quad \bar{\partial}_{a}$$

• Cotangent bundle: $T^*TM = H^*TM \oplus V^*TM$

$$dx^a$$
, $\delta y^a = dy^a + N^a{}_b dx^b$

Sasaki metric:

$${f G}=-g^{F}_{ab}\,dx^{a}\otimes dx^{b}-{g^{F}_{ab}\over F^{2}}\,\delta y^{a}\otimes\delta y^{b}$$

Geodesic spray:

 $\mathbf{S} = y^a \delta_a$

- Recall from the definition of Finsler spacetimes:
 - Set $\Omega_x \subset T_x M$ of unit timelike vectors at $x \in M$.
 - Physical observers correspond to $S_x \subseteq \Omega_x$.
- Definition of observer space:

$$O=\bigcup_{x\in M} S_x\subset TM.$$

- Recall from the definition of Finsler spacetimes:
 - Set $\Omega_x \subset T_x M$ of unit timelike vectors at $x \in M$.
 - Physical observers correspond to $S_x \subseteq \Omega_x$.
- Definition of observer space:

$$O = \bigcup_{x \in M} S_x \subset TM$$
.

- Sasaki metric \tilde{G} on O given by pullback of G to O.
- Volume form Σ of Sasaki metric G̃.
- Geodesic spray **S** restricts to Reeb vector field **r** on *O*.

- Recall from the definition of Finsler spacetimes:
 - Set $\Omega_x \subset T_x M$ of unit timelike vectors at $x \in M$.
 - Physical observers correspond to $S_x \subseteq \Omega_x$.
- Definition of observer space:

$$O=\bigcup_{x\in M}S_x\subset TM.$$

- Sasaki metric \tilde{G} on O given by pullback of G to O.
- Volume form Σ of Sasaki metric G̃.
- Geodesic spray **S** restricts to Reeb vector field **r** on *O*.
- Geodesic hypersurface measure $\omega = \iota_r \Sigma$.
- Note that $\mathcal{L}_{\mathbf{r}}\Sigma = 0$ and $d\omega = 0$.

From metric to Finsler geometry

Tangent bundle geometry:

Finsler function:

$$F(x,y) = \sqrt{|g_{ab}(x)y^ay^b|}$$

• Finsler metric:

$$g^{F}_{ab}(x,y) = egin{cases} -g_{ab}(x) & y ext{ timelike} \ g_{ab}(x) & y ext{ spacelike} \end{cases}$$

• Cartan non-linear connection:

$$N^{a}{}_{b}(x,y) = \Gamma^{a}{}_{bc}(x)y^{c}$$

From metric to Finsler geometry

Tangent bundle geometry:

Finsler function:

$$F(x,y) = \sqrt{|g_{ab}(x)y^ay^b|}$$

Finsler metric:

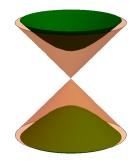
$$g^{F}_{ab}(x,y) = egin{cases} -g_{ab}(x) & y ext{ timelike} \ g_{ab}(x) & y ext{ spacelike} \end{cases}$$

Cartan non-linear connection:

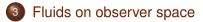
$$N^{a}_{b}(x,y) = \Gamma^{a}_{bc}(x)y^{c}$$

• Observer space:

- Space Ω_x of unit timelike vectors at $x \in M$.
- Space S_x of future unit timelike vectors at $x \in M$.
- Observer space O: union of shells S_x .



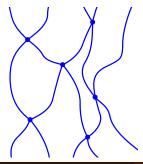
2 Finsler geometry and observer space



4 Conclusion

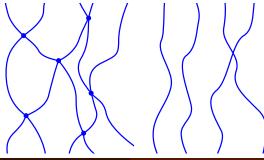
Definition of fluids

- Single-component fluid:
 - Constituted by classical, relativistic particles.
 - Particles have equal properties (mass, charge, ...).
 - Particles follow piecewise geodesic curves.
 - Endpoints of geodesics are interactions with other particles.



Definition of fluids

- Single-component fluid:
 - Constituted by classical, relativistic particles.
 - Particles have equal properties (mass, charge, ...).
 - Particles follow piecewise geodesic curves.
 - Endpoints of geodesics are interactions with other particles.
- Collisionless fluid:
 - Particles do not interact with other particles.
 - ⇒ Particles follow geodesics.



Definition of fluids

- Single-component fluid:
 - Constituted by classical, relativistic particles.
 - Particles have equal properties (mass, charge, ...).
 - Particles follow piecewise geodesic curves.
 - Endpoints of geodesics are interactions with other particles.
- Collisionless fluid:
 - Particles do not interact with other particles.
 - \Rightarrow Particles follow geodesics.
- Multi-component fluid: multiple types of particles.

Geodesics on observer space

- Dynamics of fluids depends on geodesic equation.
- Geodesic equation for curve $x(\tau)$ on spacetime *M*:

$$\ddot{x}^a + N^a{}_b(x, \dot{x})\dot{x}^b = 0$$

Geodesics on observer space

- Dynamics of fluids depends on geodesic equation.
- Geodesic equation for curve $x(\tau)$ on spacetime *M*:

$$\ddot{x}^a + N^a{}_b(x,\dot{x})\dot{x}^b = 0.$$

• Canonical lift of curve to tangent bundle TM:

$$x, \quad y = \dot{x}.$$

• Lift of geodesic equation:

$$\dot{x}^a = y^a$$
, $\dot{y}^a = -N^a{}_b(x,y)y^b$.

Geodesics on observer space

- Dynamics of fluids depends on geodesic equation.
- Geodesic equation for curve $x(\tau)$ on spacetime *M*:

$$\ddot{x}^a + N^a{}_b(x,\dot{x})\dot{x}^b = 0.$$

• Canonical lift of curve to tangent bundle TM:

$$x$$
, $y = \dot{x}$.

• Lift of geodesic equation:

$$\dot{x}^a = y^a$$
, $\dot{y}^a = -N^a{}_b(x,y)y^b$.

 \Rightarrow Solutions are integral curves of vector field:

$$y^a \partial_a - y^b N^a{}_b \bar{\partial}_a = y^a \delta_a = \mathbf{S}.$$

Geodesics on observer space

- Dynamics of fluids depends on geodesic equation.
- Geodesic equation for curve $x(\tau)$ on spacetime *M*:

$$\ddot{x}^a + N^a{}_b(x,\dot{x})\dot{x}^b = 0$$
.

• Canonical lift of curve to tangent bundle TM:

$$x$$
, $y = \dot{x}$.

• Lift of geodesic equation:

$$\dot{x}^a = y^a$$
, $\dot{y}^a = -N^a{}_b(x,y)y^b$.

 \Rightarrow Solutions are integral curves of vector field:

$$y^a \partial_a - y^b N^a{}_b \bar{\partial}_a = y^a \delta_a = \mathbf{S}.$$

• Tangent vectors are future unit timelike: $(x, y) \in O$.

 \Rightarrow Particle trajectories are piecewise integral curves of **r** on *O*.

One-particle distribution function

- Recall: $\omega = \iota_{\mathbf{r}} \Sigma \in \Omega^{6}(O)$ unique 6-form such that:
 - ω non-degenerate on every hypersurface not tangent to **r**.
 - $d\omega = 0$.

One-particle distribution function

• Recall: $\omega = \iota_{\mathbf{r}} \Sigma \in \Omega^{6}(O)$ unique 6-form such that:

ω non-degenerate on every hypersurface not tangent to r.

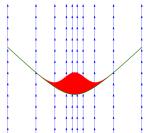
•
$$d\omega = 0.$$

• Define one-particle distribution function $\phi : O \to \mathbb{R}^+$ such that:

For every hypersurface $\sigma \subset O$,

$$\boldsymbol{N}[\sigma] = \int_{\sigma} \boldsymbol{\phi} \boldsymbol{\omega}$$

of particle trajectories through σ .



0

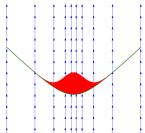
• Counting of particle trajectories respects hypersurface orientation.

One-particle distribution function

- Recall: $\omega = \iota_{\mathbf{r}} \Sigma \in \Omega^{6}(O)$ unique 6-form such that:
 - ω non-degenerate on every hypersurface not tangent to ${\bf r}$.
 - $d\omega = 0$.
- Define one-particle distribution function $\phi : O \to \mathbb{R}^+$ such that:
 - For every hypersurface $\sigma \subset O$,

$$\boldsymbol{N}[\sigma] = \int_{\sigma} \boldsymbol{\phi} \boldsymbol{\omega}$$

of particle trajectories through σ .



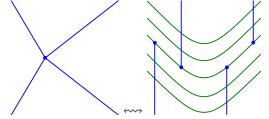
۹

• Counting of particle trajectories respects hypersurface orientation.

• For multi-component fluids: ϕ_i for each component *i*.

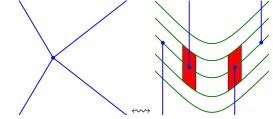
Collisions & the Liouville equation

• Collision in spacetime ++++ interruption in observer space.



Collisions & the Liouville equation

• Collision in spacetime ++++ interruption in observer space.



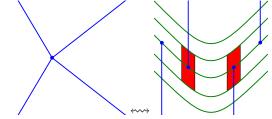
• For any open set
$$V \in O$$
,

$$\int_{\partial V} \phi \omega = \int_{V} d(\phi \omega) = \int_{V} \mathcal{L}_{\mathbf{r}} \phi \Sigma$$

of outbound trajectories - # of inbound trajectories. \Rightarrow Collision density measured by $\mathcal{L}_{\mathbf{r}}\phi$.

Collisions & the Liouville equation

• Collision in spacetime +++ interruption in observer space.



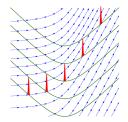
• For any open set
$$V \in O$$
,

$$\int_{\partial V} \phi \omega = \int_{V} d(\phi \omega) = \int_{V} \mathcal{L}_{\mathbf{r}} \phi \Sigma$$

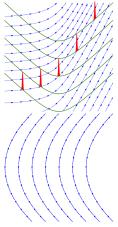
of outbound trajectories - # of inbound trajectories.

- \Rightarrow Collision density measured by $\mathcal{L}_{\mathbf{r}}\phi$.
- Collisionless fluid: trajectories have no endpoints, $\mathcal{L}_{\mathbf{r}}\phi = \mathbf{0}$.
- \Rightarrow Simple, first order equation of motion for collisionless fluid.
- $\Rightarrow \phi$ is constant along integral curves of **r**.

Geodesic dust fluid: $\phi(x, y) \sim \delta(y-u(x))$.



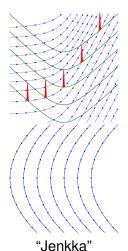
Geodesic dust fluid: $\phi(x, y) \sim \delta(y-u(x))$.



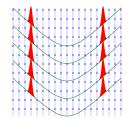
"Jenkka"

Manuel Hohmann (Tartu Ülikool)

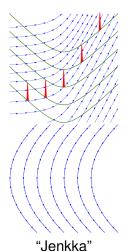
Geodesic dust fluid: $\phi(x, y) \sim \delta(y-u(x))$.



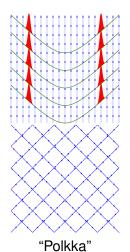
Collisionless fluid: $\mathcal{L}_{\mathbf{r}}\phi = \mathbf{0}$.



Geodesic dust fluid: $\phi(x, y) \sim \delta(y-u(x))$.

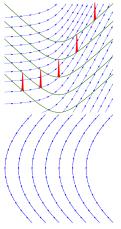


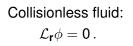
Collisionless fluid: $\mathcal{L}_{\mathbf{r}}\phi = \mathbf{0}$.

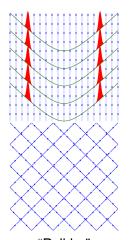


Manuel Hohmann (Tartu Ülikool)

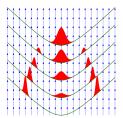
Geodesic dust fluid: $\phi(x, y) \sim \delta(y-u(x))$.







Interacting fluid: $\mathcal{L}_{\mathbf{r}}\phi \neq \mathbf{0}$.



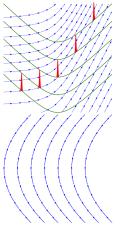
"Jenkka"

"Polkka"

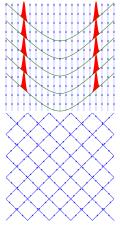
Manuel Hohmann (Tartu Ülikool)

Fluid dynamics

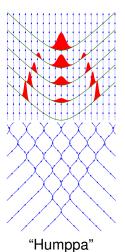
Geodesic dust fluid: $\phi(x, y) \sim \delta(y-u(x))$.



Collisionless fluid: $\mathcal{L}_{\mathbf{r}}\phi = \mathbf{0}$.



Interacting fluid: $\mathcal{L}_{\mathbf{r}}\phi \neq \mathbf{0}$.



"Jenkka"

"Polkka"

18/24

Manuel Hohmann (Tartu Ülikool)

Fluid dynamics

• Volume form Π_x on unit timelike shells S_x induced by \tilde{G} .

- Volume form Π_x on unit timelike shells S_x induced by \tilde{G} .
- Averaged rest mass current density:

$$J^a(x) = m \int_{\mathcal{S}_x} \phi y^a \Pi_x$$

• Averaged particle energy momentum tensor:

$$T^{ab}(x) = m \int_{\mathcal{S}_x} \phi y^a y^b \Pi_x$$

- Volume form Π_x on unit timelike shells S_x induced by \tilde{G} .
- Averaged rest mass current density:

$$J^a(x) = m \int_{\mathcal{S}_x} \phi y^a \Pi_x$$

• Averaged particle energy momentum tensor:

$$T^{ab}(x) = m \int_{\mathcal{S}_x} \phi y^a y^b \Pi_x$$

- \Rightarrow Connection to well-known spacetime observables.
- \Rightarrow Connection to measurements.

- Infinitesimal diffeomorphism described by vector field ξ on *M*.
- Canonical lift of ξ to vector field on *TM*:

$$\hat{\xi} = \xi^{a}\partial_{a} + y^{a}\partial_{a}\xi^{b}\bar{\partial}_{b}$$

- Infinitesimal diffeomorphism described by vector field ξ on M.
- Canonical lift of ξ to vector field on *TM*:

$$\hat{\xi} = \xi^{a} \partial_{a} + y^{a} \partial_{a} \xi^{b} \bar{\partial}_{b}$$

• Killing vector field ξ :

$$\mathcal{L}_{\hat{\xi}}F = 0$$

 $\Rightarrow \hat{\xi}$ is tangent to observer space $O \subset TM$.

- Infinitesimal diffeomorphism described by vector field ξ on M.
- Canonical lift of ξ to vector field on *TM*:

$$\hat{\xi} = \xi^{a} \partial_{a} + y^{a} \partial_{a} \xi^{b} \bar{\partial}_{b}$$

• Killing vector field ξ :

$$\mathcal{L}_{\hat{\xi}}F = 0$$

- $\Rightarrow \hat{\xi}$ is tangent to observer space $O \subset TM$.
- \Rightarrow Symmetric fluid solution:

$$\mathcal{L}_{\hat{\xi}}\phi = \mathbf{0}$$

- Infinitesimal diffeomorphism described by vector field ξ on M.
- Canonical lift of ξ to vector field on *TM*:

$$\hat{\xi} = \xi^{a} \partial_{a} + y^{a} \partial_{a} \xi^{b} \bar{\partial}_{b}$$

• Killing vector field ξ :

$$\mathcal{L}_{\hat{\xi}}F=0$$

- $\Rightarrow \hat{\xi}$ is tangent to observer space $O \subset TM$.
- \Rightarrow Symmetric fluid solution:

$$\mathcal{L}_{\hat{\xi}}\phi = \mathbf{0}$$

- Symmetry provides simplification of 7-dimensional O:
 - Spherical symmetry: 4 dimensions remain.
 - Static spherical symmetry: 3 dimensions remain.
 - Cosmological symmetry: 2 dimensions remain.

- 2 Finsler geometry and observer space
- 3 Fluids on observer space

- Model fluids by particle trajectories.
- Lift trajectories from spacetime to observer space.
- Describe geometry of observer space using Finsler geometry.

- Model fluids by particle trajectories.
- Lift trajectories from spacetime to observer space.
- Describe geometry of observer space using Finsler geometry.
- Finsler geometry suitable for generalized gravity theories.

- Model fluids by particle trajectories.
- Lift trajectories from spacetime to observer space.
- Describe geometry of observer space using Finsler geometry.
- Finsler geometry suitable for generalized gravity theories.
- Classical fluid variables obtained via averaging:
 - Particle flux density.
 - Energy-momentum tensor

- Model fluids by particle trajectories.
- Lift trajectories from spacetime to observer space.
- Describe geometry of observer space using Finsler geometry.
- Finsler geometry suitable for generalized gravity theories.
- Classical fluid variables obtained via averaging:
 - Particle flux density.
 - Energy-momentum tensor
- Symmetries defined "as usual" by Killing vector fields.

- Coupling of fluids to non-metric gravity theories.
- Cosmological solutions with non-metric geometry.
- Extension of parameterized post-Newtonian formalism.

Ο ...

References

- Kinetic theory on the tangent bundle:
 - J. Ehlers, in: "General Relativity and Cosmology", pp 1–70, Academic Press, New York / London, 1971.
 - O. Sarbach and T. Zannias, AIP Conf. Proc. 1548 (2013) 134 [arXiv:1303.2899 [gr-qc]].
 - O. Sarbach and T. Zannias, Class. Quant. Grav. 31 (2014) 085013 [arXiv:1309.2036 [gr-qc]].

Finsler spacetimes:

- C. Pfeifer and M. N. R. Wohlfarth, Phys. Rev. D 84 (2011) 044039 [arXiv:1104.1079 [gr-qc]].
- C. Pfeifer and M. N. R. Wohlfarth, Phys. Rev. D 85 (2012) 064009 [arXiv:1112.5641 [gr-qc]].
- MH, in: "Mathematical structures of the Universe", pp 13–55, Copernicus Center Press, Krakow, 2014.

Kiitos!