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Behaviour under general local Lorentz transformations:

e all theories are covariant and invariant « only TEGR is covariant and invariant « Only TEGR is invariant

« modified teleparalle gravity theories are covariant
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Teleparallel Gravity
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Conclusion

Geometry of manifolds in terms of tetrads and connections implies transformation behaviour of spin connection
No physical field theory involved.

Generalize to arbitrary mappings f, which act on dynamical fields, sources and backgrounds

Covariance: Are the field equations formulated geometrically - coordinate independent, basis independent, ...?
Invariance: Is there a non-trivial mapping on the dynamical fields which maps solutions into solutions?

_ _ — e

Fully covariant formulation of teleparallel theories of gravity is invariant under local Lorentz transformations.

Let us be clear with the notions of covariance and invariance in tele parallel Gravity
A geometric formulation of the geometry of spacetime requires covariant formulation of tele parallel geometry.

TEGR dynamics are special, since they are independent of the spin connection.
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